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Overview: Part 1
H R

o Impurities in metals
7 Quantum dots

7 Dynamical Mean Field Theory

1 Non-interacting limit

1 Green functions

1 The problem of interactions



Impurities in metals
1

1 Defects
-1 Potential scattering centres

0 Magnetic impurities
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Impurities as probes

Break translational symmetry of host
Cause scattering of quasiparticles

FT-STS — quasiparticle interference

[
\



Impurities in metals
1

7 Quantum impurity problem

o Hamiltonian:

H = Hhost T Himp T thb

o1 ‘Host’ consists of non-interacting conduction electrons:

Host = Z & 0,,b, { diagonal o
K,o

‘k-space’ basis)

o ‘Impurity’ part: a few local, interacting
degrees of freedom



Impurities in metals
]

—

1 Kondo model: a spin-2 impurity, S; , coupled by
antiferromagnetic exchange to conduction electron
spin density of the host at impurity location (0)

Z gk bljabkc)' Zbijff % bk'a'
K,o k'
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Impurities in metals
]

1 Kondo model: spin-flip scattering

J

N\

conduction . .
band Impurity



Impurities in metals

1
1 Anderson model: a single quantum level, with

onsite Coulomb repulsion, tunnel-coupled to
conduction electrons of host

HAIM — Hhost
_ T
H st = Z & BeoBis
kK,o

+ Himp + thb

H,.o =&, (did, +did,)+U, did.d]d,

H,o = > (v, dl b, +H.c.)

K,o
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Impurities in metals
]

0 Anderson model:

Vv

< )
T Eimm=E§d +U,

conduction . .
band Impurity



Impurities in metals
]

0 Anderson model:

\Y essentially
m singly-occupied
local moment for
| -U, <¢g, <0

conduction . .
band Impurity




Semiconductor Quantum Dots

Surface electrodes

Ohmic contact

DEG
GaAs
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Q d Goldhaber-Gordon et dl.,
uantum dots Nature 391, 156 (1998)




Coulomb Blockade




Coulomb Blockade




Coulomb Blockade

Ta




Coulomb Blockade

1 Coulomb repulsion blocks sequential tunneling

E

-1 Active level carries a spin-12 local moment



Coulomb Blockade

0 But: gate voltage controls dot occupancy... &; X Vg

e

L
_I_v

9



Coulomb Blockade

0 But: gate voltage controls dot occupancy... &; X Vg

o Sequential tunneling

—T— at points of dot

valence fluctuation

01 Effective level width
renormalized by
interactions

9

L
_I_v



Coulomb Blockade

1 Conductance peaks as gate voltage is swept:

I‘JJ‘III
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Coulomb Blockade: experiment

1 Conductance peaks as gate voltage is swept:

20 —
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Van der Wiel et al, Science 289, 2105 (2000)



Kondo Effect

1 Low temperature: quantum many body effects!
2.0

... I
U
-y
1572 =,
7% 72
777 77
7 v, 777
S
“o 1.0 = 7
T—
0.5
0.0

-425 -400
V, (mV)
Van der Wiel et al, Science 289, 2105 (2000)
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Anderson Impurity Model

7 Real quantum dot devices:
1 Model as a single active interacting quantum [evel

01 Tunnel-coupled to source and drain leads
Haw = H

Z gk akc)' akO'

a=sd Ko Z( dTbakG—I—H.C.)

aK,o

g, (did, +dd )+U, did,dd,
C Quantum impurity problems: Part 1

+ Hyo + Hiy

leads



Anderson Impurity Model

o Equilibrium (zero bias):

1 Combine leads into a single conduction electron channel

thb = Z(Vakd; baka T H'C')

a k.o

- Z(Vk d; fi, + H'C')
oK

f :i(v Osy » + Vi bdka) szzzvazk

o sk Msko
Vk o



Anderson Impurity Model

o Equilibrium (zero bias):

1 Combine leads into a single conduction electron channel

H eass = 2, ng ok oPuk o

a=s,d k,o

_ T

o Z gk fkafka
o,k

o1 Other bath degrees of freedom decouple

1
Ok o :V_k(Vd 0,y » — Vs bdka)




Two-lead device: single channel
1

1

conduction conduction
band dot band



Coupled Quantum Dots

rrr—

1 pm

H. Jeong et al., Science 293, 2221 (2001)

500 nnul:-—-f
N. Craig et al., Science 304, 565 (2004) A. Vidan et al., App. Phys. Lett. 85, 3602 (2004)



Nanotube Quantum Dots

ates
d drain

source

Nygard et al, Nature
408, 342 (2000)
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Dynamical Mean Field Theory

S
- ‘DMEFT’ A. Georges, G. Kotliar, W. Krauth, M. Rozenberg
Rev. Mod. Phys. 68, 13 (1996)

o1 For correlated lattice problems (Hubbard model etc)

01 Local self-energy approximation
(exact in the limit of infinite dimensions)

0 Map onto a single-impurity Anderson impurity model
in a bath that must be determined self-consistently



Dynamical Mean Field Theory

Electron reservoir

Kotliar & Vollhardt, Physics Today (2004)
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Dynamical Mean Field Theory




Dynamical Mean Field Theory

21 Hubbard Model ind =
o1 R. Bulla, PRL 83, 136 (1999)

1 Mott Metal-Insulator transition & o |

at T:O <0.1 _A /\:
0--::




Quantum impurity problems
]

7 Why are quantum impurity problems hard to solve?
— strong electron correlations

-1 Before we try to solve the impurity problem...

...let’s look again at the ‘easy’ bit:
representations of the non-interacting host
that we will need later
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Bulk metal:
I

1 Host metal: real-space representation

STM image



Bulk metal:

1 Host metal: real-space representation

21 Non-interacting tight-binding model

OS_ZZtI Q
" | QQQQ QQQ

o <ij>
OQ O—0—0—0
= Z 6;160
g , b
¢l = (C]L, cl, ¢l ) L=, 1




Bulk metal:
]

- Host metal: diagonal representation O
Hhost_zciléa — 26;260 O
o) o Q

- ZZ gk bljo'bkg Q

where, o Kk O
60' = é 60' O
[Q]kk - [AT T A]k,k'_ &y 5k,k O

NUEAUESS [ Quantum impurity problems: Part 1



Bulk metal:
]

1 &y is the dispersion:

For example, 2d square lattice:

k., /ra,
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Bulk metal:
I

1 &y is the dispersion:

o1 For example, triangular lattice:

bd H <
=

k, Ima,

< |
— @\

K Ina,

-4
lD C' -5

-6
1 2 3



Bulk metal:
]

1 &y is the dispersion:

For example, honeycomb (graphene) lattice:

k, Ima,

1 0

| k, /7 a,
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Density of states:
]

0 Total density of states:

E
palE)=2 0(E -5

k




Density of states:
1

7 Local density of states (LDOS):

71 As measured locally at a given point in real space

o1 Obtained experimentally by STM

pi,a(E): Zk: EY ] 5(E _gk)

\

Expansion coefficients of real-space [ ]
site i in terms of k-space orbitals = ik

(D)
iR

=



Density of states:
1

7 Local density of states (LDOS):

o1 Related to local (real-space) Green function...

prq(0) = - 'm[Gu ()]

/
Giio(@) = ((cicl, )

& Gy, (t) =—i6t)( {c,(t),c,0)], )




Free host Green functions
]

1 But what is the local host Green function?

Gyi..(@) = ((c,:c, )
> (@) @) ({ b ibl )

k,K'

; (aik ) (aik' )* Che (a))
/ 5

Diagonal representation! Gk o G(a) + |O+) —

o+10" — g,



Free host Green functions
]

1 But what is the local host Green function?

G“,G(a)) _ Z M

TNt
e 0+107 —¢g,

= pi,a(a)) = _%Im[Gii,a(a))]

= Zk: a, [ S(w-¢)



Free host Green functions
]

1 Dyson representation:

[Gdd,a(a)) ]_l = [édd,a(a)) ]_l —A(a))

isolated d-level I/

Green function: hybridization
1 with rest of system
o+10" — g,

1

— Gdd,a(a)) =

Andrew Mitchell

w+i0" — g, — A(w)




Potential scatterer
1]

-1 Potential scattering ‘impurity’

host = Z Z tlj jG

o <i,j>

defined without

- Modified LDOS: / impurity

[Gdd 0' ] [Ggo()j a ]_1 — Y,



T matrix

T matrix describes scattering between
diagonal eigenstates of the free system,
induced by the impurity:

G kk',a(a)) = Oy Gé?(),a(a))_l_ GIE?(),G(G))Tk,k'(a))GIEPIz',a(a))

0,
_1_ gd G(dozl,a(a))

= Tk,k'(a)) = (ad,k )*(ad,k')

Born approx: Tk’k.(a)) R (ad,k )*(ad,k') oF
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Resonant level
]

1 ‘Resonant level’ impurity:
(non-interacting U=0 Anderson model)

Hee = Z(tij cﬁ;cja)+ g,d’d +V (dj;c% + H.c.)

o <>




Resonant level
]

7 Resonant level Green function:

1
G _
dd’a(w) w+i0" — ¢, —A(a))

local host Green \

function \ Hybridization with

rest of system
AMw)=V* G () —
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Hybridization function
S =

Alw)=V* G (@)

= —Im Alw) = -V* ImG{} (@)
:ﬁvzpi,a(a))

.

Local Density of States (LDOS) of host
site to which impurity is coupled
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Hybridization function
S =

1 Consider wide flat conduction band:

piol0)=( 55 |o(O-10)

2D

Pi s (a))

)
-D + D



Hybridization function
I

1 Hybridization function by Kramers-Kronig:

Al) =V Gog (@)

RVE deg (p'“( )j— iﬂpip(a))—

w—E&

o For wide flat band:  A(w)=—iT, = —izV’p,

[p(a)) = po]
==



Impurity spectral function
S =

1 Flat conduction band:

1
G —
00,0(0) 0+i0" —¢g, +i T

-1 Spectrum:

AL(0)=-21m Gy, (o)
I,/7x

(0-¢,) +(T,f
C Quantum impurity problems: Part 1




Impurity spectral function
1

- Spectrum: 72'1_‘0,0“’0(60) = [(a) - )/F ]2 1
¢4 0

1 Lorentzian, centred on gd ]

- Effective level width FO

- Peak height pinnedto 1/ 7 [ / \

.......................

7 Quadratic approach to maximum value
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T matrix
1]

-1 T matrix for resonant level:

G kk',a(w) = Oy Gé?(),a(w)_l_ Gé?(),o-(w)Tk,k'(w) Géﬂz.’g(a))

= Tk,k'(a)): (ad,k)*(ad,k') [V2 Gdd,a(a))]

/

Impurity
Green function



Interacting problem:
S =

1 The Anderson impurity model with strong
interactions U>0 is MUCH more difficult!

Why?!



Interacting problem:

In the non-interacting case, the Hamiltonian can be
brought into diagonal form by performing a
canonical transformation of operafors:

;&j_ = _Zngb

with ba = AC

Achieved by simply diagonalizing the hopping matrix T
which is of dimension N x N for an N-particle system

Quantum impurity problems: Part 1



Interacting problem:

For an interacting problem, containing terms like

* )
U, (C +CaCliCyy

(not quadratic in electronic operators),
the Hamiltonian itself cannot be brought to diagonal
form by transformation of operators.

Must construct the Hamiltonian matrix with elements

(v,

> in the many-particle basis.

Fermions: matrix is of dimension 4N x 4N

Quantum impurity problems: Part 1



Interacting problem:

So: we cannot do exact diagonalization
(except for very small systems, and at high T)

Perturbation theory in the interaction U does not give
information about the strongly correlated regime.

Plagued by divergences! x

Mean field approaches completely fail
to capture the physics x

Quantum impurity problems: Part 1



Aside: many-particle levels
1

1 Consider a single interacting quantum level:

o
Hine = & (C 1Cyr TC ¢Cd¢)+u ( C41C1C ¢Cd¢)

E=2g+U, | 24~ ny;n,)=111)
0 | — 0;0)
g | 4= =~ |01 |10)




Aside: many-particle levels
1

1 NOT possible to reproduce these many-particle
energies just using single-particle levels:

o :
H onzint = 51(Cncn)+ &, (Cz¢cz¢) x

E=0 —
gl —
&, —
&+ &, e ... unless U=0
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Interacting problem:
1

0 Large U: Schrieffer-Wolff transformation:
Project into singly-occupied (spin) manifold of dot

Perturbatively eliminate virtual excitations to empty or
doubly-occupied dot states to second order in thb

N

Heff = ithb[EO_H _1thb1

\

et 1=[ 1]+ )

imp
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Interacting problem:
1

0 Large U: Schrieffer-Wolff transformation:

o1 Low-energy effective model is the Kondo model

He = H + JS.

eff imp conduction

l \ electron

spin density

2
~ _|_V_ impurity at impurity

U, spin-2 G
AF exchange Coo —SU Coo



The Kondo problem

-1 But what is the physics of the Kondo model?!

First full solution obtained by the
Numerical Renormalization Group...

... see part 2!



