
NUMERICAL METHODS 

FOR 

QUANTUM IMPURITY MODELS 

   March 2015 Andrew Mitchell, Utrecht University 

http://www.staff.science.uu.nl/~mitch003/nrg.html 



 Part 1:  Quantum impurity problems 
       and theoretical background 

 

 Part 2:  Kondo effect and RG. 1d chain formulation 
            and iterative diagonalization 

 

 Part 3: Logarithmic discretization and truncation. 
           The RG in NRG 

 

 Part 4:  Physical quantities. Results and discussion. 

Andrew Mitchell Quantum impurity problems 

Quantum impurity problems 



Part 3:  

Wilson Chain and the RG in NRG. 

NUMERICAL METHODS 

FOR 

QUANTUM IMPURITY MODELS 

   March 2015 Andrew Mitchell, Utrecht University 



Overview:  Part 3 

 Particle in a box revisited 

 The problem of truncation 

 

 Linear discretization 

 Logarithmic discretization 

 The Wilson Chain 

 

 Analytic structure:  RG, flows, fixed points, 

scaling, universality 
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The problem of truncation… 

 
 We wish to join two sub-systems into one large system.  

 
 If we are only interested in the low-energy physics of 

the combined system, can we neglect the high-energy 

states of the two sub-systems? 

 

 Consider simplest possible system: particle in a box! 
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Aside: particle in a box 

  In the continuum: 

 

                     with boundary conditions 

 

 On the lattice:  

   (1d chain) 
 

         Hamiltonian conserves particle number and spin… 

                Consider only the 1-particle, spin-σ subspace 
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Aside: particle in a box 

  Basis states: 

 

 

 

 

 

                                   ie. single-particle states. Easy! 
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Aside: particle in a box 

  Diagonalize LxL hopping matrix: 

 

 Energy of states: 

 

 

 Eigenstates are particle-in-a-box wavefunctions 

                                       

 

                     with coefficients  
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Aside: particle in a box 
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Aside: particle in a box 
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Aside: particle in a box 
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Aside: particle in a box 
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Aside: particle in a box 

  Join two boxes together: 

 

 

 

 

 

 

 

 For            , boundary condition mismatch!  
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Aside: particle in a box 
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Aside: particle in a box 
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Aside: particle in a box 

 This boundary condition mismatch means that low-
energy states of a composite system cannot just be 
constructed from low-energy states of two sub-systems 

   … in general 

 

 Need to select states with the correct boundary 
conditions (ie, nodes in the right places) 

 Motivation for development of DMRG 

 

 But is there another way? A way that exploits RG? 
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Aside: particle in a box 

  Consider the opposite limit                   

Can now treat           perturbatively! 

 

 

 

 

where                             is the complete set of diagonal  

                                      states of   
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Aside: particle in a box 

  When      is the smallest energy scale of the problem, 

can project into the ground state manifold of   
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Aside: particle in a box 

  Ground state of composite (joined) system: 

 

 

 

 

 To first order: ground state of combined system can be 

constructed from ground states of sub-systems 

provided connecting terms are small. 
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Aside: particle in a box 
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Aside: particle in a box 
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Aside: particle in a box 
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Aside: particle in a box 
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Aside: particle in a box 
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The Truncation Problem 

  Back to iterative diagonalization and truncation! 
 

 Philosophy in NRG: 

Ensure coupling to each added site is always small 

 

 In NRG, this is achieved by a logarithmic discretization 

of the conduction band. 

 Mapping to a 1d chain produces hoppings that  

decrease exponentially down the chain.   
    

 Energy scale separation allows truncation at every step. 
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Discretization 

 
 How does the discretization work in practice? 

 

 We saw already that truncating the 1d chain 

representation is a type of discretization 

 

 Another possibility:  discretize the conduction electron 

density of states. 

 Replace the continuous spectrum by discretized poles 
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Linear Discretization 

 Divide band up into N intervals, each of width 2D/N 

 





,

,

†

,

k

kkkhost ccH
 


 












D

D
D






   :           0

   :         
2

1

       NN PPPPPPPP ,  ,  ...  , ,  , ,  , , 1322110 

 NnDPn /21 

 


Andrew Mitchell Quantum Impurity Problems:   Part 3 



Linear Discretization 

 Discretize the continuous spectrum by replacing with 

sum over delta-peaks: 
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Logarithmic Discretization 

 Logarithmic discretization of conduction band: 

 

 

 Define intervals  
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Logarithmic Discretization 

 


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Logarithmic Discretization 
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Logarithmic Discretization 



Andrew Mitchell Quantum Impurity Problems:   Part 3 

 disc



Logarithmic Discretization 

 Is this a good approximation to the true continuum? 

 Broaden the spectral poles into (log-) Gaussians to check: 

 

 

 

 

approximately 

recovers 

flat band 
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Wilson’s formulation 

 Anderson Hamiltonian:  

 

 
 

 

 Conduction band assumed to be isotropic: 

   

   

   Impurity then just couples to the s-wave states: 
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Wilson’s formulation 

 Assume                  and                    are 

independent of energy (and write                ):           
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Wilson’s formulation 

 Divide band into logarithmic intervals: 
 

 

 

 

 Set up a Fourier series in each interval: 

 

 

 

   where, 
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Wilson’s formulation 

 Canonical transformation of operators in each interval: 

 

 
 

 

 

 

 Hybridization term of Hamiltonian: 

 

 

 Impurity only couples to p=0 fundamental harmonic! 
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Wilson’s formulation 

 BUT: Conduction electron Hamiltonian: 

 

 

 

 

              modes couple to impurity only indirectly,  

             through the modes with 

 

 Coupling between           and            modes controlled 

in the discretization parameter, and vanish as     
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Wilson’s formulation 

 Keep only p=0 modes! 

 

 

 

 

 

 

 

                 where,  
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Logarithmic Discretization 

 disc
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Logarithmic Discretization 

 Low-energy excitations around Fermi level are 
exponentially-well sampled 

 needed to capture Kondo physics on the scale of TK 

 

 Treats physics on all energy scales on equal footing 

 Logarithmic divergences in perturbative treatment avoided 
by logarithmic discretization 

 

 But does this help?  

 Continuous spectrum:  uncountably infinite number of states 

 Discretized spectrum: countably infinite… but still infinite! 
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Mapping to 1d chain 

 The Wilson Chain is a 1d tight-binding chain,  

with the impurity located at one end: 

 

 
… 

‘zero orbital’ of the Wilson Chain: 

Local Density of States  

seen by the impurity is the 

logarithmically discretized 

host density of states, 

impurity 

↑ 

 disc
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Wilson Chain 
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Wilson Chain 

  But we don’t want the diagonal representation! 

 We need the tridiagonal chain representation 
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Wilson Chain 

  But we don’t want the diagonal representation! 

 We need the tridiagonal chain representation 
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Wilson Chain 

  Tridiagonalize by “Lanczos” method 

 CONSTRAINT:  zero-orbital of Wilson chain must have correct LDOS 
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Wilson Chain 

  Tridiagonalize by “Lanczos” method: 

 Starting ingredients: diagonal host Hamiltonian and zero-orbital vector 

 

 

 

 1)  Compute: 

 

 2)  Compute: 

 

 3)  At any step, only non-zero elements are:   
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Wilson Chain 

  Tridiagonalize by “Lanczos” method: 

 

 

 
 

 

 

 Wilson showed that the hoppings drop off exponentially 

down the chain, due to the logarithmic discretization: 

… ↑ 
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NRG 

 Iterative diagonalization of Wilson chain 

 

 Truncation of Hilbert space at each step 

 Throw away high lying states, keeping large but fixed 

number, Ns , states per iteration 

 Justified by the energy-scale separation going from 

iteration to iteration 

 

 High-energy states discarded at one iteration do not 

affect low-energy states at later iterations 
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NRG: iterative procedure 

 Start from the impurity-zero orbital sub-system 

 Apply recursion relation to add on extra sites 

 

 

 

 

 

 Full (discretized) Hamiltonian recovered as 
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 One iteration in NRG: 

NRG: iterative procedure 
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 Flow of (rescaled) many-particle levels: 

NRG: iterative procedure 

Andrew Mitchell Quantum Impurity Problems:   Part 3 



NRG: iterative procedure 

 Physics of the model at lower and lower energy scales is 

revealed as more Wilson chain orbitals are added 

 

 Fixed number of states kept at each iteration, so no 

explosion of Hilbert space:  linear scaling with N 

 

 After a finite number of iterations (say N=100 for  Ʌ=3), 

access ground state information 

 For the Kondo model:   

Strong coupling spin-singlet ground state 

Impurity screened by conduction electrons:  Kondo effect! 

 
Andrew Mitchell Quantum Impurity Problems:   Part 3 



 Flow of (rescaled) many-particle levels: 

Why?! 

NRG: iterative procedure 

converged 

levels 
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Analytic structure:  the RG in NRG 

 View iterative construction of the Wilson chain… 

  

 

 

 

   … as an RG transformation:  

↑ 

join
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The Renormalization Group 

 
 The sequence of Hamiltonians,       , form a group 

 

 Application of the transformation,              ,  generates a 
new member of the group, 

 

 Successive application of the transformation generates a 
characteristic RG flow through this Hamiltonian space 

 Flow starts from the ‘initial’ Hamiltonian (corresponding to the 
bare impurity with its original microscopic parameters) 

 At special points in the flow, physics can be understood in terms 
of the original model, but with renormalized parameters. 

 NHR ˆ

NH

1NH

Andrew Mitchell Quantum Impurity Problems:   Part 3 



Fixed points 

  Fixed points (FPs) of the RG transformation 

correspond to special cases where 

 

 A fixed point Hamiltonian is thus one that is 

invariant to the RG transformation, 

 

 Fixed point Hamiltonians often correspond to the 

original model, but with special renormalized values 

of the parameters (often 0 or infinity, but not always) 

 **  ˆ HRH 

*

1 HHH NN  
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Fixed point stability 

  Analyze behavior near to FPs: 

 

 It follows from the RG transformation that: 

 

 Does          get larger or smaller with N ? 

 Construct possible perturbations to each FP consistent 

with model symmetries 

 

 Can determine eigenvalue     of the transformation        

for operators       analytically! 
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Fixed point stability 

 
 Classify perturbations as ‘relevant’ or ‘irrelevant’: 

 A ‘relevant’ perturbation grows under RG: 

 An ‘irrelevant’ perturbation diminishes under RG:  

 

 Classify fixed points as ‘stable’ or ‘unstable’: 

 A ‘stable’ FP has no relevant perturbations 

 RG flow ‘attracted’ to the FP 

 An ‘unstable’ FP has at least one relevant perturbation 

 RG flow ‘repelled’ by the FP 

1 i

1 i
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RG Flow 

  RG flow between fixed points 

 Repelled by unstable FPs;  attracted by stable FPs 

 Seen in many-particle energies and physical quantities 

 Schematically represented by RG flow diagram 

 

Kondo model:  

 

Unstable FP: 

‘Local Moment’ Stable FP: 

‘Strong Coupling’  
Effective 

renormalized coupling 

J
~
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RG Flow 

  Number, character and stability of FPs determined 

by the specific RG transformation and symmetries 

 RG flow (trajectory) determined by starting 

parameters of bare model 
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Universality 

 
 One stable FP: 

 Single ground state! 

 For any starting parameters, always end up at the same FP 
(although path to reach the stable FP might be different) 

 

 Universality 

 Irrespective of the details of a model, or its bare parameters, 
two systems with the same stable fixed point have the same 
ground state and low-energy physics 

 RG flow between two fixed points is universal, and 
characterized only by a single crossover energy scale  
(for example, TK for the Kondo model)  

 Physical quantities for different systems are described by a single 
universal curve, when rescaled in terms of  T/TK  or  ω/TK 
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Critical phenomena 

  One stable FP: 

 Single ground state! 
 

 

 

 Two stable FPs: 

 Two possible ground states 

 Starting parameters 

determine RG trajectory and 

ultimately which stable FP is 

reached 

 Quantum phase transition! 
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Fixed point properties 

  How to determine fixed points? 

 What are their properties? 

 Are they stable? 

 

 Free Wilson Chain is invariant under the RG 

transformation… 

 hosthost HRH 2ˆ
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Fixed point properties 

 
 Free Wilson Chain (no impurity): 

 

 

 

 Represented by tridiagonal matrix 
 

 

                  Diagonalize matrix to 

                  obtain single-particle  

          levels: 
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  Fill up single-particle levels up to the Fermi level 

(in accordance with Pauli principle) 

 Construct many- 

particle excitations 

above ground state 

 Rapid convergence 

with Wilson Chain  

length: adding more 

sites does not change 

levels! 

 Free Wilson chain is a FP of the RG transformation! 

 

Fixed point properties 

Andrew Mitchell Quantum Impurity Problems:   Part 3 



 
 Anderson Impurity Model:  reminder 

 Bare Hamiltonian: 
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 Anderson Impurity Model:  reminder 

 Bare Hamiltonian: 

 

 

 

 FPs Hamiltonians are of the same form, but with 

renormalized parameters: 

 Free Orbital (FO) FP     (high T) 

 

 

 Free Wilson chain with a single decoupled impurity SITE 

0   ; 0   ; 0          with ****  FOFOFOFO UVHH 

Fixed point properties 
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 Anderson Impurity Model:  reminder 

 Bare Hamiltonian: 

 

 

 

 FPs Hamiltonians are of the same form, but with 

renormalized parameters: 

 Local Moment (LM) FP     (T ~ U  : recall Schrieffer-Wolff) 

 

 

 Free Wilson chain with a single decoupled impurity SPIN 

2/   ;    ; 0          with *****

LMLMLMLMLM UUVHH  

Fixed point properties 

        

 




, ,

,

† H.c.ˆˆˆˆˆ 
k k

kkkimpimpimpimp cdVnnnUnnH

Andrew Mitchell Quantum Impurity Problems:   Part 3 



 
 Anderson Impurity Model:  reminder 

 Bare Hamiltonian: 

 

 

 

 FPs Hamiltonians are of the same form, but with 

renormalized parameters: 

 Strong Coupling (SC) FP    (low temperature… T << TK ) 

 

 

 Free Wilson chain with ‘zero-orbital’ removed 

  2/   ; /           with ***2**

SCSCSCSCSC UUVHH  

Fixed point properties 
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FO fixed point analysis 

 
 Anderson Impurity Model 

 Near the FO FP: 
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relevant 

FO FP unstable! 
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 Anderson Impurity Model 

 Near the LM FP: 

   
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marginally 

relevant: LM 

FP unstable 

discretized form 

of Kondo model! 

LM fixed point analysis 
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 Anderson Impurity Model 

 Near the SC FP: 
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irrelevant 

• SC FP is ‘stable’ 

• As N increases, get closer to SC FP  

• MUST reach SC FP at low enough temperatures 

• T=0 ground state is described by SC FP: Kondo singlet 

SC fixed point analysis 
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The Renormalization Group 

 
 Anderson Impurity Model 

 Schematic RG flow diagram: 

U
~

V
~

Kondo model 
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The Renormalization Group 

 
 Anderson Impurity Model 

 RG flow of many-particle energies: 

FO 

LM 
SC 
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The Renormalization Group 

 

 RG flow also seen in physical quantities… 

 

  … more in final part!  
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