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Quantum impurity problems
]

0 Part 1: Quantum impurity problems
and theoretical background

0 Part 2: Kondo effect and RG. 1d chain formulation
and iterative diagonalization

o Part 3: Logarithmic discretization and truncation.
The RG in NRG

o Part 4: Physical quantities. Results and discussion.
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Overview: Part 2
H R

1 Kondo effect
71 Perturbation theory
o Perturbative scaling

7 Mapping to 1d chain

0 lterative diagonalization



J. Kondo,

o o ° 0 Prog. Theor. Phys.
Magnetic impurities 32, 37 (1964)
I

1 Resistance of metals:

1 Experiments reveal low-temperature minimum

104R(T)
R(273)
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J. Kondo,

MCIgne'I'iC impuriﬂes Prog. Theor. Phys.
32, 37 (1964)

]
-1 Resistance minimum Iron
an impurity effect | concentration
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M. Sarachik et al. 1964
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J. Kondo,

ReCQ p: Kondo model Prog. Theor. Phys.
32, 37 (1964)

o Scattering from magnetic impurities

O Single spin-Y2 impurity impurity
O Bath of non-interacting conduction electrons spin-12
O AF Exchange coupling /

“1 A/{ HK = Hhost+ J S|mp 0

-+ kzglgkclf/ /

C
Kk .
°re conduction electron

spin density



J. Kondo,

The KOndo prObIem Prog. Theor. Phys.
32, 37 (1964)

-1 3'4 order perturbation theory in J:

R = CphononsT5 + Rimpuri‘ry

1 J
N + Cimp|:J *+ pJ 3Log($ﬂ
2D T
v Resistance minimum

v
v
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J. Kondo,

The KOndo problem Prog. Theor. Phys.
32, 37 (1964)

1 Obviously: perturbation theory fails at low T:

PI3Log(D/T) >J2 > T=D e /P73

- What happens below T, ?

7 What is the ground state?



Scaling and Renormalization
s,

7 Look at physics at a lower energy scale
P. W. Anderson, J. Phys. C 3, 2436 (1970)

bulk conduction electron states

! Lo

impurity —— N T ............

band-edge states
(integrate out)
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Scaling and Renormalization
]

7 Map to a Kondo model of the same form
P. W. Anderson, J. Phys. C 3, 2436 (1970)

N —
2D 1 »251 1

Consider a sequence of Hamiltonians with
different effective (renormalized) parameters




Fixed points
s,

o Special values of the parameters produce
NO renormalization — “fixed points”

1 Kondo model:
01 Local Moment (LM) fixed point: J=0
o1 Strong coupling (SC) fixed point: J=00



see Alex Hewson’s book

RG fixed poin-l-s “The Kondo Problem...”
CUP (1997)

7 Small J: weak coupling

o1 free impurity local moment
impurity

( free
- - “O- +@ spin-1/2

bath in 1d chain /

representation.. more on this later!
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see Alex Hewson’s book

RG fixed pOin-I-S “The Kondo Problem...”
CUP (1997)

o Large J: strong coupling state

o Impurity forms spin-singlet with conduction electrons

Large J:

Local
Singlet



Scaling and Renormalization
]

1 Look at physics on successively lower energy scales
P. W. Anderson, J. Phys. C 3, 2436 (1970)

2D 1 » 2EI 1 » 2D +
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Scaling and Renormalization
s,

o For (initially) weak coupling, perturbative scaling

indicates that coupling / grows under RG

0O —m—m—>—>——>—>—> o0

Local moment Strong coupling



see Alex Hewson’s book

RG 'HOW “The Kondo Problem...”
CUP (1997)

1 So: when coupling is initially small...

... it grows under RG and becomes large

Kondo

Singlet
many-body singlet ground state

(complicated real-space structure)



RG flow

0O —m—m>—>—>—>—> o0

Local moment J Strong coupling

BUT: analysis breaks down before J ~ O(1)

1 Need a non-perturbative approach!

Must be able to handle large energy scales: D, J etc.
... and exponentially small scales, T,

Exploit RG character of the problem
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Numerical Renormalization Group
I

O (very) brief description of NRG:
o1 Logarithmic discretization of bath
o1 Mapping to 1d chain
1 lterative diagonalization

o1 Successive Hilbert-space truncation



NRG: preliminaries

o 1d chain representation

o1 Any non-interacting system can be mapped to a
1d tight-binding chain: “Tridiagonalization”

%@Q %%

OOOO




Recap: real-space representation
1

1 Host metal: non-interacting tight-binding model

host = Z Z tlj 9 Q Q
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Tridiagonal
1

1 Host metal: 1d chain representation

Hhost_z_jICa = Z F;Vl Fa

o}

—ZZe £rf + (hy £ f, +He)

where, fa — § (_f such that, w — §T

I



Tridiagonal

+ (h, £ f ., +Hc)
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Impurity problem as a 1d chain
1

o 1d chain representation of impurity problem

\ Choose ‘zero-orbital’ of the

conduction electron chain to be
the physical host orbital coupled
to the impurity in real-space

impurity

— S — T 5-0'0'
T =Cp = § = Zfoa 5 oo

0,0
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Impurity problem as a 1d chain
I

o 1d chain representation of impurity problem

HKondo: Hhost+ Himp
Himp = ‘J Simp

Hpos: = Zze fna no (h fT f(n+1) +H'C')



Impurity problem as a 1d chain
I

0 ldea: truncate chain?
71 Represent bath by the first N sites of the chain?

o1 Then exact diagonalization of approximate model?



Impurity problem as a 1d chain

Bath: 1d chain with constant hopping and onsite energies

N =10

pOO'(a)) T .
[t=t= >
&=¢=0

L

Ll L
0]




Impurity problem as a 1d chain

Bath: 1d chain with constant hopping and onsite energies

I I I I N :IlOO _

pOO' (0)) 4: |
t=t=
| ututhUud_UqMJLMULUUUUUUJUUUBUJUuuUJJJuLUJbuuuuUUquu




Impurity problem as a 1d chain

Bath: 1d chain with constant hopping and onsite energies

pOO' (0)) )




Impurity problem as a 1d chain

1 Problem! x

o1 Continuum limit not well-described by finite chain!

o1 Spectrum has N poles for an N-site chain
o1 Lowest energy scale resolved is of order ~ | /N

1 Unable to capture low-energy excitations around
Fermi level, which are central to the Kondo effect
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Impurity problem as a 1d chain
S =

—

7 ldea in NRG: diagonalize the chain iteratively

o Throw away unimportant states at each step
(successively truncate the Hilbert space)

=1 Which states are unimportant?!

... more on that in next lecture!



lterative diagonalization
1

- Take the ‘generic’ tight-binding 1d chain
N-1

_ : :
H, = ZZticiac(i+l)G +Hc +&c ¢

=0 o
- Strategy: build up chain successively by adding on
extra sites. Start by diagonalizing the dimer:

OTQ H, = Y t,¢0,¢,, + H.C

0
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lterative diagonalization
1

- Take the ‘generic’ tight-binding 1d chain
N-1

Hy =) D tcl ciyo +HC.

=0 o
- Strategy: build up chain successively by adding on
extra sites. Start by diagonalizing the dimer:

0 1 2

QT-Qt—O H, = Ztocgaclg +tc ¢, +H.c.

0 1
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lterative diagonalization
1

- Take the ‘generic’ tight-binding 1d chain
N-1

Hy =) D tcl ciyo +HC.

=0 o
- Strategy: build up chain successively by adding on
extra sites. Start by diagonalizing the dimer:

0 1 2

QT-Qt—Q H,=H,+ Y tclc, +H.c.

0 1
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lterative diagonalization
S =

1:N
0000000

| ] N+1
Y +
N

_ hop
HN+1 o HN T HN+1
hop __ T
Hoh = Yt ChoConano + H.C.
O

... same transformation for any N'!

Recursion:



lterative diagonalization
1

-1 Use the diagonal basis of iteration N and couple on an
extra site. Then re-diagonalize.

0 First, define matrix product states:

Diagonal
\N+1kr —‘N+lk ®‘NI’ states of
previous
/ \ \ iteration, N
Basis states for
iteration N+1 Basis states for Direct
a single added site product



lterative diagonalization
S =

1 States of added site defined by:

N+Lk=0) =|-) = |vac)
N+Lk=+1) = [T) =c]|vac)
N+Lk=-1) = v> = Cly.,y |Vac)
N+Lk=2) = |N) =cl .Ch.y vac)



lterative diagonalization
1

-1 Diagonalized states expressed as a linear combination
of basis states:

IN+1r) = kZugﬂ(k, )N +Lk,r)

Coefficients obtained
by diagonalizing
matrix H,,,



lterative diagonalization
1

-1 Construct Hamiltonian: _ hop
H N-+1 H N T H N-+1

1 Matrix elements:

bS<N +Lk,riH, N +1;k',r'>bs
= (N;r| (N+LK|Hy N +Lk) [N;r).

= (N;r[ (N +LK[H [N +LK") [N;r).
‘|'th d<N’r‘a<N +1;k‘CJI(|0C(N+1)G ‘ N +1;k|>a‘ N ’ rl>d
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lterative diagonalization
1

(NG| (N 4+ LK H N+ 5K [N ),
=, <N +1;k‘N -I-l;k'>a X d<N;r‘HN‘N;r'>d

/ \

§kk' EN (r) 5rr'



lterative diagonalization
1

ty Y (N[ (N+LK|eh, 1 ey, [N+LK) [N,
insert complete set of basis states:

i: Z ‘N +1;k”>a‘N;r”>d d<N;r”‘a<N +1;k”‘
kK", r"



lterative diagonalization

]
(-1 (N+Lk|N+1Lk") cf,
\
l \
Y > AN AN +LKk[el, [N +LK™) [N;r),
o Kk

NS (N LK e [N 42K NG,



lterative diagonalization

]
5k,k" (_1)k CLG
|
1 \
tNZ Z d<|\|;r\a<N +Lklcy, [N +1;k">a\N;r“>d
o k

NS (N LK e [N 42K NG,



lterative diagonalization
1

P G d{N;r\CLG\N;r”>d
: \
ty ) Z d<|\|;r\a<N +Lkcl, [N +LK™) [N;r),

K",

x AN (N +LK"|C 0 [N +LKY) [N



lterative diagonalization
1

P G d{N;r\CLG\N;r”>d
: \
ty ) Z d<|\|;r\a<N +Lkcl, [N +LK™) [N;r),

K",

x AN (N +LK"|C 0 [N +LKY) [N

\ I
|

M (o2
kll’kl




lterative diagonalization

]
P G d{N;r\CLG\N;r”>d
: |
VTS (NN K, N+ NG,
o k'r"
x AN (N +LK"|C 0 [N +LKY) [N
\ Y )

SANGEUING T MG
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lterative diagonalization

]
S (ZD) 5 (Nsr[Ch [N,
: |
VTS (NN K, N+ NG,
o k'r"
x AN (N +LK"|C 0 [N +LKY) [N
\ J
|
5r",r' I\/Ilf",k'



lterative diagonalization
1

71 Putting it all together:
bS<N +1;k,r‘HN+1‘ N +1;k',l">bS

=Ey (1) 6,0 + 4D, (D" M7 x (N;r[cl,[N;r),

11 So: iterative diagonalization requires only:
Trivial matrix My,. which is independent of N
Eigenenergies of previous iteration, E, (r)
Matrix elements d<N;r‘CLG‘N;r'>d

between diagonal states of previous iteration
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lterative diagonalization
1

1 Structure of Hamiltonian matrix:

k=—1 k=0 k:—l—l k:2

2
N

Andrew Mitchell




lterative diagonalization
S =

1 How to calculate non-trivial matrix elements?

01 First, diagonalize Hamiltonian numerically:

IN+31), =3 Ul (kT[N +3K,T)
K,F

bs

- For the next iteration, we’ll need:
1 ~ ]t ' =
C(TN+1)0‘ N +l;r>d = Z [Ulil+1(k’ r)_ UI<I+1(k !r )

d<N +1r
K ~ ~
K bs<N + 1K, F| Clyuayo [N + LK T)

=0

bs



lterative diagonalization
S =

bS<N + LK, Fl el [N+ 1K F>

= JNGT (N + 3K [y, N+1;k> \N P




lterative diagonalization
1

d<N + 11| C/yuno| N +1; r'>d =
Z Ml’?‘,f{[UKI+1(E’F)]TU|<|I+1(E"F)

Kk k'

o Starting at one end of the chain, we can
couple on extra sites recursively,
and iteratively diagonalize.



Truncation
]

1 Obvious problem: Hilbert space grows by a factor of
4 at each iteration (fermionic sites)

After only 10 sites have been added, Hamiltonian matrix
in the many-particle basis is of dimension 10% x 10°

Diagonalization time scales as cube of matrix dimension

Disaster!

0 Must stop after only a few steps:
cannot access low-energy physics this way!
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Truncation

Exploit RG concept
(which we know is at the heart of quantum impurity
problems, from perturbative scaling)

Idea in NRG: throw away high-energy states at
each iteration, focusing on the low-energy physics at
each step. Eventually determine ground state.

How do to this?
... solution next lecture!

Quantum impurity problems: Part 2



