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Quantum impurity problems
]

0 Part 1: Quantum impurity problems
and theoretical background

1 Part 2: Kondo effect and RG. 1d chain formulation
and iterative diagonalization

0 Part 3: Logarithmic discretization and truncation.
The RG in NRG

o Part 4: Physical quantities. Results and discussion.
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Overview: Part 3

Particle in a box revisited

The problem of truncation

Linear discretization

Logarithmic discretization
The Wilson Chain

Analytic structure: RG, flows, fixed points,
scaling, universality
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The problem of truncation...

N =
1 We wish to join two sub-systems into one large system.

0000000

o If we are only interested in the low-energy physics of
the combined system, can we neglect the high-energy
states of the two sub-systems?

11 Consider simplest possible system: particle in a box!




Aside: particle in a box
1

82
o In the continuum: H A =——
pb 8)(2

with boundary conditions w(0) =0=y/(L)
L L1
71 On the lattice: H b = t ZZCjGC(Hl)G + H.c.
(1d chain) =0 o

Hamiltonian conserves particle number and spin...

Consider only the 1-particle, spin-0 subspace
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Aside: particle in a box

01 Basis states: o.— ——..

ie. single-particle states. Easy!



Aside: particle in a box
S =

- Diagonalize LxL hopping matrix: (0 t )
t 0 t
01 Energy of states: t 0 .
- Az L
E, =-2t COS(L+1) \ C
m Eigens’rq’res are particle-in-a-box wavefunctions

ZU (r)cl |vac)

with coefficients U (r) = 1/ (I_J:—ﬂlj
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Aside: particle in a box
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Aside: particle in a box
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Aside: particle in a box
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Aside: particle in a box
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Aside: particle in a box
S =

01 Join two boxes together: H=H. +H.

box join

L/2-1

_ T
HbOX =1 chrac(rﬂ)a +H.C.

r=0 o

L
+t > D ¢l Cr, + HoC.

r=L/2 o

_ ¢! T
HjOi” =1 ZC(LIZ)GC(L/2+1)G + H.C.
o)

o For t'/t=1, boundary condition mismatch!



Aside: particle in a box
1
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Aside: particle in a box
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Aside: particle in a box
1

o1 This boundary condition mismatch means that low-
energy states of a composite system cannot just be
constructed from low-energy states of two sub-systems

. in general

1 Need to select states with the correct boundary
conditions (ie, nodes in the right places)

Motivation for development of DMRG

o1 But is there another way? A way that exploits RG?
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Aside: particle in a box
S =

-1 Consider the opposite limit t'/t << 1

Can now treat Hjoin perturbatively!

[—>

H =1H, 1+ 1H  1+.

join =

where i: Z‘ r><r‘ is the complete set of diagonal
I

states of H hox



Aside: particle in a box
1

1 When t' is the smallest energy scale of the problem,
can project into the ground state manifold of H,

= D |gsir){gs;r|

r=1,2

ty, L¢(T)I2

ty densi
°

probabili
=)

20 A0 60 80
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H—1H1+1H 1 + ...

box jom
=1,E, + t{U,@] > |gsir)gs;T|+...
— r=1,2



Aside: particle in a box
1

11 Ground state of composite (joined) system:

Egif = Egs _tl[Ul(l)]z
. 1
v =ﬁ(w1—%)

01 To first order: ground state of combined system can be
constructed from ground states of sub-systems
provided connecting terms are small.



Aside: particle in a box

R EEEEEEE————————————————
t'/t=1

o
i~

()P

=
=
(]

0.01

probability density,

0 20 40 60 80 100
lattice site number, r



Aside: particle in a box

t'/t=0.99

0.04

N —
o L =100
S

=003

>

~—

.-

w2

S 0.02

o

b

=
< 001
el

e

—

a,

0
0 20 40 60 80 100

lattice site number, r



Aside: particle in a box

t'/t=0.95

0.04

N —
o L =100
S

=003

>

~—

.-

w2

S 0.02

o

b

=
< 001
el

e

—

a,

0
0 20 40 60 80 100

lattice site number, r



Aside: particle in a box
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Aside: particle in a box
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The Truncation Problem
]

o1 Back to iterative diagonalization and truncation!

71 Philosophy in NRG:
Ensure coupling to each added site is always smaill

7 In NRG, this is achieved by a logarithmic discretization
of the conduction band.

Mapping to a 1d chain produces hoppings that
decrease exponentially down the chain.

71 Energy scale separation allows truncation at every step.
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Discretization
D

1 How does the discretization work in practice?

7 We saw already that truncating the 1d chain
representation is a type of discretization

71 Another possibility: discretize the conduction electron
density of states.

=1 Replace the continuous spectrum by discretized poles



Linear Discretization

,0(0)) k,o
(L ; a)‘ <D

| 2D
p(a)) 10 : a)‘ > D

1 Divide band up into N intervals, each of width 2D/N
[PO’RI.:’ [P].’PZ]’ [PZ’P3]’ e [PN—l’PN]
P =D(-1+2n/N)

p(w)

4



Linear Discretization
H .

11 Discretize the continuous spectrum by replacing with
sum over delta-peaks:

,0( _)deSC Za5w a)

W, = (Pn—l o Pn)/2 Plisc (C())
i (Pn B I:)n—l) 1 0
a, = Ln_lda) p(a)) = D :ﬁ
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Logarithmic Discretization
S =

1 Logarithmic discre’rizq’rion of conduction band:

IO( _>IOdISC Zaé‘a) C()

o1 Define intervals P. =+A" with n=0,1234,...

n

@ ~+A"

n

P -n
a, = Ln_lda) plw)~ A



Logarithmic Discretization

p()

A

1

- <

-2

-3

_A'1 _A_Q_A‘S. .

-1
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Logarithmic Discretization
N =




Logarithmic Discretization
N =

pdisc(a))
A

‘|I..I|‘ | e W

| |
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Logarithmic Discretization
1

01 Is this a good approximation to the true continuum?

Broaden the spectral poles into (log-) Gaussians to check:
I ' I ' I

o ——
plw) :4 \ _-

3 =
approximately

02 recovers
flat band
0.1

0 }I Lttt it L1 ] |,I

-1 0 1
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Wilson’s formulation
H .

-1 Anderson Hamiltonian:
_ t T
: k
t f
k
o Conduction band assumed to be isotropic:
o ep depends only on | k|

o Vg, depends only on |k]|
o Impurity then just couples to the s-wave states:

D
T
I, = LD €Ay ey de +€dC;quM + U(CJTCdT)(Cglcdl)

b 1/2 f * j
+f delp( 21V (D aluca, + Vi(e) clua,]



Wilson’s formulation
H .

1 Assume plg)= p and V,(g)=V, are
independent of energy (and write Kk = ¢/ D ):

1
Ky=D f_ kafyakﬂ dk +€dC;_u,Cd# + U(CJTCd;)(lecdl) |

- f dk (akqu# + Cdy.akp,)

5]

where

I'=mpV}



Wilson’s formulation
H .

0 Divide band into logarithmic intervals:
P=+A" withn=0,1234,.

1 Set up a Fourier series in each interval:

Aﬂ/2 iim.pk ) _

e” " AT <tk < AN
vER={a-aH7e" '

0 if k is outside the above interval .

!

- 2 2w A”
where, Wn = A n— A—(ntD) o 1 — A"




Wilson’s formulation
H .

71 Canonical transformation of operators in each intervail:

Ay, = 2 [anp#‘f’r?.;?(k) + bnputnp (k)] |
np

1 1 |
Anpp = f-1 dk [y (K) ) agys bpp= f_l dk [ (k) 1"y,

11 Hybridization term of Hamiltonian:
1
J.__] iy dk = (1 — A_l)l’fz' E A‘"’z(a,,gu + b,,oﬂ)

o Impurity only couples to p=0 fundamental harmonic!



Weilson’s formulation
]

-1 BUT: Conduction electron Hamiltonian:
fl kaguar, dk =5 (1+A") 3 A"(a,, — Bopbnpys)
-1 kn@hp 3 < AnpuQnpp ™ OnppOnpp/

1--A‘ A“" t ot 2wi(p'—p)
T § 5 (a,,ppa"p;# b,,wbnpfu)exp = A

P #0 modes couple to impurity only indirectly,
through the modes with p =0

-1 Coupling between p=0 and p #0 modes controlled
in the discretization parameter, and vanish as A — 1
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Wilson’s formulation
H .

1 Keep only p=0 modes!

sc [+ o]
— S(1+A™) 3 A auany — bpubny)
‘ n=0
+Lesetcan +1 T j
p ~dtdutdu D U(Cd’[Cd{)(Cdlcdj).
F2I‘ 1/2
T T
+ k—":ﬁ ( fouCan + Cau fou)

| 12 &
Where, fOp, = [_;"(1 - A‘-l)] 2 A-—nﬂ(anu + bny,)
n=0



Logarithmic Discretization
N =

Pldisc (C())
A

‘|I..I|‘ | e W

| |
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Logarithmic Discretization

1 Low-energy excitations around Fermi level are
exponentially-well sampled

needed to capture Kondo physics on the scale of T,

o Treats physics on all energy scales on equal footing

Logarithmic divergences in perturbative treatment avoided
by logarithmic discretization

-1 But does this help?
Continuous spectrum: uncountably infinite number of states

Discretized spectrum: countably infinite... but still infinite!
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Mapping to 1d chain

71 The Wilson Chain is a 1d tight-binding chain,
with the impurity located at one end:

NG

‘zero orbital’ of the Wilson Chain:

impurity Local Density of States
seen by the impurity is the
logarithmically discretized
host density of states, ,Odisc(a))
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Wilson Chain

I
Pldisc (a))
A

nn | _ e w

| ! !
-1 N N T N 1

pdisc(a)) = Z EW i 5(50_ gk)
k
— Hﬁéi‘f = ngbljo-bka
K,
Gt impurity Problemss Pt




Wilson Chain

1 But we don’t want the diagonal representation!
We need the tridiagonal chain representation

Hf(lj(;zi = ngbljabka = ZZ (hn fnTO' f(n+1)a + HC)
kK,o o n

—

252250 =3 ijlfU



Wilson Chain

1 But we don’t want the diagonal representation!
We need the tridiagonal chain representation

e, 0 0 0 e h 0 0
005 0 0f _ |h & h O
0 0 & O 0 h, e h
0 0 0 ¢ 0 0 h e




Wilson Chain

11 Tridiagonalize by “Lanczos’ method
= CONSTRAINT: zero-orbital of Wilson chain must have correct LDOS

IOdISC Z‘aOk‘ a)_gk)

/

pole weights define the Lanczos
transformation for the zero-orbital, ——5 siarting
connected to the impurity vector:
a)



Wilson Chain

Tridiagonalize by “Lanczos™ method:

Starting ingredients: diagonal host Hamiltonian and zero-orbital vector

H disc _ ngbljabka / a0>
K,o

host

1) Compute: H |a,) = e|a,) + h|a)

2) Compute: H ‘al> = h1 a0> + € a1> + hz\a2>

3) At any step, only non-zero elements are:
(a|H|a)=+¢ and (a|Hl|a,) =h,
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Wilson Chain

11 Tridiagonalize by “Lanczos’ method:

1 Wilson showed that the hoppings drop off exponentially
down the chain, due to the logarithmic discretization:



NRG

0 lterative diagonalization of Wilson chain

o Truncation of Hilbert space at each step

o Throw away high lying states, keeping large but fixed
number, N_, states per iteration

0 Justified by the energy-scale separation going from
iteration to iteration

0 High-energy states discarded at one iteration do not
affect low-energy states at later iterations



NRG: iterative procedure
]

01 Start from the impurity-zero orbital sub-system

-1 Apply recursion relation to add on extra sites

H, ., =VAH, +AV/?H "

T — — — — — -

o1 Full (discretized) Hamiltonian recovered as

H =Lim A ™Y?H

N —o0



NRG: iterative procedure
I

1 One iteration in NRG:

) o) . ¢) d) |
EN (r) A EN (r) EN+ 1 (r) after truncation
0 - I e Y Do




NRG: iterative procedure
I

11 Flow of (rescaled) many-particle levels:
4.0 . . . , . , :

3.0

1.0

0.0




NRG: iterative procedure
]

1 Physics of the model at lower and lower energy scales is
revealed as more Wilson chain orbitals are added

1 Fixed number of states kept at each iteration, so no
explosion of Hilbert space: linear scaling with N

-1 After a finite number of iterations (say N=100 for A=3),
access ground state information

For the Kondo model:
Strong coupling spin-singlet ground state
Impurity screened by conduction electrons: Kondo effect!

Andrew Mitchell Quantum Impurity Problems: Part 3



NRG: iterative procedure

]
0 F

4.0

3.0

0.0

— Q=(
_——— Q=
f— e Q=

S
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Analytic structure: the RG in NRG

1 View iterative construction of the Wilson chain...

o0 0000

/ N /2y join
N+1 H +A HN+1

.. as an RG transformation:

HN+1 = IQ(HN)



The Renormalization Group
I

1 The sequence of Hamiltonians, H " form a group

- Application of the fransformation, F\A) (H N) , generates a

new member of the group, H Nl

-1 Successive application of the transformation generates a
characteristic RG flow through this Hamiltonian space

O Flow starts from the ‘initial’ Hamiltonian (corresponding to the
bare impurity with its original microscopic parameters)

0 At special points in the flow, physics can be understood in terms
of the original model, but with renormalized parameters.



Fixed points

Fixed points (FPs) of the RG transformation
correspond to special cases where H =R (H~

A fixed point Hamiltonian is thus one that is

invariant to the RG transformation, H N = H Nal = H

Fixed point Hamiltonians often correspond to the
original model, but with special renormalized values
of the parameters (often O or infinity, but not always)
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Fixed point stability

Analyze behavior near to FPs:

H, =H" +AH,

It follows from the RG transformation that:
AHN+1 =R (AHN)

Does AH | get larger or smaller with N ?

Construct possible perturbations to each FP consistent
with model symmetries

y A
AH, = a4 O

Can determine eigenvalue 1. of the transformation R
for operators O. analytically!
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Fixed point stability

0 Classify perturbations as ‘relevant’ or ‘irrelevant’:
o A ‘relevant’ perturbation grows under RG: 4. >1

0 An ‘irrelevant’ perturbation diminishes under RG: 4. <1

0 Classify fixed points as ‘stable’ or ‘unstable’:

0 A ‘stable’ FP has no relevant perturbations
u RG flow ‘attracted’ to the FP

o1 An ‘unstable’ FP has at least one relevant perturbation
u RG flow ‘repelled’ by the FP



RG Flow

1 RG flow between fixed points
o1 Repelled by unstable FPs; attracted by stable FPs
o1 Seen in many-particle energies and physical quantities

o1 Schematically represented by RG flow diagram

LM SC
Kondo model: + >
0 J 00 \
Unstable FP: / f
‘Local Moment’ Effoctive Stable FP:

‘Strong Coupling’

renormalized coupling

Andrew Mitchell




RG Flow

1 Number, character and stability of FPs determined
by the specific RG transformation and symmetries

1 RG flow (trajectory) determined by starting
parameters of bare model
Y

X



Universality
0 One stable FP:

Single ground state!

For any starting parameters, always end up at the same FP
(although path to reach the stable FP might be different)

0 Universality

Irrespective of the details of a model, or its bare parameters,
two systems with the same stable fixed point have the same
ground state and low-energy physics

RG flow between two fixed points is universal, and
characterized only by a single crossover energy scale
(for example, T for the Kondo model)

Physical quantities for different systems are described by a single
universal curve, when rescaled in terms of T/T, or w/T,
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Critical phenomena
]

1 One stable FP:

o Single ground state! e

0 Two stable FPs:
o Two possible ground states

o Starting parameters
determine RG trajectory and
ultimately which stable FP is

reached

0 Quantum phase transition! 7% H, S X



Fixed point properties
S =

1 How to determine fixed points?
7 What are their properties?

(1 Are they stable?

1 Free Wilson Chain is invariant under the RG
transformation...

H host — F’éz (H host )



Fixed point properties
S =
©1 Free Wilson Chain (no impurity):

N-1
e N-1)/2
HN = A( ) Zzen no na T Z(hn fnTa 1:(n+1)<7 T HC)
o n=0 n=0
o1 Represented by tridiagonal matrix
N
< >
feo h, ) Diagonalize matrix to
h e h obtain single-particle
(N-1)/2 0o “1 'h
A X , levels:
h e . e T
. H, = ng b, b
\ ‘/ K,o




Fixed point properties
S =

01 Fill up single-particle levels up to the Fermi level
(in accordance with Pauli principle)

2 (e

| | o % T 3 # T & T % TO# _*
11 Construct many- o e

particle excitations ol T

above ground state .

= I
;32/10_\9_ —e o

o
o
o
d

o
!

0 Rapid convergence

with Wilson Chain N . b

length: adding more

sites does not change B
1 3 3 7 9 11

levels! N

1 Free Wilson chain is a FP of the RG transformation!



Fixed point properties
]
71 Anderson Impurity Model: reminder

1 Bare Hamiltonian:

,mp ,mp +U nlmpnlmp +ngnk +VZ(d c,, +H. c)

K,o \
/ Hybridizaﬁon H hyb

Isolated impurity Himp
Ac =d'd_

Imp Isolated conduction

band Hhost discretize to give
A =cl C,, > Wilson Chain
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Fixed point properties
S =
1 Anderson Impurity Model: reminder

1 Bare Hamiltonian:

imp imp imp” "imp

H =g(ﬁT + A )+U(ﬁ.T A )+ > &y +VZ(d;ck,G+ H.c.)
K,o k,o

=1 FPs Hamiltonians are of the same form, but with
renormalized parameters:

m Free Orbital (FO) FP  (high T)
H,=H with V,=0; U,,=0; &,=0

m Free Wilson chain with a single decoupled impurity SITE



Fixed point properties
S =
71 Anderson Impurity Model: reminder

1 Bare Hamiltonian:

imp imp imp” "imp

H =g(ﬁT + A )+U(ﬁ.T A )+ > &y +VZ(d;Ck,a+ H.c.)
K,o k,o

=1 FPs Hamiltonians are of the same form, but with
renormalized parameters:

® Local Moment (LM) FP (T ~ U : recall Schrieffer-Wolff)

*

H, =H with V,, =0; U, =w; &, =-U_,/2

® Free Wilson chain with a single decoupled impurity SPIN



Fixed point properties
S =
1 Anderson Impurity Model: reminder

1 Bare Hamiltonian:

Hzg(ﬁ.T + A )+U(n A ) ngn +VZ(chkG+Hc)

imp imp imp" "imp

=1 FPs Hamiltonians are of the same form, but with
renormalized parameters:

m Strong Coupling (SC) FP  (low temperature... T << T, )
Hio=H with NVof/UL =o0; &l =-UL/2

m Free Wilson chain with ‘zero-orbital’ removed



FO fixed point analysis

1
71 Anderson Impurity Model
o1 Near the FO FP:

Hi® = Heo + AHLS

HFO Z aiN
\ (51

0,

(@id, -1f
@if, + 1t/ d)

0,070

relevant
FO FP unstable! /
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LM fixed point analysis

1
71 Anderson Impurity Model
1 Near the LM FP: marginally
Hle _ H*M + AH Ib'\/l relevant: LM

\ FP unstable

6,=(f), 6 f,.)7

N-1

H = AN 23N h £1 .0, + H.C.
=0 o discretized form
n jA(N—l)/Z(fOT G f, ,).f of Kondo model!



SC fixed point analysis

1
71 Anderson Impurity Model

= Near the SC FP:

= HE AR 6 (et 1)
6, =(f1 f,, -1f
irrelevant

* SCFPis ‘stable’

* As N increases, get closer to SC FP

* MUST reach SC FP at low enough temperatures

* T=0 ground state is described by SC FP: Kondo singlet



The Renormalization Group
I

71 Anderson Impurity Model
o1 Schematic RG flow diagram:

U

*
H

Kondo model




The Renormalization Group
I

-1 Anderson Impurity Model

o1 RG flow of many-particle energies:

4.0 T 1 T | T |




The Renormalization Group
S =

7 RG flow also seen in physical quantities...

... more in final part!



