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Quantum impurity problems

Part 1: Quantum impurity problems
and theoretical background

Part 2: Kondo effect and RG. 1d chain formulation
and iterative diagonalization

Part 3: Logarithmic discretization and truncation.
The RG in NRG

Part 4: Physical quantities. Results and discussion.
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Overview: Part 4

RG flow in physical quantities
Calculation of thermodynamics
Evolution of the Kondo temperature
Scaling and universality

Calculation of dynamics, t matrix

Conclusion
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NRG: recap

Logarithmic discretization of conduction band
Mapping to 1d Wilson chain

lterative diagonalization

O O 0O O

Successive Hilbert space truncation

1 Keep a large but finite number of states at each
iteration (discard the high-energy states):

Access ground state information
(in a finite number of steps)

0 BUT: what about physical quantities?!
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lterative diagonalization / truncation
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lterative diagonalization / truncation
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lterative diagonalization / truncation
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lterative diagonalization / truncation
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lterative diagonalization / truncation
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lterative diagonalization / truncation
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Effective temperature
1

1 We recover the full (discretized) Hamiltonian only in the limit

H =Lim A"Y2H

N —o0

= BUT: the sequence of approximate Hamiltonians H N
for finite N=O0, 1, 2, 3, ... accurately describe the full
system at an effective temperature kT o DAN/2

1 Useful information can be extracted at each iteration!

1 Thermodynamics can be calculated from the finite set of
NRG energy levels at a given iteration for this temperature
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Thermodynamics

Entropy: Sy ks = B(Hy)+In(Zy)
Magnetic susceptibility: /(9 ﬂék [< 2> }
Specific heat: Cy Tk = f5° [ <HN> ]

Evaluated at effective temperature KT, o DA N2
from finite set of NRG levels at iteration N viaq,

<QN>=ZLZ<r Q1) x exp[- BE,(r)]

N T
Impurity contributions defined as: <Q>imp = <Q>full —<Q>host
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Fixed point thermodynamics
1

11 For the Anderson impurity model:

FO fixed point: decoupled free impurity site

Expect entropy: Simp =In(4)

magnetic susceptibility: TZimp — 1

8
LM fixed point: decoupled free impurity spin-1/2

Expect entropy: Simp =1n(2)

magnetic susceptibility: TZimp — 1

4
SC fixed point: Kondo singlet ground state

Expect entropy: S.mp =0

magnetic susceptibility: TZimp =0
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RG flow in energy levels
S =

71 Each new iteration corresponds to a lower temperature

7 RG flow seen in many-particle energies...
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RG flow in thermodynamics
1

71 Each new iteration corresponds to a lower temperature

7 RG flow seen in many-particle energies...
... also appears in thermodynamics!
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Anderson — Kondo
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Magnetic susceptibility
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Kondo
temperature:
characterizes

crossover from
LM to SC




Kondo temperature
S =

o Perturbative scaling
(2"¢ order, p-h symmetric, wide flat band)

o Kondo Model: TK ~D exp [— 1/ (p J )]

0 Anderson Model (via SWT): TK ~D eXp [— 8 F/ (72' U )]

1 Confirmed asymptotically by NRG
(for small J or large U).



Scaling and universality
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Scaling and universality
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Scaling and universality
S =
1 RG flow between LM and SC fixed points is UNIVERSAL!

11 Details of model are unimportant (AIM or Kondo)

0 Except for determining crossover Kondo scale, Ty

7 Scaling collapse of data in terms of T/T,
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Other applications of NRG

1 Example: two-channel Kondo model
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Other applications of NRG

1 Example: two-channel Kondo model
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J. > Jz ! Kondo effect with left channel



Other applications of NRG

1 Example: two-channel Kondo model
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J L < J r - Kondo effect with right channel



Other applications of NRG

1 Example: two-channel Kondo model

_ Q c ] c T
Hyox = JLSimp “Sou Tt ‘JRSimp "Sor T ngckaackaa
K,
a=ER

o Strong Coupling FP is destabilized when J,=J,
m Different RG flow here!



Other applications of NRG

1 Example: two-channel Kondo model
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0 Quantum critical physics captured by NRG



Dynamics within NRG

-1 Dynamical quantities much harder to calculate

11 Discretized model produces discretized dynamics:
spectral functions consist of discrete poles

71 Calculate spectral functions using the
Lehmann respresentation...



Lehmann Representation
1

7 In NRG, we have access to many-particle states of the
approximate Hamiltonians Hy,. We want a generalized
method for constructing spectral functions...

No single-particle levels for interacting systems!

Reminder:  C>(t) = <A(t) |_3>> . C(t) = <I§ A(t)>
FT = C*( jdt e'’' C*(t)

Spectrum:  A(w) = —ilm [C>(a)+i0+) + C<(0)+i0+)]

27T

Andrew Mitchell Quantum Impurity Problems: Part 4



Lehmann Representation
N =

0 Impurity Green functions:

Ct) == (i |eMe™Mtd, e i)
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resolution of identity



Lehmann Representation
S =
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Lehmann Representation
S =

C@)=7Y [dtererse @5 i)
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Lehmann Representation
S =

Impurity spectral function is given by:

A@) =2 375 +e i |d, | x oo+ E, )

in terms of matrix elements of impurity operators,

between diagonalized many-particle eigenstates

For the generalized quantity C .. (1) = < A(t) I_3>(O) >

N N .
Cro(@) = (i [Bli ) =—(i |A[} )x 5w~E, +E)

A




Dynamics within NRG

Simple heuristic approximation at T=0

Calculate excitations from the ground state at each
iteration: need matrix elements <a\ é\gs}N

Energy differences at each iteration ~A™'?

Contributions to entire spectrum at a given energy ~A™"'?
come from iteration N. Combine poles for different N.

Problems:
High energies poorly resolved
Overcounting

Nature of true ground state not known at early iterations

Quantum Impurity Problems: Part 4



Complete Fock space
I

1 Discarded states at each iteration form an

approximate but complete basis g1
1 Caleulate full density matrix in this basis, 5 = €

VA

71 Access to accurate dynamics

11 Calculated via <> =1r [ﬁ]

F. B. Anders, A. Schiller, PRL 95 196801 (2005)
A. Weichselbaum, J. von Delft, PRL 99 076402 (2007)
R. Peters, T. Pruschke, F. B. Anders, PRB 74 245114 (2006)



Dynamics within NRG

complete
AS basis
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Dynamics within NRG

0 Complication:

N

B b>N are known in NRG
basis (calculated recursively, iteration by iteration)

Matrix elements of type <a

o1 Need unitary rotation of full density matrix in AS basis
into NRG basis

o1 Calculate reduced density matrix at each iteration

® From which can also calculate entanglement entropy!



Dynamics within NRG

0 Complication:
Discretized model produces discretized dynamics:
spectral functions consist of discrete poles

Broaden delta-peaks to recover continuous spectrum
Energies distributed on a logarithmic grid
Broaden using logarithmic Gaussians

Low-energy behavior around Fermi level well-sampled
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Broadening discrete data

01 Replace each delta-peak with a log-Gaussian

of the same total weight

A(a))A

A

o1 At each frequency that the spectrum is to be evaluated,

sum up the contribution from each broadened pole



Broadening discrete data
- r
= Zan 5(a)—a)n)—> Zan P, (a)—a)n)
jdw Za S(o'- o, )P, (0- ')
= jda)' A@')P, (0 - ')
can exploit 0
convolution f
F\

theorem and FFT convolution



Broadening discrete data
1

1 Example:
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Broadening discrete data
1

1 Example:
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Dynamics within NRG

11 Single-particle spectrum of the Anderson model:
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Dynamics within NRG

11 Single-particle spectrum of the Anderson model:
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Dynamics within NRG

71 Universal scaling spectrum of the Anderson model:

1.0




Conclusion: NRG for QIP

0 Quantum impurity problems appear in various guises:
o1 Magnetic impurities in metals

= Nanostructures
o Effective models in DMFT

0 NRG is a numerically-exact method
o It exploits the fundamental RG character of QIPs

o1 High-energy states are successively discarded, and the
physics is examined at progressively lower temperatures

0 Exact thermodynamics and dynamics can be calculated

00 Versatile: can be applied to generalized problems



