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Symmetry-breaking perturbations destabilize the critical points of the two-channel and two-impurity

Kondo models, thereby leading to a crossover from non-Fermi liquid behavior to standard Fermi liquid

physics. Here we use an analogy between this crossover and one occurring in the boundary Ising model to

calculate the full crossover Green function analytically. In remarkable agreement with our numerical

renormalization group calculations, the single exact function applies for an arbitrary mixture of the relevant

perturbations in each model. This rich behavior resulting from finite channel asymmetry, interlead charge

transfer, and/or magnetic field should be observable in quantum dot or tunneling experiments.

DOI: 10.1103/PhysRevLett.106.147202 PACS numbers: 75.20.Hr, 71.10.Hf, 73.21.La

The most basic quantum impurity model exhibiting non-
Fermi liquid (NFL) behavior is arguably the two-channel
Kondo (2CK) model [1], describing the symmetric anti-
ferromagnetic coupling of a local spin- 12 impurity to two

equivalent but independent conduction channels. The
resulting ground state possesses various intriguing proper-
ties, including notably a residual entropy [2] of 1

2 kB lnð2Þ
and conductance that approaches its T ¼ 0 value as

ffiffiffiffi
T

p
(for a review, see Ref. [3]).

The same behavior is predicted at the critical point of
the two-impurity Kondo (2IK) model [4]. The tendency to
form a trivial local singlet state is favored by an exchange
coupling acting directly between the impurities, while the
coupling of each impurity to its own metallic lead favors
separate single-channel Kondo screening. The resulting
competition gives rise to a critical point that is closely
related to the 2CK state.

The central difficulty in realizing experimentally the
NFL physics of either model is the extreme delicacy of
the 2CK fixed point (FP) to various symmetry-breaking
perturbations. Channel asymmetry, magnetic field, and in-
terlead charge transfer processes all destabilize the 2CK FP
and destroy NFL behavior in both 2CK and 2IK models.

Tremendous efforts have been made to suppress these
relevant perturbations in order to observe the characteristic
NFL behavior in a real 2CK device. The quantum dot
system realized recently in Ref. [5] shows unambiguous
signatures associated with flow to the 2CK FP. But in any
real system, the presence of destabilizing perturbations is
totally inevitable, leading ultimately to a crossover from
NFL behavior to standard Fermi liquid physics on the
lowest energy scales.

In this Letter we demonstrate that an arbitrary mixture of
the relevant perturbations in either the 2CK or 2IK model
leads to low-energy behavior of the impurity Green func-
tion that is wholly characteristic of the incipient 2CK state,
and which cannot be extracted from the Bethe-ansatz
solution [6]. We derive a single exact function to describe
this crossover, which agrees perfectly with our full

numerical renormalization group (NRG) calculations for
both models, and whose rich behavior should be directly
observable in quantum dot or tunneling experiments.
Models and perturbations.—We consider the standard

2CK and 2IK models,

H2CK ¼ H0 þ J ~S � ð ~s0L þ ~s0RÞ þ �H2CK; (1)

H2IK ¼ H0 þ Jð ~SL � ~s0L þ ~SR � ~s0RÞ þ K ~SL � ~SR þ �H2IK;

(2)

whereH0 ¼
P

�;k�kc
y��
k c k�� describes two free conduc-

tion electron channels � ¼ L=R, with spin density ~s0� ¼P
��0c y��

0 ð12 ~���0 Þc 0�0� (and c y��
0 ¼ P

kc
y��
k ) coupled

to one spin- 12 impurity ~S (2CK) or two impurity spins

~SL;R (2IK). For �H2CK ¼ 0, the ground state of H2CK is

described by the 2CK FP. Likewise, a critical interimpurity
couplingKc can be found such that the ground state ofH2IK

is similarly described by the 2CK FP for �H2IK ¼ 0.
Relevant perturbations to each model have been identi-

fied from conformal field theory (CFT) [4,7] and are
generically present in experiment. Specifically,

�H2CK¼
X

‘¼x;y;z

�‘

X
�;�

X
��0

c y��
0

�
1

2
~���0�‘��

�
c 0�0� � ~Sþ ~B� ~S

(3)

describes L=R channel asymmetry in the 2CK model for
�z � 0, while charge transfer between the leads is em-
bodied in the �x and �y components of the first term [here

~�ð ~�Þ are the Pauli matrices in the channel (spin) sector].
The second term describes a magnetic field acting on the
impurity. For the 2IK model, the critical point is destabi-
lized by finite (Kc � K) and also through

�H2IK¼
X
�

ðVLRc
y�L
0 c 0�RþH:c:Þþ ~Bs � ð ~SL� ~SRÞ; (4)

where VLR describes electron tunneling between the leads

and ~Bs the application of a staggered magnetic field.
These perturbations generate a new energy scale T�

characterizing the flow away from the 2CK FP and toward
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the Fermi liquid (FL) FP. Signatures of this crossover
appear in the energy-resolved local density of states, since
inelastic scattering ceases at energies � T� where the
impurity degrees of freedom are quenched. Indeed, the
dI=dV conductance through a quantum dot asymmetri-
cally coupled to source and drain leads at zero temperature
is related [8] to the scattering T matrix: dI=dV /P

�¼";#½��� ImTL�ðeVÞ�, where � is the lead density of

states per spin and V the source-drain voltage. The Green
function is given by

G��
kk0 ð!Þ ¼ G0

kð!Þ�kk0 þG0
kð!ÞT��ð!ÞG0

k0 ð!Þ; (5)

with G0
kð!Þ ¼ ð!� �k þ i0þÞ�1. Conductance measure-

ments of the 2CK device of Ref. [5] or in the proposed 2IK
setup of Ref. [9] thus yield access to the T matrix and hence
the full Green function. Our goal here is to calculate the
quantity t�ð!Þ ¼ ��� ImTL�ð!Þ exactly and numerically
for the 2CK and 2IK models in the presence of symmetry-
breaking perturbations described by Eqs. (1)–(4).

Results.—Preempting the technical discussion of the
next section, we present now the key results of the Letter.
Heralding renormalization group flow to the stable FL FP,
the low-energy crossover scale is given generically by

T� ¼ cT	
2; (6)

where 	2 ¼ P8
j¼1 	

2
j (and f	4; 	5; 	6g ¼ f	x

B; 	
y
B; 	

z
Bg). For

the 2CK model, 	1 ¼ ��z

ffiffiffiffiffiffi
TK

p
, 	2;3 ¼ cV��x;y

ffiffiffiffiffiffi
TK

p
, and

~	B ¼ cB ~B=
ffiffiffiffiffiffi
TK

p
, while for 2IK, 	1 ¼ ðKc � KÞ= ffiffiffiffiffiffi

TK

p
,

	2 þ i	3 ¼ cV
ffiffiffiffiffiffi
TK

p
�VLR, and ~	B ¼ cB ~Bs=

ffiffiffiffiffiffi
TK

p
. Here

cT; cV; cB ¼ Oð1Þ are fitting parameters which depend on

the model and on J; and TK / e�1=�J is the Kondo tempera-
ture. The perturbations associated with coupling constants
	7 and 	8 do not conserve total charge [4,7] so are ignored .

In the simplest case of channel anisotropy in the 2CK
model, the result T� / ð�zÞ2 has long been established [3].
The extension to finite 	1; 	2; 	3 � 0 follows by trivial
rotation of the bare Hamiltonian in ~� space, implying
directly that T� / ð�xÞ2þð�yÞ2þð�zÞ2, and hence cV ¼1

for the 2CK model. However, the low-energy effective
Hamiltonian for both 2CK and 2IK models possesses a
larger SO(8) emergent symmetry that permits a similar
rotation, yielding the generalization, Eq. (6). Importantly,
we show that the same rotation can also be exploited to
obtain a single zero temperature Green function for the
crossover. Our exact result for the T matrix is

2�i�T��ð!Þ ¼ 1� S��Gð!=T�Þ; (7)

where GðxÞ ¼ 2
�K½ix�, K½x� is the complete elliptic inte-

gral of the first kind, yielding asymptotically G½x� ¼ 1þ
ix=4� ð3x=8Þ2 þOðx3Þ for x � 1, and G½x� ¼

ffiffi
i

p
2� �

ðlog½256x2� � i�Þx�1=2 for x � 1. S�� is the FL Smatrix,
containing phase shift information, given by

S2CK�� ¼ ð��	1 þ i�	z
BÞ=	 ¼ �S2IK�� ; (8)

with � ¼ �1 for spins " = # and � ¼ �1 for channel L=R,

such that t�ð0Þ ¼ 1
2 � 1

2 ReSL� (and we have used ~	B k ẑ).

Rich physical behavior is obtained when combinations
of the relevant perturbations are applied. We now discuss
relevant and representative cases of the general and exact
formula, Eq. (7), valid in the crossover regime j!j � TK.
We also employ the NRG technique (for a review, see
Ref. [10]), which can be used to determine accurately
t�ð!Þ on all energy scales, for both 2CK and 2IK models
in the presence of any perturbation. Here we focus on the
low-energy behavior where comparison can be made to the
exact results. All symmetries of the problem are exploited,
and Ns ¼ 6000 states are retained at each iteration. The
leads of width 2D are assumed to have a uniform density of
states � ¼ 1=ð2DÞ and are discretized logarithmically [10].
NRG data and exact results are presented in Fig. 1, with

parameters given in the caption. t�ð!Þ vs !=TK is plotted
for the 2CK model (upper panels) and the 2IK model
(lower panels) in the presence of various perturbations.
In the left-hand panels, finite 	1 is considered (channel
asymmetry for the 2CK model and detuning of the interim-
purity coupling in the 2IK model). Precisely at the 2CK FP,
	 ¼ 0, S�� ¼ 0 [4,7], and hence t�ð!Þ¼ 1

2 for j!j�TK.

But for 	1 � 0 one immediately obtains jt�ð!Þ � 1
2 j 	

j!=T�j�1=2 for T� � j!j � TK, while for j!j � T�, the
classic quadratic approach to the FL FP is given asymptoti-
cally by jt�ð!Þ � t�ð0Þj 	 ð!=T�Þ2, with t� ¼ 1 (solid
lines, 	1 > 0) or t� ¼ 0 (dashed lines, 	1 < 0) being ob-
tained at ! ¼ 0. This full line shape was likewise obtained
numerically, for example, in Ref. [9] for the 2IK model or
for the 2CKmodel [11,12] and related odd-impurity chains
in Ref. [13]. The exact crossover function, Eq. (7), is
plotted as the solid gray (red) line in each case, showing
remarkable agreement for j!j � TK.
The effect of also including left-right charge transfer

terms (finite 	2) is shown in the center panels (	1 now
being kept fixed). As 	2 increases, the! � TK line shapes
seen in the left-hand panels of Fig. 1 undergo a simple

rescaling t�ð!Þ ! 1
2 þ j 	1

	 j½t�ð!Þ � 1
2� and eventually for

j	2j � j	1j they completely flatten. In the 2CK model, the
resulting form of t�ð!Þ is readily understood: rotation in
~� space allows the Hamiltonian to be written in terms of�z

only—but t�ð!Þ is then a weighted combination of the
�z > 0 and �z < 0 spectra shown in the left-hand panels.
That the same behavior is observed in the 2IK model
(lower- center panel) is a deeply nontrivial result, however.
There is no symmetry of the bare Hamiltonian that permits
this rotation; rather, it is the result of an emergent symme-
try. In both cases, the crossover function is described
perfectly by Eq. (7).
Finally, we consider the effect of applying a magnetic

field (finite 	z
B). In the absence of other perturbations,

ReS�� ¼ 0, and hence t"ð0Þ ¼ t#ð0Þ ¼ 1
2 (consistent with

a �=4 phase shift [14]). Indeed, t�ð!Þ ¼ 1
2 for T� �

j!j � TK since the system is near the 2CK FP. However,
the impurity magnetization M	 Bz for the 2CK model
(or staggered magnetization Ms 	 Bz

s in the 2IK model);
thus, t"ð!Þ � t#ð!Þ since M / R

0
�1 d!½t"ð!Þ� t#ð!Þ�� 0.
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For finite (staggered) magnetization therefore, the ‘‘up’’
and ‘‘down’’ spectra must deviate at finite frequency: a
‘‘pocket’’ opens between the curves at j!j 	 T�, whose
area is proportional to the (staggered) magnetization. This
behavior is observed in the right-hand panels of Fig. 1,
where a fixed 	1 is also included.

For j!j � T�, we find a linear approach to the FL FP,

t�ð!Þ � t�ð0Þ ¼ �	z
B

8	
!
T� þOð!2

T�2Þ, rather than the quadratic

dependence usually associated with FL theory. However,
this result is a perfectly natural consequence of the com-
plex scattering matrix S��. t�ð!Þ comprises contributions
from both imaginary and real parts of the complex function
Gð!=T�Þ in Eq. (7), the latter of which contains a leading
linear term. It is this contribution that of course dominates
the low-j!j behavior of t�ð!Þ in the presence of the
magnetic field. Again, there is excellent agreement be-
tween the NRG data and the exact results across the entire
frequency range j!j � TK. We finally note that the con-
ductance is obtained by averaging � ¼" and # contribu-
tions; the imaginary part of S�� thus cancels by
Eq. (8), and the characteristic ‘‘hump’’ observed in t�ð!Þ
is absent in dI=dV. As a consequence, dI=dV 	 ðeVÞ2 for

eV � T� at finite fields. We now sketch the derivation of
Eqs. (7) and (8).
Analytic crossover function at K � Kc in the 2IK

model.—The detailed CFT analysis of the 2IK model in
Ref. [4] demonstrated that perturbing the critical point by
finite (Kc � K) is equivalent to the action of a boundary
magnetic field h in the boundary Ising model (BIM) in 2
dimensions, described in the field theory limit by [15]

H Ising ¼ 1

2

Z 1

�1
dx�ðxÞi@x�ðxÞ þ ih�ðx ¼ 0Þa: (9)

�ðxÞ and a are Majorana fermion (MF) fields (a is local).
We use the unfolded coordinate system with left moving
convention, where x > 0 correspond to incoming fields,
x < 0 to outgoing fields, and x ¼ 0 is the boundary itself
(for more details see also Ref. [16]). The renormalization
group flow from free to fixed boundary condition [17] is
identical in both 2IK and BIM. The energy scale associated
with the crossover in the BIM is T� / h2. We now apply
this analogy and the machinery of CFT to obtain an exact
result for the crossover Green function in the 2IK model
with finite (Kc � K). The Fourier transform of the electron
Green function in Eq. (5) factorizes into

FIG. 1 (color online). Spectrum t�ð!Þ vs !=TK for the 2CK model (upper panels) and the 2IK model (lower panels) at T ¼ 0 in the
presence of various perturbations. Entire frequency dependence calculated by NRG (black lines); low-energy ! � TK behavior in
each case compared with exact crossover function Eq. (7) [solid gray (red) lines]. All results presented for �J ¼ 0:25. Left-hand
panels: Effect of channel asymmetry �z � 0 (2CK) or deviation from critical coupling ðKc � KÞ � 0 (2IK). Specifically, 4��z ¼
ðKc � KÞ=D ¼ �10�n (with � for solid and dashed lines, respectively), and n ¼ 3; 72 ; 4;

9
2 ; 5 in order of decreasing T�, approaching

successively the limit �z ¼ ðKc � KÞ ¼ 0 (dotted line). Center panels: Effect of also including finite left-right tunneling,
�x � 0 (2CK) or VLR � 0 (2IK). Shown for fixed finite 4��z¼ðKc�KÞ=D¼�10�5 with 5�x=j�zj¼2D�VLR=jKc�Kj¼10�m,
with m ¼ 2; 32 ; 1;

1
2 ; 0, successively approaching t�ð0Þ ¼ 1

2 from above [solid lines, �z, ðKc � KÞ> 0] and from below [dashed lines,

�z, ðKc � KÞ< 0]. Right-hand panels: Effect of including finite magnetic field. Shown again for 4��z ¼ ðKc � KÞ=D ¼ �10�5, but
now with B=4D�j�zj ¼ Bs=jKc � Kj ¼ 101=2. As before, solid lines for �z, ðKc � KÞ> 0, and dashed lines for �z, ðKc � KÞ< 0,
with both � ¼" and # spectra shown. Excellent agreement between NRG data and analytic curves obtained in all cases from a single set
of fitting parameters for each model: cT ¼ 96 and cB ¼ 0:04 for 2CK, while cT ¼ 0:63, cV ¼ 2:4, cB ¼ 1:3 for 2IK.
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hc ��ðz1Þc y
�0�ð�z2Þi /

���0���

ðz1 � �z2Þ7=8
h�ðz1Þ�ð�z2Þih; (10)

where z1 ¼ �þ ix1 and �z2 ¼ �ix2. Here � is imaginary
time, and x1; x2 > 0, implying that the Green function
probes an electron propagating through the boundary.
The electron Green function is thus given in terms of the
two-point function of the chiral Ising spin operator �,
calculated with Eq. (9). The magnetization in the Ising
model evaluated at distance y from the boundary is given
by [18] mðyÞ ¼ h�ðz1Þ�ðz�1Þih, where z1 ¼ iy. The full
function mðyÞ at finite h has been calculated exactly by
Chatterjee and Zamolodchikov [19]:

mðyÞ / ð4�h2yÞ3=8e4�h2yK0ð4�h2yÞ; (11)

where K0 is the modified Bessel function of the second
kind. Equations (10) and (11) thus allow the Green func-
tion to be calculated when �z2 ¼ z�1. Extension to any
�z2 � z�1 is possible since h�ðz1Þ�ð�z2Þih is a function of
z1 � �z2. As the system is not translationally invariant in
space due to the boundary, this is a highly nontrivial result.
However, we have proved this surprising property to all
orders in h, justifying the analytic continuation of Eq. (11)

to obtain hc ��ðz1Þc y
�0�ð�z2Þi / ���0���

ðz1��z2Þ7=8 mð�iz1þi�z2
2 Þ. The

special case of Eq. (7) with finite 	1 only follows by
normalization and Fourier transformation of this result.

Generalization to arbitrary relevant perturbation.—
Generalizing the analysis of Refs. [20] to the 2IK model
with an arbitrary combination of perturbations f	jg, it can
be shown that the 2IK FP Hamiltonian becomes SO(8)
symmetric: H0 ¼ i

2

P
8
j¼1

R1
�1 dx
jðxÞ@x
jðxÞ, where f
jg

are the 8 MFs. Switching on relevant perturbations at the
critical point is equivalent to adding �HQCP ¼
i
P

8
j¼1 	j
jð0Þa, which chooses one direction in the

eight-dimensional space. Defining a new basis in which
only 
ðxÞ ¼ P

j	j
jðxÞ=	 couples to the local operator a

yields a Hamiltonian of the same form as Eq. (9), with h !
	 and � ! 
. The full Green function for the 2IK model
with generic relevant perturbation can now be related to the
result derived above for finite 	1 only. The required rota-
tion in SO(8) space is defined by the unitary transformation

 ! U
Uy ¼ 
1 with U ¼ exp½�R1

�1 dx
1ðxÞ
?ðxÞ�,
where � ¼ arcsin	?

	 , 	? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2 � 	2

1

q
, and 
? ¼P

j�1	j
j=	?. The key point is that the same rotation

defined for the MFs can be used for the original fermions
since linear relations exist between their quadratic forms.
The general result for the 2IK model is Eq. (7).

Extension to 2CK model.—The same SO(8) representa-
tion of the critical point is obtained in both 2IK and 2CK
models [21]. Indeed, the CFT relevant perturbations can be
matched to MFs in the 2CKmodel as they were for the 2IK
model. Thus the above calculation can be generalized to
the 2CK model, with the key results given in Eqs. (6)–(8).

Conclusion.—We have derived a single exact crossover
Green function to describe the low-frequency crossover of
the 2CK and 2IK models. All relevant perturbations are

related by an emergent SO(8) symmetry, and should be
regarded on an equal footing for T� � TK, since marginal
and irrelevant corrections to the critical point can then be
safely neglected [22]. The derivation depends on a non-
trivial analogy between the renormalization group flow in
the 2IK model and in the BIM [4], a proof of which is the
essentially perfect agreement between the exact result and
the full numerical solution obtained by NRG.
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