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Kitaev’s honeycomb-lattice compass model describes a spin liquid with emergent fractionalized
excitations. Here, we study the physics of isolated magnetic impurities coupled to the Kitaev spin-liquid
host. We reformulate this Kondo-type problem in terms of a many-state quantum impurity coupled to a
multichannel bath of Majorana fermions and present the numerically exact solution using Wilson’s
numerical renormalization group technique. Quantum phase transitions occur as a function of Kondo
coupling and locally applied field. At zero field, the impurity moment is partially screened only when it
binds an emergent gauge flux, while otherwise it becomes free at low temperatures. We show how
Majorana degrees of freedom determine the fixed-point properties, make contact with Kondo screening in
pseudogap Fermi systems, and discuss effects away from the dilute limit.
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Spin liquids constitute a fascinating class of states of
local-moment magnets, characterized by the absence of
symmetry-breaking order at low temperatures [1]. Very
often, these states are topologically nontrivial, displaying
an emergent gauge structure and fractionalized excitations.
Given that the exotic properties of spin liquids are difficult
to detect directly in local observables, much additional
information can be obtained by studying the distinctive
response to local perturbations. In particular, impurities or
defects can act as in situ probes. This general concept of
characterizing nontrivial magnetic states via their response
to isolated impurities has been successfully applied in the
past, with prominent examples being vacancy-induced
moments in confined spin-gap magnets [2], universal
fractional moments near quantum critical points [3], the
fractionalization of orphan spins in strongly frustrated
magnets [4], and the pinning of emergent magnetic
monopoles in spin ice [5].
In this Letter, we present a detailed study of the physics

of a magnetic (Kondo) impurity coupled to the gapless
spin-liquid phase of Kitaev’s honeycomb-lattice compass
model [6]. This Kitaev model is a rare example of an
exactly solvable model for a fractionalized spin liquid in
two dimensions. Its solution can be cast into itinerant
Majorana fermions coupled to a static Z2 gauge field.
These properties enable an exact reformulation of the
Kondo problem in terms of a complex quantum impurity
coupled to noninteracting fermions, suitable for treatment
using Wilson’s numerical renormalization group (NRG)
[7,8]. NRG is a nonperturbative method that yields essen-
tially exact numerical results down to lowest temperatures
for any coupling strength.
Our main results for an isolated Kondo impurity in the

Kitaev spin liquid, Fig. 1, can be summarized as follows:

As a function of the Kondo coupling K, the model displays
a single first-order quantum phase transition (QPT) at
K ¼ Kc > 0: There is partial screening for large antiferro-
magnetic couplings, Kc < K < ∞, whereas the impurity
spin is unscreened, otherwise, −∞ < K < Kc. The tran-
sition is accompanied by the binding of a gauge flux to
the impurity. The renormalization-group (RG) flow in the
individual flux sectors is nontrivial, see Fig. 2. Importantly,
there is no screening—and no QPT—in the flux-free sector
of the Hilbert space due to an emergent particle-hole
symmetry. A magnetic field applied to the impurity can
drive multiple transitions; it also induces flux binding for
ferromagnetic K. We are able to characterize all fixed
points in terms of their magnetic response and residual
entropy, in part arising from localized Majorana zero
modes, and we provide analytical expressions for the
relevant crossover scales. Our results connect to those

(a) (b)

FIG. 1. (a) Setup for the Kitaev Kondo problem: an extra spin
(black arrow) and the bulk spin at site 0 are coupled by the Kondo
coupling K ≡ Kx ¼ Ky ¼ Kz. The bulk exchange couplings are
denoted by Jx;y;z, and we allow for different couplings J0x;y;z next
to the impurity. The large shaded plaquette will be dubbed
“impurity plaquette.” (b) Illustration of dangling gauge Majorana
modes relevant for the vacancy fixed points (K → �∞).
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obtained for isolated vacancies [9,10] and encompass the
case of substitutional spin-1 impurities.
Our work goes far beyond previous approximate

treatments of Kondo impurities in spin liquids [11–16].
For the Kitaev Kondo (KK) model, the full solution with
NRG reveals a far richer range of physics, controlled by
nonperturbative effects related to the pseudogap Kondo
problem and not captured within weak-coupling RG
schemes. Our analysis corrects aspects of earlier work
[15,16] on the same model as detailed in Section IV
of Ref. [17].
Model.—The Kitaev model [6] describes spins 1=2 at

sites i of a honeycomb lattice, with sublattices A and B.
The Ising-like nearest-neighbor interactions Jα, α ¼ x, y, z,
are tied to the real-space bond direction, reflecting strong
spin-orbit coupling. The bulk Hamiltonian reads

HKit ¼ −Jx
X

hijix
σ̂xi σ̂

x
j − Jy

X

hijiy
σ̂yi σ̂

y
j − Jz

X

hijiz
σ̂zi σ̂

z
j; ð1Þ

where σ̂αj are Pauli matrices, and hijiα denotes an α bond as
in Fig. 1. We focus on the isotropic case J ≡ Jx ¼ Jy ¼ Jz.
We consider a Kondo problem with a spin-1=2 impurity,

~S, coupled to the Kitaev spin on site 0 of sublattice A. The
full Hamiltonian is HKK ¼ HKit þHKon with

HKon ¼
X

α

KαŜασ̂α0 þ
X

α

hαŜα; ð2Þ

where ~K is the Kondo coupling and ~h a local field applied
to the impurity [22]. For the purpose of analysis we will

allow the exchange couplings connecting site 0 to its
neighbors 1,2,3 to take values J0α ≠ Jα, see Fig. 1.
NRG formulation.—Application of NRG to the Kitaev

Kondo problem is made possible because the bulk Kitaev
model has an infinite number of conserved Z2 fluxes: For
every elementary plaquette with spins 1;…; 6, the operator
Ŵp ¼ σ̂x1σ̂

y
2σ̂

z
3σ̂

x
4σ̂

y
5σ̂

z
6 is conserved, with eigenvalues

Wp ¼ �1. Consequently, the Hilbert space decomposes
into flux sectors, defined by the set of fWpg. Using the
representation σ̂αi ¼ ıb̂αi ĉi of each bulk spin in terms of
four Majorana fermions, ĉi and b̂αi [6], the operators
ûij ¼ ıb̂

αij
i b̂

αij
j , defined on each lattice bond, are separately

conserved. Their eigenvalues uij ¼ �1 relate to the pla-
quette fluxes viaWp ¼ u21u23u43u45u65u61. For a given set
fuijg, the original bulk Hamiltonian (1) reduces to a tight-
binding model for the c (“matter”) Majorana fermions,

Hu ¼ ı
X

hijiα
Jαuijĉiĉj; ð3Þ

with hopping energies Jαuij encoding the coupling to the
static Z2 gauge field. The ground state of Hu is located in
the flux-free sector, with uij ¼ 1, where the spectrum can
be found by Fourier transformation [6,17].
In the presence of the Kondo term, K ≠ 0, the fluxes

in the three plaquettes adjacent to site 0 are no longer
individually conserved. However, their product WI (the
flux in the impurity plaquette, Fig. 1), as well as all outer
fluxes, remain conserved. This implies that the bulk system,
with site 0 removed, forms a bath of free fermions with
Hamiltonian Hbath in any given flux sector. This bath is
coupled to a generalized “impurity” which now consists of
the Kondo spin and the Kitaev spin at site 0, also including
the surrounding flux degrees of freedom. The impurity
Hamiltonian Himp acts in a Hilbert space of 16 states. The
coupling between impurity and bath, Hhyb, arises from the
Kitaev exchanges J0α between site 0 and sites 1,2,3, such
that the bath is characterized by a 3 × 3 matrix propagator.
For isotropic couplings and flux configurations preserving
the Z3 lattice rotation symmetry, the bath can be decom-
posed into angular-momentum modes, such that Hbath
eventually consists of three channels of spinless fermions.
The explicit forms ofHbath,Himp, andHhyb are specified in
the Supplemental Material [17].
With fluxes fixed, the HamiltonianHbath þHimp þHhyb

is equivalent to HKK and can be solved via NRG
[7,8]. Iterative diagonalization of a semi-infinite-chain
Hamiltonian yields the many-particle level flow as well
as physical observables as a function of temperature. Since
separate NRG runs are performed in each flux sector, NRG
thermodynamics are representative of the full Kitaev model
at temperatures below the flux gap. Based on the results in
Refs. [6,9] we expect the ground state of HKK to have a
flux-free bath, and WI either þ1 or −1.

(a)

(b)

TVac SVac

SVac

TVac

TVac

FIG. 2. Schematic RG flow for the isotropic Kitaev Kondo
model in a plane spanned by the Kondo coupling K and the
coupling J0 between site 0 and sites 1,2,3. (a) Flux-free sector of
the Hilbert space. (b) Sector with a Z2 flux through the impurity
plaquette, WI ¼ −1. Full (open) dots denote stable (unstable)
fixed points.
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Fixed points.—We start by enumerating the trivial
RG fixed points—this is most efficiently done using
the couplings K and J0 as (renormalized) parameters.
K ¼ J0 ¼ 0 describes the fully decoupled situation, while
K ¼ 0 and J0 ¼ J is the local-moment (LM) fixed point,
where the unscreened Kondo spin is decoupled from the
Kitaev bulk. Further, K ¼ þ∞ causes singlet formation
between the Kondo spin and the Kitaev spin 0, i.e., Kondo
screening—this induces a singlet vacancy (SVac) in the
host (therefore, J0 ¼ 0). Similarly, K ¼ −∞ and J0 ¼ 0
corresponds to a triplet vacancy (TVac). We also find a
fixed point at K ¼ −∞ but with finite J0, denoted TVac0.
Note that all fixed points are separately defined in each
flux sector.
NRG results: Flux-free case.—We have extensively

studied the Kitaev Kondo model using NRG. We start
with results for the flux-free sector, i.e., Wp ¼ þ1 on all
outer plaquettes and WI ¼ þ1 on the impurity plaquette.
The impurity entropy SimpðTÞ, obtained as the entropy

difference between the systems with and without Kondo
spin (with fluxes fixed), is shown in Fig. 3 for various
values of K=J, keeping J0 ¼ J. We find that the impurity
entropy reaches ln 2 in the low-T limit for all couplings K;
the NRG level structure of this fixed point is identical to
that at K ¼ 0, J0 ¼ J [17]. We conclude that, in the flux-
free case, there is a single stable phase controlled by the LM
fixed point, Fig. 2, without Kondo screening.
For K ≳ J, we find an intermediate crossover from

Simp ≈ ln 4 to ln 2 upon lowering T. As explained below,
the fixed point associated with ln 4 entropy is identified as
SVac, corresponding to a strong coupling Kondo-screened
state. However, this fixed point is unstable: below a scale
T�, well fit by T� ∝ J03J2=K4 [17], the system evolves
toward the LM fixed point and the impurity moment
becomes free.
For ferromagnetic K < 0 [Fig. 3(b)], the LM fixed point

is again stable. For J0 ¼ J, no intermediate RG flow is
observed. Only for small J0 do we see incipient flow via

TVac, with Simp ≈ ln 12; the LM crossover scale in this case
is extracted as T� ∝ J0 [17].
NRG results: Impurity-flux case.—Now, we turn to the

case where the impurity plaquette is threaded by a Z2 flux,
WI ¼ −1, while Wp ¼ þ1 otherwise. NRG results for
the impurity entropy are shown in Fig. 4. We find that
Simp ≈ −0.06 at low T for all K.
For J0 ¼ J, there is a single crossover upon cooling, here,

from Simp ¼ ln 2 to −0.06, with a crossover scale T� ∝ jKj
for both signs of K. The NRG levels identify the inter-
mediate ln 2 fixed point as LM, whereas the low-T fixed
points correspond to K → ∞ and K → −∞, i.e., SVac
and TVac0, respectively. Notably, we also observe a clear
TVac → TVac0 crossover for small J0 and large negative K
[17]: On lowering the temperature through T� ∝ J02=J, the
entropy decreases from Simp ≈ 1.04 to −0.06.
Analytics: Flux-free case.—Analytical considerations

essentially enable a full understanding of the numerical
findings. We start analyzing the vicinity of LM in the flux-
free sector. Here, the Kondo spin is coupled to a Majorana
bath at site 0 with a power-law density of states (DOS),
ρðωÞ ¼ jωjr with r ¼ 1. This problem is related to the
extensively studied pseudogap Kondo model [23–26] at
particle–hole (p-h) symmetry; recall that on-site potentials
are forbidden for Majorana fermions. Importantly, the p-h
symmetric pseudogap Kondo model exhibits no screening,
even for strong antiferromagnetic Kondo coupling, because
the relevant resonant-level fixed point is unstable for
r > 1=2 [24–26]. This argument carries over to the present
case, implying that SVac must be unstable in the flux-free
case. In fact, the relevant perturbation to SVac has scaling
dimension unity and initial value J03=ðJK2Þ; SVac is
destabilized once this perturbation reaches the scale
K2=J2 [17], explaining the numerically identified T�.
References [15,16] argued that the flux-free sector

displays a QPT between unscreened and screened phases.
However, this is not the case—the QPT is an artifact of
weak-coupling RG [17,25], not observed in the NRG
solution.
It is instructive to analyze Simp at the unstable SVac fixed

point, where the Kondo spin and the host spin at site 0 form

(a) (b)

FIG. 3. NRG results for the impurity contribution to the total
entropy, SimpðTÞ, vs T=J in the no-flux case for J0 ¼ J and
various K. The horizontal dashed lines indicate Simp ¼ 0, ln 2,
and ln 4. The crossover behavior for T=J > 10−1 is a band-edge
effect.

(a) (b)

FIG. 4. Impurity entropy as in Fig. 3, but for the vacancy-flux
case, with J0 ¼ J and various K.
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a tightly bound singlet complex. Since site 0 is then
effectively cut out from the host [9], the three dangling
gaugeMajorana fermions b̂x1, b̂

y
2, b̂

z
3, give a residual entropy

3
2
ln 2. But Simp is the entropy relative to that of the Kitaev

host with no impurity (and therefore, no vacancy), and so,
we must subtract the contribution of the Kitaev site 0 to the
host entropy to obtain Simp. Site 0 is coupled to three
spinless electron channels and can itself be viewed as a
Majorana resonant-level model. The s-wave channel
responsible for screening site 0 has a power-law diverging
DOS 1=ðω ln2 ωÞ, and so, its residual entropy [24,27,28] is
ð− 1

2
ln 2Þ (the factor of 1

2
arising here because we are dealing

with Majoranas). Overall, SSVacimp ¼ ð3
2
ln 2Þ − ð− 1

2
ln 2Þ ¼

ln 4 as found from NRG.
At TVac, the Kondo impurity and spin 0 form an S ¼ 1

triplet which contributes an additional ln 3 entropy, giving
overall STVacimp ¼ SSVacimp þ ln 3 ¼ ln 12, again confirmed by
NRG [17].
Analytics: Impurity-flux case.—It is important to realize

that the condition WI ¼ −1 induces a finite DOS at site 0
when J0 ≠ 0 [9], and it imposes a threefold bath degeneracy
becauseWI ¼ −1 can be achieved with a flux in any of the
three plaquettes next to site 0 (the fourth configuration
with fluxes through all three plaquettes is higher in energy).
This degeneracy is lifted by the Kondo impurity; hence, K
couples two degenerate subsystems—the Kondo spin and
the bath—resulting in an entropy quench and concomitant
partial screening. In contrast to standard Kondo problems
[25,29], the Kondo temperature is, therefore, T� ∝ jKj.
The Simp values arise as follows: Because of the sub-

traction of the impurity-free reference system, SLMimp ¼ ln 2
despite the threefold degeneracy of the Kitaev host.
However, Simp is lower by ln 3 at the K ≠ 0 fixed points,
due to the lifted flux degeneracy. As before, SVac and
TVac (K ¼ �∞) contain three dangling gauge Majoranas.
Since there is no bath divergence in the impurity-flux
case, we have SSVacimp ¼ 3

2
ln 2 − ln 3 ≈ −0.06 and STVacimp ¼

SSVacimp þ ln 3 ¼ 3
2
ln 2. For ferromagnetic K, broken spin

symmetry drives the flow to TVac0: the spin-triplet
degeneracy is lifted such that STVac

0
imp ¼ SSVacimp .

Field response.—The response to a local magnetic field
h characterizes the fate of the Kondo spin. In the stable LM
phase of the flux-free case, the Kondo spin is unscreened
and the local susceptibility displays a low-T Curie law,
χlocðTÞ ¼ Cloc=T, arising from the residual magnetic
moment on the Kondo site, with Cloc ≤ 1 (and Cloc ¼ 1
only at K ¼ 0) [22].
For the impurity-flux case we first note that the K ¼ ∞

model is known to display a weakly singular response
arising from the three dangling gauge Majorana fermions,
χ ∝ 1= lnT [9]. Rather surprisingly, we find that the SVac
phase displays a low-T Curie law for any K < ∞, but with
a much reduced Cloc. This Curie response arises from a

subtle interplay of Majorana zero modes and the tightly
bound singlet: Virtual triplet excitations couple pairs of
zero modes; e.g., b̂x1 and b̂y2 acquire a coupling, producing
an effective free moment along z [17]. Together, this results
in partial screening. A similar Curie law is found in the
TVac0 phase, but with Cloc of order unity because virtual
excitations are less costly.
Beyond linear response, h quenches the entropy con-

tributions both from the residual moment and the localized
Majorana zero modes [17].
Flux transition.—Given that NRG calculations are per-

formed in each flux sector, the global ground state is
determined by comparing NRG ground-state energies. The
energydifferenceΔE between the impurity-flux and flux-free
sectors is shown in Fig. 5(a).We conclude that, at zero field, a
first-order quantum phase transition occurs at Kc ≈ 0.35J
between a flux-free unscreened LM phase and a partially
screened SVac phasewith impurity flux.A local field h drives
multiple first-order transitions; forh along the h111idirection,
flux binding can also occur for ferromagnetic K, Fig. 5(b).
Finally, we note that, for elevated temperatures,

T ≳ jΔEj, the behavior is given by a thermal mixture of
different flux sectors, as demonstrated for the plain Kitaev
model in Ref. [30].
Finite impurity concentration.—The physics at small

but finite defect concentration is a rich subject. Because of
the absence of extended spin correlations in the Kitaev
model, residual moments do not mutually interact [10].
Defect-induced magnetic order will, therefore, only emerge
on taking into account bulk interactions beyond Kitaev
[31–33]—this is beyond the scope of the present work.
However, the flux binding is a robust feature: The dis-
ordered flux arrangement for substitutional S ¼ 0 impu-
rities (effectively realized for K > Kc) will strongly scatter
matter Majoranas and dramatically decrease the magnetic
low-T thermal conductivity; this does not apply to S ¼ 1
impurities which do not bind fluxes.
Conclusions.—We have solved the Kondo problem for

the gapless Kitaev model using NRG—this represents the

(a) (b)

flux-free impurity
   flux

FIG. 5. Energy difference between impurity-flux and no-flux
ground states, ΔE ¼ Eflux − Enoflux, as function of K=J (a) at
h ¼ 0 and (b) as a function of h, with the lines denoting phase
boundaries.
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first numerically exact solution for a quantum impurity
coupled to a spin liquid. We have determined the phase
diagram and characterized the RG fixed points in terms of
localized Majorana zero modes. The case of an S ¼ 1
substitutional spin is encompassed by our solution at large
ferromagnetic K; it behaves like a free moment with Curie
susceptibility. Our approach can be extended to Kitaev
models on other lattices [34–37] and more complicated
impurity problems. Experimental realizations using mag-
netic adatoms on layers of α-RuCl3 [38] or related materials
appear possible.
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I. BULK KITAEV MODEL

In this section we summarize aspects of the Majorana
representation of the Kitaev model which are relevant to
the solution of the Kondo model via Wilson’s Numerical
Renormalization Group (NRG) technique.

We assume a honeycomb lattice with N unit cells and
2N spins. In order to cover the cases with modified cou-
plings J ′ near the impurity, we generalize the Kitaev
model to spatially inhomogeneous couplings:

HKit = −
∑
〈ij〉x

Jxij σ̂
x
i σ̂

x
j −

∑
〈ij〉y

Jyij σ̂
y
i σ̂

y
j −

∑
〈ij〉z

Jzij σ̂
z
i σ̂

z
j

(S1)

A. Majorana representation

Following Kitaev’s solution,1 we introduce four (real)

Majorana fermions per site: b̂x, b̂y, b̂z, and ĉ . Defining

σ̂αi = ıb̂αi ĉi the Hamiltonian in Eq. (S1) can be mapped
to

Hû = ı
∑
〈ij〉

Jαij ûij ĉiĉj , (S2)

where ûij ≡ ib̂
αij

i b̂
αij

j and ûij = −ûji. We follow the con-
vention that, when specifying ûij , i is located on sublat-
tice A. The operators ûij commute with each other and
the Hamiltonian Hu and have eigenvalues of uij = ±1.
A given set {uij} reduces the Hamiltonian to a bilinear
in the ĉ (“matter”) Majorana operators:

Hu =
ı

2

(
ĉTA ĉ

T
B

)( 0 M
−MT 0

)(
ĉA
ĉB

)
. (S3)

Here ĉA(B) is a vector of length N of Majorana opera-
tors on the A(B) sublattice, and M is an N ×N matrix
with elements Mij = Jαijuij , reflecting the coupling of the
matter Majorana fermions to the Z2 gauge field encoded
by uij .

The eigenmodes of Hu can be found via singular-value
decomposition of M , M = USV T , where U and V are
N ×N orthogonal matrices, and S is an N ×N diagonal
matrix containing the non-negative singular values of M .
We define new Majorana operators according to

(b̂′1, . . . , b̂
′
N ) = (ĉA,1, . . . , ĉA,N )U ,

(b̂′′1 , . . . , b̂
′′
N ) = (ĉB,1, . . . , ĉB,N )V .

(S4)

We may combine the transformation matrices U and V
into a matrix Qu,

Qu =

(
0 U
V 0

)
, (S5)

which is equivalent to Qu defined in Eq. (4) of Ref. 2
after re-ordering of both rows and columns.

For a given set of {uij} the Hamiltonian now has the

form Hu = ı
∑N
m=1 εmb̂

′
mb̂
′′
m, where εm ≥ 0 are the singu-

lar values ofM . It is convenient to combine the Majorana

operators b̂′, b̂′′ into canonical fermions according to

âm =
1

2
(b̂′m + ıb̂′′m) . (S6)

This eventually gives

Hu =

N∑
m=1

εm(2â†mâm − 1) (S7)

with the ground-state energy E0 = −
∑
m εm.

B. Flux degrees of freedom

For every closed loop C of the lattice, there exists a
conserved quantity described by an observable ŴC .1 For
a loop C containing L sites labeled {1, 2, ..., L}, this ob-
servable is

ŴC = σ̂
α1,2

1 σ̂
α1,2

2 σ̂
α2,3

2 σ̂
α2,3

3 . . . σ̂
αL,1

L σ̂
αL,1

1 , (S8)

with eigenvalues WC = ±1, each corresponding to a Z2

flux. Loop operators for the fluxes through each elemen-
tary plaquette of the lattice are introduced as

Ŵp = σ̂x1 σ̂
y
2 σ̂

z
3 σ̂

x
4 σ̂

y
5 σ̂

z
6 . (S9)

For periodic boundary conditions there are, in addition,
two “topological” loop operators W1,2 that wrap around
the torus.

In the Majorana representation, the loop (or flux) op-

erators Ŵ can be expressed through the bond variables
ûij ; the same holds for their eigenvalues. For instance,
the plaquette fluxes take the form

Wp = u21u23u43u45u65u61 . (S10)

As a consequence of gauge invariance, the fermion spec-
trum εm depends on the uij only through the values of
the fluxes WC .
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C. Physical states and boundary conditions

For the Kondo problem we will be interested in the
thermodynamic limit of the host; hence the type of
boundary conditions should be irrelevant. In order to
avoid the subtleties concerning the selection of physical
states discussed in Refs. 2 and 3, we assume open bound-
aries before taking the thermodynamic limit.

We note that the full energy dependence of the NRG
bath must be calculated from finite-size Kitaev systems.
To minimize finite-size effects we employ periodic bound-
ary conditions and take the thermodynamic limit by ex-
trapolating the bath spectrum to low energies, see below.

II. NRG FORMULATION FOR THE KITAEV
KONDO MODEL

Wilson’s NRG can be applied to problems where a
(possibly complex) impurity is coupled to a bath of non-
interacting canonical particles.4,5 The latter applies to
the Kitaev host in each individual flux sector. However,
the Z2 fluxes in the three elementary plaquettes next to
the Kondo impurity are not conserved under the action of
the Kondo term,

∑
αK

αŜασ̂α0 , i.e., they become dynam-
ical. Their product, corresponding to the flux through
the impurity plaquette (see Fig. 1 of the main paper),
remains conserved, however. Hence, the plaquette fluxes
next to the Kondo site must be included into a general-
ized “impurity” within the NRG treatment.

The non-conservation of the fluxes near the impurity
also implies that the NRG bath should include all ĉ (mat-
ter) Majorana fermions except ĉ0 residing at site 0. After
removing ĉ0 with its links from the Kitaev host, the bath
displays a delocalized Majorana zero mode, akin to the
single-vacancy problem in graphene. It is convenient to
exclude this zero mode from the bath as well, in order
to have an even number of matter Majorana fermions in
the definitions of the NRG bath and the NRG impurity.

A. NRG treatment: Bath

The Hilbert space of the NRG bath is that of a hopping
problem of Majorana fermions on a honeycomb lattice
with one “missing” site and a fixed configuration of Z2

fluxes. It is governed by the Hamiltonian

Hbath = Hu|J0j=0 (S11)

withHu in Eq. (S3). As explained above, the bath can be
transformed to non-interacting canonical fermions. For
any flux configuration, the bath will have one fermion
zero mode. This becomes most transparent by consider-
ing a Majorana hopping problem where the links to site
0 are switched off, such that site 0 is dangling. Then, one
of the excitation energies εm in Eq. (S7) vanishes, and we
denote the corresponding canonical fermion by â0. This

consists of two ĉ Majoranas, one on sublattice A which
is the dangling Majorana fermion at site 0 and one on
sublattice B which is the (delocalized) vacancy-induced
zero mode. Both ĉ0 and the delocalized zero mode will
be included into the NRG impurity.

Provided that the Z3 rotation symmetry w.r.t. the im-
purity site is preserved, the bath modes may be decom-
posed into angular-momentum channels (more precisely:
irreducible representations of the point group). As the
impurity couples to the three bath sites next to site 0
– sites 1, 2, 3 in Fig. 1 of the main paper – we will de-
compose the bath propagator at these three sites into
the three relevant angular-momentum channels, dubbed
s and p± in the following.

While a full solution of the Kondo problem would re-
quire to consider all flux sectors, we will restrict our
attention to low energies and temperatures. While the
ground-state flux sector is a-priori not known, we make
use of two known facts: (i) The plain Kitaev model has
its ground state in the flux-free sector;1 this will there-
fore apply to the Kondo model at small K. (ii) For the
Kitaev model with a single vacancy the ground state is in
the sector with a Z2 flux attached to the vacancy plaque-
tte, but all other plaquettes flux-free.6,7 This will carry
over to the Kondo model at large antiferromagnetic K.
Hence, we will restrict our attention to these two flux
sectors, dubbed “flux-free” and “impurity flux” in the
following.

B. NRG treatment: Impurity

As noted above, the Hilbert space of the NRG impurity
has to include the fluxes through the plaquettes next to
site 0 – this is equivalent to including the dangling gauge

Majorana fermions b̂x1 , b̂y2, b̂z3 into the impurity, together

with the b̂α0 . This yields six gauge Majorana fermions
with one constraint, the flux through the impurity pla-
quette, resulting in an impurity flux/gauge Hilbert space
of four states. (The same counting is trivially obtained
from having three plaquette fluxes with one constraint.)
Thus the impurity Hilbert space consists of 16 states:
two states of the Kondo spin times four gauge/flux states
times two matter states of the canonical fermion â0; re-
call that â0 contains ĉ0 and the delocalized zero mode of
the bath.
HKon from Eq. (2) acts exclusively in this impurity

Hilbert space. Its Majorana representation reads

HKon = ı
∑
α

KαŜαb̂α0 ĉ0 +
∑
α

hαSα (S12)

To proceed, we choose a basis in the impurity Hilbert
space. For the Kondo spin we work in the basis of Ŝz

eigenstates. For the gauge states, we take the eigenstates

of û01 = ıb̂x0 b̂
x
1 and û02 = ıb̂y0 b̂

y
2, while the value of u03 is

kept fixed by choosing a suitable gauge. For the mat-
ter fermion, we take the occupation-number eigenstates
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of â0. For the evaluation of matrix elements the follow-
ing pieces of information are needed: (i) ĉ0 appearing

in HKon is ĉ0 = â†0 + â0. (ii) The action of b̂z0 which
changes the value of u03 is supplemented by acting with

D̂i = b̂xi b̂
y
i b̂
z
i ĉi on site i = 0 – this operator can be thought

of as a gauge transformation and has eigenvalue +1 when

acting on physical states.1

We order the basis states as follows: | ↑, 00, 0〉, | ↑
, 10, 0〉, | ↑, 01, 0〉, | ↑, 11, 0〉, | ↑, 00, 1〉, | ↑, 10, 1〉, | ↑
, 01, 1〉, | ↑, 11, 1〉, | ↓, 00, 0〉, . . . , | ↓, 11, 1〉. Then, the
impurity piece of the Hamiltonian takes the matrix form:

Himp = (S13)

hz 0 0 −ıKz 0 0 0 0 hx+ıhy 0 0 0 0 ıKx −Ky 0
0 hz ıKz 0 0 0 0 0 0 hx+ıhy 0 0 −ıKx 0 0 −Ky

0 −ıKz hz 0 0 0 0 0 0 0 hx+ıhy 0 Ky 0 0 −ıKx

ıKz 0 0 hz 0 0 0 0 0 0 0 hx+ıhy 0 Ky ıKx 0
0 0 0 0 hz 0 0 −ıKz 0 ıKx −Ky 0 hx+ıhy 0 0 0
0 0 0 0 0 hz ıKz 0 −iKx 0 0 −Ky 0 hx+ıhy 0 0
0 0 0 0 0 −ıKz hz 0 Ky 0 0 −ıKx 0 0 hx+ıhy 0
0 0 0 0 ıKz 0 0 hz 0 Ky ıKx 0 0 0 0 hx+ıhy

hx−ıhy 0 0 0 0 ıKx Ky 0 −hz 0 0 ıKz 0 0 0 0
0 hx−ıhy 0 0 −ıKx 0 0 Ky 0 −hz −ıKz 0 0 0 0 0
0 0 hx−ıhy 0 −Ky 0 0 −ıKx 0 ıKz −hz 0 0 0 0 0
0 0 0 hx−ıhy 0 −Ky ıKx 0 −ıKz 0 0 −hz 0 0 0 0
0 ıKx Ky 0 hx−ihy 0 0 0 0 0 0 0 −hz 0 0 ıKz

−ıKx 0 0 Ky 0 hx−ıhy 0 0 0 0 0 0 0 −hz −ıKz 0
−Ky 0 0 −ıKx 0 0 hx−ıhy 0 0 0 0 0 0 ıKz −hz 0

0 −Ky ıKx 0 0 0 0 hx−ıhy 0 0 0 0 −ıKz 0 0 −hz



which can be directly implemented into the NRG code.8

C. NRG treatment: Hybridization

The coupling between impurity and bath is captured
by the hybridization piece,

Hhyb = ı

3∑
i=1

J ′iû0iĉ0ĉi (S14)

where û0i = ıb̂i0b̂
i
i with i taking values 1 ≡ x, 2 ≡ y, and

3 ≡ z. The ĉ1,2,3 Majorana fermions – all living on the B
sublattice – are related to the bath eigenmodes according
to

−ıci =
∑
n

Vin(â†n − ân) (i = 1, 2, 3) (S15)

with V being the real orthogonal matrix from Eq. (S4).
To facilitate an angular-momentum decomposition of

the bath we introduce linear combinations of the matter
Majoranas at sites 1, 2, 3 according to

d̂m =
1√
3

3∑
i=1

eı(i−1)m2π/3ĉi (S16)

with m = 0,±1 corresponding to angular-momentum

channels. Note that d0 = d†0, but d±1 = d†∓1. Using
Eq. (S15) we have

−ıd̂m = Ṽm0(â†0 − â0) +

′∑
n

Ṽmn(â†n − ân)

= Ṽm0(â†0 − â0)− ıd̂′m (S17)

where Ṽmn =
∑
i e
ı(i−1)m2π/3Vin/

√
3, and we have split

off the vacancy-induced zero mode of the bath which is
excluded in the sum

∑′
n. Note that the Ṽ±1n are no

longer real, and we have Ṽ ∗1n = Ṽ−1n. Further, rotation

symmetry implies Ṽm0 = 0 for m = ±1.
We now introduce spinless canonical fermions Ψ̂m to

represent the bath degrees of freedom (excluding the zero
mode) at sites 1,2,3 in the relevant angular-momentum
channels:

βmΨ̂m =

′∑
n

Ṽmnân (S18)

such that

−ıd̂′m = β−mΨ̂†−m − βmΨ̂m. (S19)

Here βm is a real number accounting for the proper nor-
malization of Ψ̂m which is required due to the missing
zero mode. Specifically, β2

0 = 1 − Ṽ 2
00 and β±1 = 1 due

to Ṽ±10 = 0.
With these ingredients we can re-write the hybridiza-

tion piece as follows

Hhyb = X0Ṽ00 +

1∑
m=−1

(YmβmΨ̂m + h.c.) (S20)

where X0 and Ym describe the hybridization of site 0
with the zero-energy and finite-energy modes of the bath,
respectively. BothX0 and Ym are matrices in the 16-state
impurity Hilbert space. Given that X0 and Ym do not
act on the Kondo spin, we specify them in the reduced
Hilbert space excluding the Kondo spin. Adopting the
ordering from above, i.e., |00, 0〉, |10, 0〉, . . . |11, 1〉, the
matrices in the s-wave channel are
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X0 =
1√
3



J′
x+J′

y+J′
z 0 0 0 0 0 0 0

0 −J′
x+J′

y+J′
z 0 0 0 0 0 0

0 0 J′
x−J

′
y+J′

z 0 0 0 0 0

0 0 0 −J′
x−J

′
y+J′

z 0 0 0 0

0 0 0 0 −J′
x−J

′
y−J

′
z 0 0 0

0 0 0 0 0 J′
x−J

′
y−J

′
z 0 0

0 0 0 0 0 0 −J′
x+J′

y−J
′
z 0

0 0 0 0 0 0 0 J′
x+J′

y−J
′
z


, (S21)

Y0 =
1√
3



0 0 0 0 J′
x+J′

y+J′
z 0 0 0

0 0 0 0 0 J′
x−J

′
y−J

′
z 0 0

0 0 0 0 0 0 −J′
x+J′

y−J
′
z 0

0 0 0 0 0 0 0 −J′
x−J

′
y+J′

z

J′
x+J′

y+J′
z 0 0 0 0 0 0 0

0 J′
x−J

′
y−J

′
z 0 0 0 0 0 0

0 0 −J′
x+J′

y−J
′
z 0 0 0 0 0

0 0 0 −J′
x−J

′
y+J′

z 0 0 0 0


. (S22)

The matrices in the p-wave channels are obtained by the
replacements J ′y → J ′ye

±ı2π/3 and J ′z → J ′ze
∓ı2π/3, such

that Y ∗m = Y−m. Hermiticity is ensured by noting that
(YmΨm)† = Ψ†mY

∗
m = −Y ∗mΨ†m = −Y−mΨ†m where the

fermionic character of Ym is taken into account.
In terms of NRG implementation, the coupling be-

tween impurity and bath is thus given by the second term
in Eq. (S20), i.e.,

∑
m(YmβmΨ̂m + h.c.). This form im-

plies that there is no particle-number conservation (but
its parity is conserved).

In contrast, the first term of Eq. (S20) acts within the
Hilbert space of the NRG impurity only, i.e., needs to be
added to Himp. Its prefactor Ṽ00 describes the amplitude
of the vacancy-induced zero mode at the sites 1, 2, 3. In
the flux-free case, this has been studied in the context
of graphene: Ṽ00 = 0 in the infinite-system limit, but it
is suppressed only logarithmically with system size.9 As
our focus is on the thermodynamic limit of the bath, we
take Ṽ00 = 0; we have checked that this also applies in
the vacancy-flux case.

D. Bath propagators

The NRG bath consists of three reservoirs of spinless
fermions for the three angular-momentum channels. The
properly normalized bath densities of states (DOS) cor-
responding to Ψ in the three channels are

ρm(ω) = (1/β2
m)
∑
n

|Ṽmn|2δ(ω − 2ωn), (S23)

with the factor of two in the energy argument from
Eq. (S7). Note that Ṽmn is dimensionless, and the “hy-
bridization strength” is encoded in Ym. In general, the
densities of states are non-zero for positive energies only,
as the singular values εm are non-negative and the zero
mode has been integrated into the impurity.

The specific ρm(ω), being input for the NRG algo-
rithm, must be obtained numerically in general, i.e., from

finite-size simulations of Eq. (S3). This needs to be done
separately for each flux configuration of the bath. As
noted above, we will focus on the flux-free configura-
tion and the one with a flux in the impurity plaquette;
all other configurations are expected to lead to higher-
energy states. We recall that the angular-momentum
decomposition of the bath requires a flux configuration
which preserves Z3 symmetry, this symmetry also ensures
ρ1 = ρ−1. We finally mention that the ĉ propagators are
gauge-dependent, i.e., the NRG calculation is done in a
fixed Z2 gauge, suitably chosen to preserve the Z3 sym-
metry of the bath. As shown in Ref. 1, gauge fixing does
not influence physical observables.

1. Flux-free case

In the flux-free case with isotropic hopping, the low-
energy form of the honeycomb-lattice propagators is
known analytically. This can be combined with a
standard T-matrix calculation to obtain the low-energy
asymptotic behavior of the NRG DOS in the three
angular-momentum channels. For the s-wave (m = 0)
channel we find

ρ0(ω) =
1

Jπ

(
2π2

√
3ω(π2 + 4[ln(ω/6)]2)

)
(S24)

while in the p-wave channels

ρ±1(ω) =
1

Jπ

(
3ω

4
√

3
− ω3

48
√

3

)
. (S25)

We recall that the local DOS of the unperturbed system is
ρ(ω) ∝ ω; cutting out site 0 turns this into a divergence
in the s-wave channel, ρ0(ω) ∝ 1/ω with logarithmic
corrections.

The numerical results for ρm are in Fig. S1. They have
been obtained from a system with N = 1602 unit cells;
the wiggles are effects of finite system size combined with
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FIG. S1: Left panels: Density of states ρm(ω) vs ω. Right
panels: corresponding rescaled Wilson chain coefficients tN ×
ΛN and εN × ΛN vs NRG iteration number N . Upper and
lower panels show the flux-free and impurity-flux cases, re-
spectively, with black and red lines for m = 0 and m = ±1
angular-momentum channels. The conduction electron band,
of width D = 6J , is discretized logarithmically using Λ = 2.
ρm(ω) is extrapolated to exponentially low energies using the
identified asymptotic behavior, as required for determination
of Wilson-chain coefficients.

Lorentzian broadening of γ/J = 0.01. To generate the
Wilson-chain coefficients, we use the numerical DOS for
ω/J > 0.5 and the asymptotic forms for smaller ω.

2. Impurity-flux case

In this case, no analytical progress can be made. For
the finite-system numerics we have employed periodic
boundary conditions and have placed two fluxes into the
system, one in the impurity plaquette and one at the
largest possible distance to the first. A Z3-symmetric
configuration of uij is most efficiently achieved having
three strings of u = −1 bonds connecting the two fluxes;
this implies the existence of a torus flux in addition. This
is permissible, since its effect on local observables van-
ishes in the thermodynamic limit.

Numerical results for ρm are in Fig. S1(c). They ap-
pear consistent with the low-energy asymptotics ρ0(ω) ∝
ω2 and ρ±1(ω) → const. – we have employed such fit-
ting functions to extrapolate ρ(ω) down to zero energy.
We emphasize that the vacancy flux qualitatively changes
the bath propagators, as noted earlier;7 in particular it
renders the local DOS at site 0 (in the absence of the
Kondo spin) finite. This is important for the stability of
the SVac fixed point of the Kondo problem.

E. NRG implementation

In light of the above considerations, the NRG setup
consists of a complex “impurity” comprising the Kondo
spin-1/2 impurity itself, but including also the Kitaev
spin at site 0 and the surrounding gauge Majoranas. The
hybridization term couples this 16× 16 impurity subsys-
tem to the bath, which is described by a 3 × 3 matrix
propagator. The bath is cast into the form of three Wil-
son chains, corresponding to s- and p-wave channels. The
nontrivial energy dependence of the hybridization is en-
coded in the Wilson chain coefficients, which are com-
puted numerically using the Lanczos algorithm.5 Since
the hybridization term involves Majorana operators, the
NRG calculation necessarily requires the use of complex
numbers. Furthermore, there is no spin or particle num-
ber conservation, meaning that the NRG Hamiltonian
cannot be block diagonalized. In practice, this limits the
number of states, Ns, that can be retained at each step
of the calculation. As usual for NRG however, results
converge quickly as function of Ns for fixed Λ. For se-
lected parameter values we tested Λ = 1.75, . . . , 9 and
confirmed that the qualitative behavior of physical ob-
servables is independent of Λ, provided that Ns is cho-
sen sufficiently large. We found that calculations with
Ns = 2000 for discretization parameter Λ = 2–3 were
fully converged down to temperature or energy scales
∼ 10−9D. Most of the calculations presented in the paper
therefore employed Λ = 3 and Ns = 2000. Thermody-
namic quantities are obtained in the standard fashion5

from the NRG eigenstates and energies at each iteration.
However, since absolute energies in NRG depend on the
discretization parameter Λ, we also performed the ex-
trapolation Λ → 1 to determine the phase diagram, as
discussed further below.

III. ADDITIONAL NRG RESULTS AND
ANALYSIS

In this section we display NRG results which comple-
ment those of the main paper, and we provide some de-
tails for the analytical arguments.

A. Flux-free case

As before, we start with the flux-free sector of the
Hilbert space. The impurity entropy Simp was shown
in Fig. 3; Fig. S2 displays similar data which now in-
clude parameter sets with modified bulk couplings near
the impurity, J ′ 6= J . Those parameters are useful for a
comprehensive understanding of the qualitative RG flow
as shown in Fig. 2 of the main paper. In addition to
Simp, we show in Fig. S3 the flow of the lowest energy
levels of the NRG Hamiltonian – the NRG level pattern
serves as a fixed-point fingerprint;4,5 it is related to the
finite-size spectrum. We note that, in the absence of a
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FIG. S2: NRG results for the impurity contribution to the
total entropy, Simp(T )/kB vs T/J in the no-flux case. In
contrast to Fig. 3 of the main paper, we show here data for
J ′ 6= J . The horizontal dashed lines indicate Simp = 0, ln 2,
ln 4 ≈ 1.39, and ln 12 ≈ 2.48.
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FIG. S3: Flow of the lowest NRG levels for the flux-free case
and different values of K, illustrating that the LM fixed point
corresponding to K = 0 is reached irrespective of the initial
K.

field, all levels are at least doubly degenerate because
the three components of a composite pseudospin-1/2 op-

erator constructed from Ŝ and the plaquette fluxes are
conserved.12

Figs. S2 and S3 underline that all parameter sets with
|K| < ∞ cause a flow to the LM fixed point with
SLM

imp = ln 2. Hence, there is no Kondo screening at any
K in the flux-free sector, at variance with the conclusions
in Refs. 11,12. Both SVac and TVac appear as infrared
unstable fixed points, with entropies of ln 4 and ln 12, re-
spectively. Notably, these entropies are approached log-
arithmically slowly: The reason is that the bath DOS
in the s-wave channel diverges with a logarithmic cor-
rection, ρ(ω) ∝ 1/(ω ln2 ω), hence the fixed point is ap-
proached in a fashion similar to a marginally irrelevant
perturbation.

The energy scale T ∗ for the crossover from SVac to
LM for the positive-K case has a non-trivial parame-
ter dependence. We have collected T ∗ values in Fig. S4;
the fits demonstrate an approximate dependence T ∗ ∝
J ′3J2/K4. Deviations occur for large T ∗ where the
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FIG. S4: Crossover scale T ∗ for the flux-free case and positive
K as extracted from NRG data as shown in Figs. 3(a) and
S2(a), (a) as function of K for J ′/J = 1 and (b) as function
of J ′ for K/J = 1. T ∗ has been defined via Simp(T ∗) = 1.0.
The dashed lines indicate power-law fits: (a) T ∗ ∝ 1/K4, (b)
T ∗ ∝ J ′3.

asymptotic regime has not yet been reached; in addi-
tion small deviations are visible at small T ∗ which we
attribute to logarithmic corrections which arise from the
logarithmic flow towards SVac.

The qualitative parameter dependence of T ∗ can be
deduced by analyzing the vicinity of the SVac fixed
point. Although SVac consists of a non-degenerate im-
purity coupled to a bath (where site 0 has been cut
out), this situation is unstable because the bath DOS
diverges, Eq. (S24). This situation is similar to that of
the fermionic pseudogap Kondo model at particle–hole
(p-h) symmetry where the strong-coupling singlet fixed
point is unstable.14,15 In both cases, a bath DOS for the
Kondo impurity ∝ |ω|r implies a bath DOS for the sin-
glet ∝ |ω|−r when site 0 is removed. Power counting
in the relevant Anderson model shows that the leading
perturbation to the singlet fixed point has scaling di-
mension (2r − 1) for 1/2 < r ≤ 1. In the pseudogap
Kondo model, this perturbation is essentially given by
the inverse of the Kondo coupling JK . In our case, with
r = 1, the nature of the coupling implies that a third-
order process is required, such that the (dimensionless)
perturbation is J ′xJ ′yJ ′z/(JK2), with scaling dimension
unity up to logarithmic corrections (see Ref. 11 for related
considerations). Now, the singlet fixed point is destabi-
lized once this perturbation is strong enough to break the
singlet which happens on the scale K2/J2, resulting in
T ∗/J ∝ J ′3J/K4 to logarithmic accuracy. This is analo-
gous to the case of the pseudogap Kondo model at r = 1
where the strong-coupling fixed point is destabilized at
a scale14,16 T ∗ ∝ W 4/J3

K where W is the bandwidth of
the fermionic bath.

B. Impurity-flux case

In the Hilbert-space sector with impurity flux, WI =
−1, the flow is directed towards SVac for K > 0 and
towards TVac′ for K < 0. This is illustrated in Figs. 4,
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FIG. S5: Impurity entropy as in Fig. S2, but for the impurity-
flux case and J ′ 6= J . The horizontal dashed lines indicate
Simp = 0, ln 2, and 3

2
ln 2.

0 5 10 15 20

N

0

1

2

3

4

5

E

a) Impurity flux, K > 0 b) Impurity flux, K < 0

K/J=0
K/J=10-2

0 5 10 15 20

N

0

1

2

3

4

5
K/J=−1, J’/J=1
K/J=−1, J’/J=10-3

FIG. S6: NRG level flow for the impurity-flux case and differ-
ent parameters. (a) The LM fixed point (K = 0) is unstable
for finite K > 0, the system instead flows to SVac. (b) For
negative K the system ultimately flows to TVac′, and for
small J ′ an intermediate regime corresponding to TVac is re-
alized. Note that level degeneracies of TVac are lifted upon
flowing to TVac′; further the level patterns of TVac′ and SVac
are different (while Simp for both fixed points is identical).

S5, and S6. While both SVac and TVac′ fixed points
share the same impurity entropy, Simp = 3

2 ln 2 − ln 3,
their level pattern is clearly different, Fig. S6.

The crossover from TVac to TVac′ is documented in
Figs. S5(b) and S6(b). TVac displays an entropy of
Simp = 3

2 ln 2 which is larger by ln 3 than that of TVac′

– this difference corresponds to the isolated spin-1 de-
gree of freedom formed for K = −∞, J ′ = 0, consistent
with the level degeneracies at TVac. Upon coupling this
spin-1 to the bath via a finite J ′, the degeneracies corre-
sponding to spin-1 are lifted due to the lack of SU(2) spin
symmetry in the Kitaev host. This level splitting occurs
as a second-order perturbation, hence the crossover scale
in Fig. S5(b) is T ∗ ∝ J ′2/J .
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FIG. S7: NRG results for impurity magnetization8 and en-

tropy for a field ~h ‖ z. Solid lines/full symbols show data
for hz/J = 10−5; dashed lines/open symbols represent h = 0
data for comparison. The dash-dot lines show specific fits to
mloc(T ). (a) No-flux case. For K/J = 1 the fit reflects the
Curie law of the LM phase, while for K/J = 20 the fit is of
the form 1/(T lnT ) characteristic of SVac. (b) Impurity-flux
case. For K/J = 10−2 the fit describes the high-T Curie law
of LM, while for K/J = 1 the fit is for the low-T Curie law
of the SVac phase.

C. Magnetic field

A local magnetic field h, applied to the Kondo spin
only, can be easily integrated into the NRG algorithm.
In contrast, a global magnetic field which also acts on the
bulk Kitaev system spoils the model’s solubility because
the Z2 fluxes are no longer conserved. Hence, we restrict
ourselves to analyzing the effect of a local field.

Sample results for both the local magnetization,8

mloc = 〈Sz〉, and the impurity entropy Simp for a field
applied along z are displayed in Fig. S7. In the small-field
limit, the magnetization allows to deduce the local sus-
ceptibility χloc = mloc/h, with results shown in Fig. S8.

We start the discussion with the flux-free case. We
know that the field-free system flows to the LM fixed
point; consistent with this we observe a Curie law,
χloc(T ) = Cloc/T , at low temperature for any K, cor-
responding to an unscreened spin. The interaction with
the bath causes a reduction of the local Curie constant
Cloc from its free-spin value8 4S(S + 1)/3 = 1. For
large values of K the crossover temperature towards
LM is small as detailed above, and an intermediate-
temperature SVac regime appears. Its response is of the
form6 χ ∝ 1/(T lnT ); this quasi-free moment arises from
the dangling gauge Majorana fermions bx1 , by2, bz3 together
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FIG. S8: NRG results for local susceptibility χloc(T ) for ~h ‖ z,
obtained as χloc = mloc/h at hz/J = 10−9, for J ′ = J and
different K/J as labelled. (a) No-flux case. (b) Impurity-flux
case. The inset shows the low-T Curie constant as function of
K/J for the flux-free (impurity flux) sector in blue (red); the
shading indicates which flux sector is the ground-state sector.
At the phase boundary, the Curie constant drops by a factor
40.

with the divergent bath DOS. Importantly, this response

is located on the sites 1, 2, 3 (strictly speaking, for ~h ‖ z
the response arises from bz3 and is located at site 3), and
the Kondo-spin response χloc at the SVac fixed point
(i.e., for K = ∞) vanishes. However, for K < ∞ vir-
tual excitations of the singlet (formed by the Kondo spin
and the Kitaev spin at site 0) transmit the 1/(T lnT ) re-
sponse to the Kondo spin. The impurity entropy is fully
quenched at low T once the magnetization reaches its
low-T saturation value.

In the impurity-flux case, the flow for positive K is
towards SVac. Its response is highly non-trivial: First,
the K =∞ case has a logarithmically divergent response
χ ∝ 1/ lnT on sites 1, 2, 3 which arises from the dan-
gling gauge Majoranas as above, but now together with
a regular bath DOS.7 Second, for K < ∞ a pair of the
dangling gauge Majoranas induces an additional Curie
response because they get coupled via virtual excitations
of the singlet. Formally, we may use bond operators10 s,
tα to describe the four states of the dimer formed by the
Kondo spin and the Kitaev spin at site 0. For J ′ = 0 its
singlet ground state is |s〉 = s†|vac〉. The J ′ pieces of the
Hamiltonian take the following form:

J ′xσ̂x0 σ̂
x
1 = J ′xb̂x1 ĉ1(t†xs+ s†tx + ıt†ytz − ıt†zty) . (S26)

In the spirit of perturbation theory around the J ′ = 0
limit we can consider pieces of the wavefunction with vir-
tual triplet excitations, obtained by repeated application
of the J ′ term of the Hamiltonian:

|ψ0〉 = (1+αb̂x1 ĉ1t
†
xs+βb̂

x
1 ĉ1b̂

y
2 ĉ2t

†
zs+. . .)|s〉⊗|kit〉 (S27)

where |kit〉 denotes the ground state of the Kitaev host
with a vacancy, and α and β are non-zero coefficients
which are suppressed with powers of J ′/K. Importantly,
if we evaluate the local moment with this wavefunction

we find:

〈ψ0|Ŝz|ψ0〉 = 〈ψ0| − t†zs− s†tz + ıt†xty − ıt†ytx)|ψ0〉

= β〈kit|ĉ1ĉ2|kit〉〈b̂x1 b̂
y
2〉+ . . . (S28)

The expectation value 〈kit|ĉ1ĉ2|kit〉 is finite for the hop-
ping problem at hand, hence we have the remarkable re-
sult

〈Ŝz〉 ∝ 〈b̂x1 b̂
y
2〉 (S29)

This implies that the (originally uncoupled) gauge Ma-

jorana fermions b̂x1 and b̂y2 form a spontaneous moment
in z direction. This couples to hz and causes a Curie
response. As a result, the local response for K < ∞ is
a superposition of a 1/ lnT piece and a Curie piece. For
~h ‖ z the former is induced by bz3 and the latter by bx1
and by2. Due to the small Cloc of the Curie piece this will
dominate only at low T , and an intermediate regime of
logarithmic response remains visible, Fig. S8(b).

Finally, if K is very small, an intermediate LM regime
is visible which displays a Curie response with Cloc = 1,
Fig. S7(b).

The impurity entropy in the impurity-flux case shows
a field-induced quench of the 3

2 ln 2 contribution from the
dangling gauge Majoranas in the low-T limit, such that
Simp becomes (− ln 3), Fig. S7(b) – recall that (− ln 3)
arises from removing the flux degeneracy of the uncou-
pled bath. However, depending on the field direction,
the individual Majorana contributions are quenched at
different temperatures. This is natural because – as just
explained – the Majoranas play different roles in the mo-

ment formation. More precisely, for ~h ‖ z the entropy of
bx1 and by2 is quenched below the temperature where the
Curie moment reaches “saturation”, whereas quenching
the remaining 1

2 ln 2 from bz3 requires the coupling to the
NRG bath and happens at much lower T , Fig. S7(b).

For negative K the flow in the impurity-flux case is
towards TVac′. Its field response (not shown) is similar
to that of SVac, with a superposition of logarithmic and
Curie contributions, the latter now with Cloc of order
unity because the equivalent of the α and β coefficients
in Eq. (S27) are not suppressed with J ′/|K|. We recall
that TVac′ does not display a free spin-1 moment (as
opposed to TVac) because the coupling to the Kitaev
host lifts the spin degeneracy.

In summary, all stable phases of the Kitaev Kondo
model display a Curie response, but with drastically dif-
ferent Curie constants Cloc. This is summarized in the
inset of Fig. S8: While Cloc tends to decrease with in-
creasing |K| in both flux sectors, for K > 0 it is smaller
by one or more orders of magnitude in the impurity-flux
case as compared to the flux-free one. Hence, the first-
order quantum phase transition between the two flux sec-
tors is accompanied by a change in Cloc by about a factor
40, which should be detectable in a suitable NMR exper-
iment.
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FIG. S9: Λ exptrapolation for the energy difference between
impurity-flux and no-flux ground states, ∆E = Eflux−Enoflux.
The bath contribution7 ∆Ebath = −0.027J is taken into ac-
count. (a) K = 0: The known result7 ∆E = 0.153J is marked
by an arrow. (b) K/J = 0.35, close to the first-order QPT.
The dashed (solid) lines indicate a linear (quadratic) fit.

D. Flux transition

To detect the first-order quantum phase transition be-
tween the two flux sectors, an accurate comparison of
their ground-state energies is required. The energy dif-
ference, ∆E = Eflux−Enoflux, has two contributions, one
arising from the NRG bath (i.e. from the problem with
J ′ = K = 0) and one arising from the quantum impurity
problem itself – the latter is obtained from the NRG al-
gorithm. The bath contribution ∆Ebath is equivalent to
the flux-binding energy of a vacancy and has been deter-
mined in Ref. 7:

(Eflux − Enoflux)bath = −0.027J . (S30)

Obtaining an estimate of the NRG piece ∆ENRG re-
quires to calculate the ground-state energies for fixed
model parameters and different values of the NRG dis-
cretization parameter Λ and then to extrapolate ∆ENRG

to the (formally exact) limit of Λ = 1. Such an extrapo-
lation is shown in Fig. S9, with the Λ dependence being
approximately linear.

To gauge the accuracy, we can make use of the fact
that the model at J ′ = J , K = 0 represents the bulk Ki-
taev model: Here, the energy cost of a single plaquette
flux in the thermodynamic limit has been calculated to
be7 ∆E = 0.153J . The Λ extrapolation yields a value
of 0.160J , i.e., a deviation of less than one percent of J
– the good agreement can be considered as consistency
check for our NRG procedure. The remaining deviation
is rooted in the NRG algorithm, as the logarithmic dis-
cretization of the bath spectrum is inherently imprecise
at elevated energies which influences spectra-integrated
quantitities such as the total energy.5 We note that ∆E
in the limit K → ∞ is accurate by construction: Here

∆ENRG = 0 because the singlet is cut out from the sys-
tem, such that ∆E = ∆Ebath = −0.027J . In order to
make efficient use of the known limits, we have generated
the data in Fig. 5 of the main paper by rescaling ∆ENRG

by a constant factor to obtain the correct ∆E at K = 0.

IV. COMPARISON TO EARLIER WORK

Given that our results differ in a number of important
aspects from those obtained in Refs. 11,12 on the same
model, we highlight and analyze the differences in the
following.

Refs. 11,12 concluded that the flux-free sector dis-
plays a quantum phase transition between unscreened
and screened phases; we have shown that such a tran-
sition is absent. The conclusion of Refs. 11,12 is based,
on the one hand, on a weak-coupling RG. However, the
critical fixed point predicted by the RG is outside the
weak-coupling regime and does not exist. This has been
well studied for the pseudogap Kondo model with bath
exponents r > 1/2 where weak-coupling RG incorrectly
predicts a quantum phase transition at p-h symmetry as
well.13–15 On the other hand, Ref. 12 argued the strong-
coupling fixed point (SVac in our notation) to be gener-
ically stable. However, in the flux-free case the singular
DOS of the environment surrounding the singlet, ignored
in Ref. 12, destabilizes the SVac fixed point, again similar
to what happens in the p-h-symmetric pseudogap Kondo
model.14,15

Ref. 12 argued that the SVac fixed point has a resid-
ual entropy of 1

2 ln 2 from a single Majorana zero mode,
akin to the two-channel Kondo effect. Our NRG results
instead show that Simp is more complicated: It has con-
tributions from three Majorana zero modes (bx1 , by2, bz3);
further the flux-free sector has an additional 1

2 ln 2 from
the singular bath DOS, while the impurity-flux sector has
a (− ln 3) contribution due to the quenched flux degen-
eracy. We believe the fact that, e.g., ıbx1b

y
2 is conserved

at K = ∞ cannot be used to discard its entropy con-
tribution, as done in Ref. 12. We have also shown that,
in the impurity-flux case, the SVac phase has a resid-
ual Curie term in the susceptibility for K <∞; this has
been missed in Ref. 12 and is also different from the two-
channel Kondo phenomenology.

Finally, numerical results in Ref. 12 placed the flux-
binding transition for antiferromagnetic coupling17 at
Kc ≈ 0.1J and further suggested that there is a flux-
binding transition also in the case of ferromagnetic
Kondo coupling (and zero applied field). However, these
results were obtained for extremely small host systems
and likely suffered from strong finite-size effects. Our
results obtained in the thermodynamic limit indicate a
single transition at Kc ≈ 0.35J instead.
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