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Kondo effect with diverging hybridization: Possible realization in graphene with vacancies
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We investigate Kondo physics in a host with a strongly diverging density of states. This study is motivated by a
recent work on vacancies in the graphene honeycomb lattice, whose density of states is enhanced at low energies
due to potential scattering. The generalized quantum impurity model describing the vacancy is shown to support
a spin—% (doublet) Kondo phase. The special role played by a diverging host density of states is examined in
detail, with distinctive signatures associated with the power law Kondo effect shown to appear in thermodynamic
quantities and the scattering r matrix, with a strongly enhanced Kondo temperature. Although the effective Kondo
model supports a stable phase characterized by strong renormalized particle-hole asymmetry, we find that this
phase cannot in fact be accessed in the full Anderson model. In the more realistic case, where the divergence in
the host density of states is cut off at low energies, a crossover is generated between pristine power law Kondo

physics and a regular Kondo strong coupling state.
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In standard metals, local magnetic moments are screened
by conduction electrons at low temperatures, which together
form a quantum many-body spin singlet by the Kondo effect.!
Precise details of the host band structure do not affect
the universal physics—provided!™ the density of states is
essentially flat at low energies. The Kondo effect has thus
become a paradigm for strong correlations in condensed matter
science.

However, the fate of local magnetic moments coupled to
low-energy degrees of freedom in unconventional materials
is much more subtle, and has been the subject of enduring
investigation over the last 20 years. Fascinating variants of
the classic Kondo paradigm have been variously sought in,
e.g., high-temperature superconductors”*° and spin liquids’*®
containing magnetic impurities. More recently, graphene has
been the focus of considerable attention, due to its unusual
density of states.””'! As a consequence, magnetic impurities
in graphene may exhibit unusual Kondo physics,'?"!7 and even
local quantum phase transitions.>*%!7

It was also appreciated that defects in graphene—such as
carbon vacancies and induced reconstructions in the otherwise
perfect honeycomb lattice—can give rise to interesting new
physics.'®22 In particular, evidence of the Kondo effect has
been observed experimentally in irradiated graphene samples
which host such vacancies.”> > It was argued recently by
Cazalilla et al. in Ref. 22 that structural corrugations around
vacancies allow for a hybridization between the o and &
orbitals, which leads to local magnetic moment formation
(an effect absent in flat graphene). Potential scattering from
the defect induces a greatly enhanced density of conduction
electron states coupling to these local moments.?? This would
give rise to very high Kondo temperatures—as in fact observed
in certain experiments.”> For a thorough recent review of
Kondo physics in graphene, see Ref. 26.

In this paper we study the effective model for isolated
vacancies in graphene introduced in Ref. 22. A particular
limit of the full model is explicitly considered, in which
interactions between the ¢ and 7 systems are small (although
local interactions may be strong). In this case we show that the
unusual graphene density of states near the vacancy leads to a
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variant of the spin-1 pseudogap Kondo problem.>*%"-° The
divergent hybridization represents a limiting case, and exotic
quantum impurity physics results. For example, the residual
impurity entropy of Sinp, = —kp In(4) is the lowest possible
for this type of system.

We go beyond the previous perturbative analysis using
the full numerical renormalization group (NRG) to calculate
various physical quantities exactly (for a recent review of
the technique, see Ref. 30). Numerical results are supported
wherever possible by analytical arguments. We also consider
the eventual low-temperature crossover to a regular Kondo
strong coupling state, induced when the divergence in the host
density of states is cut off, as might be expected in real systems.
We note that the full model, including also -7 electronic
interactions, is more complex, and can support for example a
pseudogapped local moment phase. The full phase diagram of
the model on increasing o -7 interactions will be to subject of
a forthcoming publication.’!

The main results of this paper are as follows:

(i) The phase diagram of the effective Kondo model is
presented and discussed. The modified power law density of
states leads to large Kondo temperatures, and supports two
distinct strong coupling phases, corresponding to runaway RG
flow of either the Kondo exchange coupling or potential scat-
tering. Thermodynamic and dynamical quantities are analyzed
analytically at the various stable fixed points, while the full
crossover between fixed points is calculated numerically.

(i1) We find that the particle-hole asymmetric local moment
phase of the simplified Kondo model is not accessible in the
underlying full Anderson model, and hence will not in practice
be realized in experiments.

(iii) Crossover from pristine power law Kondo physics to a
standard Kondo strong coupling state arises when the diverging
host density of states is cut off at low energies, as might be
expected in real systems. However, physical properties may
still be controlled by the power law Kondo effect over an
extended temperature/energy window.

The organization of the paper is as follows. In Sec. I we
introduce a generalized Anderson impurity model describing
a single reconstructed graphene vacancy, following Ref. 22. In
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the limit of negligible o - band interactions, an effective low-
energy spin-% Kondo model is derived and studied explicitly
in Sec. II. Thermodynamic and dynamical quantities are
calculated in each phase of the model, and the respective
phase diagram is analyzed in detail for the case of a diverging
host density of states. Physical behavior in the vicinity of the
stable strong coupling fixed points is analytically understood
and interpreted in terms of an effective resonant level or pure
potential scatterer. The evolution of strong coupling scales is
extracted in each case. We also examine the quantum phase
transition separating Kondo screened and asymmetric local
moment states.

In Sec. III we analyze the more physical Andersonian
model, and find that the potential scattering phase of the
Kondo model is not in fact accessible. We go on to consider
the effect of cutting off the power law divergence in the
conduction electron density of states at low energies in Sec. IV.
The resulting crossover to conventional Kondo physics is
examined.

We conclude with a discussion of our results and their
relevance to experiments on irradiated graphene in Sec. V.
More technical parts of the analysis are relegated to the
Appendixes.

I. MODEL AND OBSERVABLES

Cazalilla et al. derived an effective model in Ref. 22,
describing a single vacancy in graphene. It is formulated in
terms of a single “dangling” quantum orbital of the o band
localized at the defect site (denoted d,, ), which hybridizes with
conduction electrons of the w band—an effect precluded in
flat graphene by the symmetry of the orbitals, but allowed near
a defect due to structural distortions. The Coulomb interaction
gives rise to a strong onsite electronic correlation at the d level.
A capacitive interaction between charge density in the d level
and nearby 7 orbitals may also play a role, as might a Hund’s
rule coupling of their spin density.??

We thus take a generalized Anderson Hamiltonian H =
HY + Hy + Huyo + Hir, where H) =3 €pThuTtpy de-
scribes the free w band conduction electrons of spin v = 1/,
in terms of diagonal eigenmodes 7, (these operators already
account for the presence of the vacancy), and

Hy = e,Ay+ Uy Al
Hy, = Y (gp7},d, + Hec), (1)

Hyz = Y Uyphgn) 7, ) = JuSa Sy

p.p'v

Here ig =) Ay =), dld, is the total number operator
for the d level, and the spin densities of the d level and

7 band at the Vacancy are given by S; = %d;f&w/dv, and

=1 Z » np WO T, s interact via the Hund’s coupling
J H- The d level hybrldlzes w1th an effective w orbltal which
from Hhyy, follows as 7, = ¢ Zp gpT v, With g% = =2, gyl
The local density of states seen by the d level is thus

Z|gp|6(w—e,,> ——ImG{Si(w), @)

o(w) =
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where Gfgg(a)) is the retarded free electronic Green function
of the local & orbital.

Importantly, potential scattering from the vacancy gives rise
to strongly modified properties of the free 7 -band conduction
electrons,?? which has been absorbed into the definition of the
7, eigenmodes in Eq. (1), and thus enters implicitly through
€, in H;(T)- Within a tight-binding nearest-neighbor hopping
approximation, the density of states takes an unusual divergent
form at low energies,

1
& 1mn* ||
where A is the energy scale below which the complicated band
structure of the full defective graphene system becomes well
approximated by Eq. (3).
The hybridization function for the d level A(w)=

szgi () contains all the information about the noninteracting
bath of conduction electrons and, together with H; and Hy;,
completely specify the underlying quantum impurity problem.
Gng(a)) itself can be obtained via Egs. (2) and (3), provided the
local density of states of the effective 7 orbital is normalizable.
Thus we introduce a high-energy band cutoff Dy, defining
p(w) x 0 (Dy — |w|). When Dy > {Uyq,€4,g} is much larger
than the microscopic model parameters, its precise value is
immaterial' and does not affect the low-energy Kondo physics.
One then obtains

p(w) ~ 3

6@ = P [ e~ imp(o)

w;)() JTIHD—O |:31

w
_ n|—|sgn(w)~+1i|, 4
2ol In? [2] A [sen@) } @)

where P denotes the principal value, and the second line
is obtained analytically at low frequencies, as sketched in
Appendix A. As demonstrated in the following, the model can
now be solved numerically exactly within NRG, exploiting a
logarithmic discretization of this hybridization function.

We note that only interactions between the d level and a
single (zero-mode) 7, eigenmode were considered in Ref. 22.
However, this uncontrolled approximation to the full H;, can
lead to a phase transition between doublet and triplet power
law Kondo states,?? which we find to be an artifact of the
approximation (all 7, eigenmodes play an important role in
the underlying Kondo physics).

In this paper we concentrate on the limit in which Uy,
and Jy are both small compared with the induced Kondo
coupling set by Jx o< g2/ Uyqy. For simplicity we now consider
Uy = Jg = 0; although we have checked numerically that
our results are robust to including small finite d-7 interactions.
A detailed study of the full model as a function of U, and Jy
is technically complicated and beyond the scope of the current
work. We postpone the full treatment of Eq. (1) to a future
publication.?!

On hybridization with the graphene conduction electrons,
a low-energy effective Kondo model can be derived using
a Schrieffer-Wolff transformation,’ provided I's /Uia < Dy.
Projecting onto the doublet (spin) manifold of H; by perturba-
tively eliminating virtual charge fluctuations to second order
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in the coupling g, one obtains

Hx = H) + JxSq-s+V Y #l#,. 5)

v

where S, is a spin-% operator for the “impurity” d level; and

S = ErrJ o 7, is the local 77 electron spin density at the defect

site. The effective parameters of this Kondo model are'

~mw[l+ ! ]
leal  |Uda +€al]’

2 1
Vo~ lgl” [ —}
2 |leal  |Udq + el

It is important to note that the Kondo coupling Jx > 0 is
antiferromagnetic. Of course the novel feature of this Kondo
model is the unusual density of states [Eq. (3)] whose modified
power law behavior is shown to result in rich quantum impurity
physics.

In real systems, one might expect that the pristine diver-
gence in the local w-band density of states is cut off on some
suitably low-energy scale. This might arise due to next-nearest
neighbor hopping, or the presence of other vacancies and
impurities. This experimentally relevant scenario is considered
explicitly in Sec. IV.

In the following we consider thermodynamic properties
of the above Anderson and Kondo models. In particular,
we wish to calculate “impurity” (defect) contributions to the
entropy Simp(7'), and the magnetic susceptibility ximp(T) =
((820%)imp/ T, as a function of temperature 7. As usual,’
(Q)imp = (Q) — (Q)O, with (Q)O denoting the thermal average
for the free system. Impurity contributions can thus be
negative, even though both (€2) and (€2)o may separately be
positive. The behavior of these quantities allows straightfor-
ward identification of the various fixed points, and evince clear
RG flow. Crossovers between these fixed points also provide
direct access to the underlying energy scales of the problem,
such as the Kondo temperature Tk.

In addition, we study dynamic quantities, focusing on the
energy dependence of the  matrix. Since the ¢ matrix controls
the scanning tunneling spectroscopic response and resistivity
measurements, it is the key quantity needed to interpret certain
experimental results. The rapid and universal evolution of the ¢
matrix at energies on the order of the Kondo temperature could
thus provide the “smoking gun” signature of Kondo physics in
a graphene system with isolated vacancies.

The ¢ matrix describes scattering between diagonal states
p and p’ of H? induced by the defect. It is generically given
by

(6)

'+ GO ()T, (@G (@), (D)

Gpp(@) =G (0)5,) o

where 7, ,; are components of the ¢ matrix. Since hybridiza-
tion between the d level and the host is local in space,
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Ty p(@) = gpg” T (w) and so one readily obtains
Gioel®@) = Giok(®) + [Gln(@)]'T (). @®)
For the full Anderson model [Eq. (1)], the ¢ matrix follows as
T(0) = £ Gaa(®), ©)

where Gy (w) = ((dv;di))w is the d-level Green function,
independent of spin v in the absence of a magnetic field.

At low energies in the Kondo regime, the same scattering
should be produced by the corresponding Kondo model
[Eqg. (5)]. The ¢ matrix is then expressed as

T(0) =T" )+ T*(w), 10)

where

TP (w) = [ (11a)

o)
VGiolw)

2
Jk /2
T () = [%} (759 es (11D)

loc

with p = S'Zr”m + 87 1 (here 82, 8§~ denote operators for
the “impurity” spin).>>*3 TP%(w) is the trivial contribution to
scattering from a local potential, while TX (w) describes the
effect on scattering due to electron correlations, such as the
Kondo effect. Below we consider explicitly the spectrum of
the ¢t matrix, i.e.,

tw) = —%ImT(a)) = —%Imz T p- (12)

P

II. KONDO MODEL

The Kondo model Eq. (5), with effective conduction
electron density of states given by Eq. (3), is a close relative of
the so-called pseudogap Kondo problem,>#6:27-29:34-36 where
the density of states is given generically by p(w) « |w|". Such
models have been studied extensively, especially in the context
of certain high-7, superconductors and magnetic impurities in
regular graphene,!” which both realize the r = 1 case. Vojta
and Bulla also considered the case —1 < r < 0, describing
a spin-% impurity coupled to a bath with diverging density
of states.>” Although their survey allowed the topology of the
phase diagram to be identified, details of the various crossovers
and properties of the fixed points themselves were not
established exactly. Further detailed study of the generalized
power law Kondo model for arbitrary antiferromagnetic or
ferromagnetic Kondo coupling will be considered in a separate
publication.?

A. Analytical results
1. Generalized poor man’s scaling

Before solving the Kondo model numerically exactly using
NRG, we first consider perturbative scaling. A similar analysis
was performed in Ref. 22 for a Kondo model with a related
density of states (although the role of the scale A was not
considered).
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In the spirit of Anderson’s poor man’s scaling>*7° one

can derive flow equations for dimensionless couplings j =

oin Ik o ln and V= o Vv __ 7 In 5 A Two scaling functions arise

for both the Kondo couphng JK and potential scattering V
(both of them diverging). Strong coupling scales Tx and Tp
can be estimated and are shown to depend on A as well as the
bare couplings and Dy. This is in contrast to the situation in a
regular metallic host, where potential scattering is irrelevant.
Universal low-energy properties result from the flow of these
couplings, and depend only on the low-energy scales Tk or Tp.
The high-energy band cutoff Dy is simply the bare energy scale
where the microscopic parameters of the model are defined:
We thus use it as our unit of energy in the following. We
obtain

b _ (-2 2403,
dinD mo )/ IOV

dv ! 2
=-1——=]v.
dinD ln%

Remarkably, the second equation describing scaling of the
potential scattering term is exact to all orders. The coefficient
of the linear terms is the scaling dimension and here it
depends upon the running scale D and the bare scale A. Both
scaling equations can be solved analytically to yield the scale
dependent couplings:

13)

. p(D) J (Do)
= o1+ 123 (D oDy 1y’ »
p(D)
D)= (D
v(D) = (Do)’ 0)-

An immediate observation is that the strong coupling phases
vanish as A — D('f since then j(D), v(D) — 0. The density
of states [Eq. (3)] reduces to a pair of poles at =Dy in
this limit, and so there are no low-energy bath degrees of
freedom to which the impurity spin can couple. However, in
the generic case A > Dy, the running Kondo coupling j(D)
and potential scattering v(D) are renormalized upward on
successive reduction of the bandwidth/energy scale. The strong
coupling scales Tx and Tp associated with the divergence
are scale invariants and can be identified approximately as
the point where these couplings become of order unity, i.e.,
Jj(Tg)=1 and v(Tp) = 1. Of course such a perturbative
approach breaks down before this point, but the analysis does
provide a useful analytic estimate.

To leading order it suffices to consider the scaling dimen-
sion of the flow equations. To this level of approximation the
flow of j and v is identical, and so the resulting strong coupling
scales have the same functional dependence,

Tx Jxk, A

Ty In> = = ~=1In —,
K= "D,

, Tp V. A
In"— = —In— (15)
A 2 Dy
In the limit of small Jx (V), and consequently small Tx (Tp),
Eq. (15) can be inverted to yield

A A
N Jx lnﬁ0 vlnD—O
> Dies Py 09
A
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The notable feature here is that the strong coupling scales are
proportional to the bare couplings Jx and V. Of course this is
in marked contrast to the standard metallic case, where p(w) =
po is finite and constant at low energies. An exponentially small
Kondo temperature' Tx o< exp(—1/p0Jx) results in that case.
Remarkably, strong coupling physics in the defective graphene
model should be expected at relatively high temperatures.>>
Fundamentally, this is due to the enhanced conduction electron
density of states at low energies. Indeed, experimental results
on graphene systems with vacancies have shown that unusually
high Kondo temperatures do result,”> which was the original
motivation®” for Eq. (3).

Below we extract the exact dependence of Tp on V in
the pure potential scattering case (Jx = 0). In Sec. IIC we
go further and extract Tx and Tp from exact nonperturbative
NRG calculations for the nontrivial case where V # 0 and
Jx #0.

The implication from the RG scaling equations [Eq. (14)]
is that at high energies the physics is controlled by a “local
moment” (LM) fixed point, describing a free impurity spin,
decoupled from the bare host. For larger bare Jx (>>V),
the Kondo coupling is renormalized faster as the tempera-
ture/energy scale is reduced, and hence the Kondo effect will
dominate. The ground state is then described by a “symmetric
strong coupling” (SSC) fixed point, and the impurity spin
is screened by conduction electrons. The remaining Fermi
liquid host degrees of freedom now also feel an additional
phase shift (equivalent to a modified boundary condition at
the defect site) due to the Kondo effect. In the case of a
diverging free density of states, this results in an additional
anomalous host contribution to physical properties, as shown
below. Alternatively, if the potential scattering is initially
very strong (V >> Jg), then V is renormalized faster and the
ground state is described by the “asymmetric local moment”
(ALM) fixed point. Although the impurity remains free, the
renormalized potential scattering in the host becomes maximal
and generates the same anomalous contribution to physical
properties because the same phase-shift/boundary condition
arises as in the Kondo-screened case. A critical point, AF-CR,
separates the SSC and ALM phases.*’ The topology of the
flow diagram is shown in Fig. 1, and explicitly discussed in

(07¢]
LM 1SSC

FIG. 1. Schematic phase diagram for the Kondo model with
density of states given by Eq. (3). |V | denotes particle-hole symmetry
breaking while Jx is the Kondo coupling. Fixed points are denoted
by circles, arrowed lines refer to effective RG flow, and the dashed
line is the separatrix between SSC and ALM phases.
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Sec. II B where the physical picture is confirmed by means of
exact numerics. The underlying topology of the phase diagram
is thus equivalent to that studied in the pure power law case by
Vojta and Bulla.?’

2. Potential scatterer

The simplest limit of the Kondo model arises for Jx = 0in
Eq. (5). The model is then trivial in the sense that it is noninter-
acting, and Kondo physics per se is totally absent. However, as
suggested by the flow equation [Eq. (14)], this simple system
has a strong coupling ground state, characterized by potential
scattering whose strength diverges below an emergent scale
Tp. Later, it will be shown that the low-energy behavior of the
Kondo model with Jx > 0 can also be understood in terms
of the pure potential scatterer throughout the ALM phase. We
discuss briefly this limit now.

The local Green function at the defect site is modified due
to the additional potential scattering for V # 0. It is expressed
exactly as

[Gioc@)] ™ = [62w)] ' — V. (17)

Rearranging this equation in the form of Eq. (8) immediately
yields the ¢ matrix for the pure potential scatterer [Eq. (11a)].
The corresponding spectrum has the following asymptotic
forms:

lol<|V]| 1 sgn[w] ) ‘w‘ 3
t = |\ N\ In|—|+0
(w) (21n [1)\0>le (V1n2 30)|w| X (lol”)

(18a)

A (;> +0(1/l0l?)
Do \ |o|In® |w/A| '
(18b)

ol |V

7 )—lv2
=5

By demanding d¢(w)/dw = 0, we find that the spectral peak
for small V arises when
’ / In — (19)

As wp — 0, the spectrum exhibits scahng in terms of w/wp,
viz.

H®)  |ol<lor] 1 sgnfwV]\|
ol <2lnDAO>+< In 2 )’ ‘JFO("”/“”")

(20a)

V = —wp In|—

wp

ol o] ( 1 ) wp [
- A
21nD_0

wp thus serves as a definition of the strong coupling scale
Tp = wp. The exact result in the limit Jg = 0 is then

+ O(lwp/w]).

(20b)

A
TpIn(Tp/A) = —|V|In —, @1
Dy

which should be contrasted with the perturbative scaling result
[Eq. (15)]. The two definitions will be compared in Sec. II C.
The change in thermodynamic quantities due to the intro-
duction of such potential scattering can also be obtained from
the electron Green function [Eq. (7)], once the ¢ matrix is
known.! At low temperatures, the behavior in the vicinity of
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the ALM fixed point is found to be

Simp(T) = —In(2) <1 + T) + O(Tz)’ (22a)

N
1 1 )

Tt = g | 1= oz | + 0T (22b)

As confirmed by full NRG calculations below, this leading
behavior arises on the lowest energy scales in the ALM phase
and also in the case of finite Kondo coupling Jx > 0.

It should be noted that these asymptotic results hold in the
limit where the free conduction electron density of states is

divergent, and described by Eq. (3). In Sec. IV we consider
the case where this divergence is cut off at low energies.

3. Resonant level

In the Kondo screened SSC phase of the pseudogap Kondo
model, it has long been established>®?’ that the low-energy
physics is that of an effective resonant level model,

Hp, = H? +vZ(nd +H.c.), (23)

which is just the noninteracting (U = 0) Anderson impurity
model at particle-hole symmetry. Indeed, in the present case
we show below that the low-energy behavior of the SSC phase
can again be understood in terms of the resonant level. This
motivates a brief analysis of the latter for the case where H?
is characterized by the local density of states [Eq. (3)].

The retarded resonant level Green function is simply

1
ZG(O)

loc( ) ’
where Gl(gz (w) is given in Eq. (4). The corresponding spectrum

is given asymptotically by

Gua(w) = (24)

w+i0t —

oo (1 1 5 o s
Hw) (2lnDA>|w| —<m> |w|” In X‘ + O(lwl)
0 0
(252)
oo 1 _4 A( ) 5
= —'In—|—— )+ 001 .
2" " Do ol joyag ) T 21D
(25b)

The position of the spectral peak at w is straightforwardly
obtained, and the spectrum again obeys scaling as wxg — 0 in
terms of w/wg,

[((1)) o|<|w, 1 1 @ ’
ROV lolgox| (21 A>+(1—A>‘— + O(lo/wk[*)
|w| nD—D l’lD—0 Wk
(26a)
foPzlex] ( A ) ‘_K +O0(lwg /@), (26b)
21n D_o w

where w% In |wg /A| = —52 In(A/Dy).

Hgy, should be regarded as an effective low-energy model
here, valid in the vicinity of the SSC fixed point,>° and so the
parameter ¥ is itself an effective parameter. Thus, one cannot
directly identify wg for the resonant level model with Tk for
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the full Kondo model with Jx > 0. However, the asymptotic
scaling form of the spectrum [Eq. (26a)] is expected to hold at
low energies, as confirmed in the next section.

To lowest order, the RG scaling equations given in Eq. (14)
are the same for the pure potential scatterer (with Jx = 0) and
the Kondo model (with V' = 0). The strong coupling scale for
the former is given by Eq. (21); mutadis mutandis, the leading
dependence of the Kondo temperature in the latter should be

A
T In(T /A) = —|Jx | In —. @7
Dy

On the lowest energy scales in the vicinity of the
SSC fixed point, thermodynamics of the full Kondo model
[Eq. (5)] can be calculated from the effective resonant level
model [Eq. (23)].>%27 The leading low-temperature behavior
can again be extracted exactly from the electron Green
function (or the corresponding resonant level ¢ matrix), as
shown explicitly for the entropy in Appendix B. As T — 0
we find

Sunp(T) = — Ind) (1 + 1%21) +o?),  (@8a)

A

1 1
T Ximp(T) = 3 (1 + 1n_2—T) + o(T?). (28b)
A

The low-temperature form of Eq. (28) is confirmed below
by explicit NRG calculations for the full § = % Kondo model
in the SSC phase. Again we stress that these unusual results
are obtained in the case where the conduction electron density
of states has a pristine divergence described by Eq. (3).

B. Numerical results

The physics of the Kondo model with finite Jx and V
[Eq. (5)]is obviously much more rich and subtle than the trivial
limits considered above. Here one generically expects two
phases: for Jx/|V| > 1 a strong coupling SSC phase should
result, while an ALM phase is stable for |V |/Jg >> 1. These
phases are separated by a quantum critical point (AF-CR)
arising for a critical ratio (Jx/ V). = O(1).

The full temperature dependence of thermodynamic quan-
tities can be calculated using NRG.?® Their characteristic
behavior at the various fixed points allows straightforward
identification of the phases, and the entire phase diagram can
thus be mapped out. We find that the topology of the phase
diagram for antiferromagnetic Jx > 0 is the same as for the
case of the pure power law density of states [p(w) ~ |w|" with
—1 < r < 0] studied in Ref. 37. A schematic phase diagram
is presented in Fig. 1 and discussed below.

At high energies/temperatures the LM fixed point describes
a free and unscreened impurity local moment. The limiting
high-temperature entropy is thus Sin, = In(2), while the
magnetic susceptibility follows the Curie law T ximp = 1/4.
But the Kondo effect drives the system toward the SSC fixed
point below an energy scale of order Tx when Jg/|V| >
(Jk/IV|)e. For T « Tk the entropy and susceptibility for the
Kondo model are found from NRG to be given precisely by
Eq. (28), obtained for the effective resonant level model. In
particular, we note that the residual 7 = 0 entropy Simp(0) =
— In(4) is the smallest possible value, because the conduction
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TABLE 1. Properties of fixed points.

liInT—>0 Simp liInT—>O TXimp
ALM ~In2 1/8
LM In2 1/4
AF-CR —1n4/3 1/24
SSC —In4 —-1/8

electron density of states is characterized at low energies by
the strongest possible divergence (up to logarithms) while
remaining normalizable.

By contrast, for Jx /| V| < (Jx/|V]). the ALM fixed point
is stable, and describes maximal particle-hole asymmetry. The
crossover from LM to ALM physics occurs on the strong
coupling scale Tp. The free impurity local moment is then
supplemented by an anomalous host contribution to give
T — 0 thermodynamics described by Eq. (28). The precise
agreement on the lowest energy scales confirms the physical
interpretation of the fixed point in terms of the pure potential
scatterer discussed above.

On fine tuning in the vicinity of the critical point Jg /| V| =~
(Jk/1V e, RG flow from the high-energy LM fixed point to
the stable fixed point describing the ground state occurs via
the critical point AF-CR. Two universal scales can thus be
identified in this regime: T, (*Tx) sets the scale for onset
of criticality associated with AF-CR, while T* (x|V — V,|)
characterizes the ultimate crossover to either SSC or ALM
fixed points (depending on the sign of V — V,.). The distinctive
asymptotic thermodynamic properties of each fixed point are
summarized in Table 1.

Remarkably, the impurity entropy at ALM, AF-CR, and
SSC fixed points is negative. We note, however, that all thermo-
dynamic quantities flow to their respective zero-temperature
values logarithmically slowly. This is a direct consequence of
the logarithmic energy dependence in the density of states, see
Eq. (3).

Figure 2 shows the full crossovers in the entropy and
susceptibility calculated numerically exactly using NRG. In
both cases, diamond points show the direct crossover from
LM to SSC arising for Jx /Dy = 0.1 but V/Dy = 0; while
circle points show the direct crossover from LM to ALM
when V /Dy = 0.1 but Jx /Dy = 0. Thermodynamics are also
shown on tuning to the quantum critical point (dotted line).
Approach from the SSC phase (solid lines) and the ALM phase
(dashed lines) exhibit two characteristic scales, T, and T*,
as above.

Dynamical quantities, such as the T = 0 scattering  matrix,
similarly evince the rich RG structure of the problem. The
NRG method also allows calculation of such dynamics,*
which have been shown to be numerically exact in cases where
exact results are known.*'*? In Fig. 3 (upper panel) we plot
the scaling spectra #(w)/|w| vs |o/wk| for a system deep in
the SSC phase. Its asymptotic behavior at both high and low
energies is found to be described by Eq. (26). In the ALM
phase (Fig. 3, center panel), the scaling spectrum #(w)/|w| Vs
|w/wp| is asymptotically described by Eq. (20). In particular,
we note the more gentle linear approach to the Fermi level,
and the inherent asymmetry of the spectrum, arising due to
the relevance of particle-hole symmetry breaking. The lower
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FIG. 2. (Color online) Thermodynamics across the quantum
phase transition. Entropy Sinp(7) (upper panel) and magnetic
susceptibility T ximp(T) (lower panel) plotted vs T/D, for fixed
A/Dy=1.5, Jx =0.1Dy, and tuning V — V.. Shown for V =
V. 10*”T,}’:0 with n =0,1,2,3,4,5 in order of decreasing T*
(x|V — Vc]). Solid lines for the SSC phase and dashed lines for
the ALM phase. The critical point itself is shown as the dotted lines.
For comparison: diamond points for Jx /Dy = 0.1, V/Dy = 0 and
circle points for Jx /Dy =0, V/Dy = 0.1.

panel of Fig. 3 shows a critical spectrum, plotted as #(w)/|w| vs
|w/w,|. The resonance around w = sgn[wV]|w,| is split, with
the peaks separated by ~|V — Jg|. Atlow energies |o| < |w,|
the spectrum #(w)/|w| ~ a + bsgn[wV]|w/w,| has a leading
linear dependence.

C. Evolution of Ty and Tp

Solution of the generalized poor man’s scaling equations
gives an estimate for the strong coupling scales Tx and Tp
[Eq. (15)]. In the trivial potential scattering limit considered
explicitly in Sec. IT A2, the scale Tp can be obtained exactly
[Eq. (21)]. Up to logarithms, one thus expects in either case the
same linear dependence of the strong coupling scale Tp ~ V
or TK ~J K-

Here we calculate 7p and Tx numerically exactly using
NRG,*® varying V, Jk, and the cutoff A. In Fig. 4 we plot
Tx In(A/Tk)/In(A/Dy) vs Jx /Dy for systems in the SSC
phase,and Tp In(A/Tp)/ In(A/ Dy) vs V / Dy for systems in the
ALM phase. The excellent agreement, especially for small Jx
or V, confirms Eqgs. (27) and (21) (solid line). For comparison,
the result of Eq. (15) is shown as the dashed line.

The key point is that the Kondo temperature is typically
rather large in these systems.

III. ANDERSON MODEL

In Sec. II we discussed the rich phase diagram of the Kondo
model with conduction electron density of states given by
Eq. (3). This model was derived from an Anderson model
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FIG. 3. (Color online) Spectral function#(w)/|w|atT = 0.® > 0
and w < 0 plotted as solid and dashed lines. Top panel: vs |w/wk| in
the SSC phase (Jx = 107°Dy and V/Jx = 0.01). Middle panel: vs
|w/wp| in the ALM phase (V = 107D, and Jx/V = 0.01). Lower
panel: vs |w/w,| at the critical point [Jx = 107°Dy and V/Jx =
(V/Jk)el. A/ Dy = 1.5 is used throughout. Asymptotes discussed in
the text.

(which also allows for charge fluctuations), by projecting onto
the impurity spin manifold using a Schrieffer-Wolff trans-
formation. Within this leading-order perturbative treatment,
Eq. (6) indicates that the maximum ratio of effective potential
scattering V and effective Kondo exchange coupling Ji is
given by
4 < 29
ST (29)
The natural question is then: Which of the strong coupling
phases of a Kondo model can actually be accessed within the
bare Anderson model. In order to answer this, we study the
exact position of the phase boundary of the effective Kondo
model and examine directly the full Anderson model [Eq. (1)].
Figure 5 shows the phase diagram of the Kondo model
obtained using NRG. The inset shows the asymptotic small-Jx
behavior, which is found to follow:

1

K

=a+bln(Jg/A), (30)
c
witha = 3/4 and b = —0.3 for A/ Dy = 1.5 (see dotted line,
inset).

For comparison, we also plot the Schrieffer-Wolff result
[Eq. (29)] as the dashed line in Fig. 5. The obvious conclusion
is that the effective potential scattering V derived from the
bare Anderson model is never large enough to access the
ALM phase. A numerical survey of the parameter space of
Eq. (1) supports this result, and suggests that the Kondo effect

075104-7



ANDREW K. MITCHELL AND LARS FRITZ

TK‘p IH(A/TK,P)“KJD/ IH(A/D())
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FIG. 4. (Color online) Ty and 7p extracted from NRG
calculations for various values of Jx and V deep in
the SSC phase (Jx/V =2) and the ALM phase (Jx/V =
1/2) for A/Dy = 100,10,1.1,1.01,1.001. All data plotted as
Tk pIn(A/ Tk p)ak.p/In(A/Dy) vs Jx /Doy or V/Dy [the constant
ag p = O(1) depends only on the phase (SSC or ALM)]. Data
collapse to the analytic result [Eq. (21), solid line] is found at small
Jx, V. For comparison, Eq. (15) for A/Dy = 10 is shown as the
dashed line.

is always operative at the lowest energy scales. The ground
state is thus described by the SSC fixed point when the density
of states is given by Eq. (3).

IV. ACCESSIBILITY OF POWER LAW KONDO
PHYSICS IN GRAPHENE

In the previous sections we used a simplified conduction
electron density of states [Eq. (3)] obtained®’ within a
nearest-neighbor tight-binding approximation. Going beyond
this approximation, one might also expect the d level to
hybridize weakly with more distant & orbitals (albeit with
extremely small hopping amplitude, given the local nature

09 & R
= ¢
= P ALM
3
0.8 - -
...<>-».<>--<>"'<>"(> ]
e [ [ [
10* (1w 10 107 10°
0.5 -
= SSC
8
R 3 __—4SW
> “—"‘_,_
0 - | | |
] 0.2 0.4 0.6 0.8 1
Jx [ Dg

FIG. 5. (Color online) Phase diagram in the Jgx-V plane for
A /Dy = 1.5, indicating the critical separatrix between SSC and ALM
phases. At small Jg, the critical ratio |V /Jk]|. is given by Eq. (30)
(see inset, dotted line). The regime of validity of the effective Kondo
model is given by the Schrieffer-Wolff asymptote |V /Jk |max = 1/4,
shown as the dashed line.
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of the structural corrugations around the defect). Indeed,
weak intersublattice coupling between next-nearest neigh-
bors may also play a role, leading to a sharp resonance
rather than a true logarithmic divergence in the density of
states.

To simulate these effects heuristically, we introduce an
effective density of states,

20 (Do — o))
(lol + X)1In* L (lo| + X)’

p(@) = (€29)
defined inside a band of half-width Dy, which is normalizable
for A > Dy, where N =2[In"'(X/A)—In"" £(Do + X)].
As such, it recovers Eq. (3) in the limit X — 0. For small
finite X, the divergence is cut off on the scale of |w| ~ X, and
the density of states becomes flat for |w| <« X. Although X
might be very small in practice, it is expected to have an effect
on the lowest energy/temperature scales.

Provided X is small (as might be expected physically), the
results of the previous sections should however hold in the
temperature/energy regime X < T. We explore this scenario
in Fig. 6, where we consider explicitly a spin-% Kondo model
with bath density of states given by Eq. (31). We take fixed
Jxk/Do=0.1,V/Dy =0, A/Dy = 1.5 and increase X /Dy in
the direction of the arrow (the blue dashed line corresponds to
X =0).

For X <« T¥™Y, there is an extended temperature regime
X « T < TE°, where the system flows near to the SSC
fixed point [and thus approaches the limiting entropy — In(4)].
However, on the lowest energy scales 7 <« X, RG flow is
ultimately to the regular Kondo SC fixed point,! with all
residual entropy quenched, Sim,(T — 0) = 0.

Even when the divergence is cut off on the scale of X,
the low-energy density of states is still greatly enhanced
when X is small. Importantly, this leads to a large Kondo
temperature. As shown in Fig. 6, the Kondo temperature
diminishes very rapidly as X is increased, and conduction
electron spectral weight is moved away from the Fermi level.
Experiments on vacancies in graphene have in fact found
surprisingly high Kondo temperatures,” which suggests that

0.5 1

15 " L L
10" 10° 10°
1/ Dy

FIG. 6. (Color online) Entropy for the Kondo model with density
of states given by Eq. (31). Plotted for A/Dy = 1.5, Jx /Dy = 0.1,
V /Dy = 0, increasing X/ Dy in the direction of the arrow from O (blue
dashed line) to X/Dy = 1071,1078,107%,107%,103,1072,107!3.
Inset shows the corresponding density of states.
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X is in practice rather small. As a consequence, the distinctive
signatures of the power law Kondo effect (as considered
in the previous sections), should appear in an intermediate
temperature window.

V. CONCLUSIONS

In this paper we studied the physics of a quantum impurity
model with diverging hybridization, as might be obtained at
the site of a reconstructed vacancy in graphene.?? A dangling
orbital of the graphene o band localized at the defect can
hybridize with 7 conduction electrons. We consider the
situation where onsite interactions of the localized o level
are strong, but o - interactions are weak. A combination of
analytical and numerical techniques were employed to obtain a
rather complete understanding of the model and its properties.

When charge fluctuations are frozen out, the Anderson
model can be more simply understood in terms of an effective
spin-% impurity exchange-coupled to 7 -band conduction elec-
trons of the graphene host. This Kondo model is unusual due to
the diverging hybridization, and number of distinctive physical
properties result. Indeed, we find a rich phase diagram, arising
because particle-hole symmetry breaking is relevant in this
system, unlike the situation in standard metals. Strong coupling
phases associated with large renormalized Kondo coupling
(SSC) or potential scattering (ALM) are thus supported.

Interestingly, the graphene conduction electrons in both
cases feel a m/2 phase shift as 7 — 0: in the SSC phase
by spin-singlet formation with the impurity, and in the ALM
phase by the renormalized potential scattering. The localized
bath orbital at the defect is thus projected out in both
phases, giving rise to anomalous contributions to ground
state thermodynamic properties. For example, even in the
more conventional Kondo SSC phase, the residual impurity
contribution to entropy assumes the minimum possible value
Sisn?pC(T — 0) = —kp In(4), despite the impurity spin itself
being quenched by the Kondo effect. We also find a strongly
enhanced linear scaling of the Kondo temperature with
coupling strength in this phase, Tx ~ Jx (up to logarithms).
By contrast, the ALM phase is characterized by a large
renormalized potential scattering, which suppresses the Kondo
effect. The asymptotically free impurity local moment is
however similarly supplemented by the anomalous bath
contribution, yielding now SpuM(T — 0) = —kp In(2).

The lowest-energy physics in the vicinity of the SSC and
ALM stable fixed points was understood analytically in terms
of effective resonant level and pure potential scattering models;
and the physical picture confirmed by means of exact numerics.
The phases are separated by an unstable quantum critical point,
which was also studied in detail.

However, direct analysis of the full Anderson model reveals
that the phase transition separating the two strong coupling
phases cannot in practice be accessed, because the effective
Kondo coupling and effective potential scattering are slaved.
We stress this important cautionary caveat when dealing with
Kondo models in general: The parameters of the effective
Kondo model are not independent since they depend on the
same microscopic parameters of the underlying Anderson
model. In the present case, the Kondo effect is thus always
operative on the lowest energy scales (of course, additional

PHYSICAL REVIEW B 88, 075104 (2013)

potential scattering from other sources could manifest at higher
energies || > A, not considered here).

Finally, we comment on the accessibility of the above
physics in real systems. The pristine divergence of the
graphene w-band conduction electron density of states sug-
gested in Ref. 22 might more realistically be cut off at low
energies. We showed however that exotic physical behavior
controlled by the modified power law Kondo effect might still
be accessible in an intermediate temperature/energy window.
Only on the lowest energy scales does conventional metallic
Kondo physics dominate. Indeed, experiments on graphene
samples with vacancies have revealed unusually large Kondo
temperatures,? consistent with the above picture.

One assumption employed in this work was to neglect
capacitive and Hund’s rule interactions between the local o
level at the defect and -band conduction electrons. Although
we have checked that the physics discussed in this paper
is robust to including small o-7 interactions of this type,
preliminary results suggest that new phases and physics can
also be accessed when these interactions are stronger. This will
be the subject of a future publication.
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APPENDIX A: LOCAL GREEN FUNCTION

The derivation of the local Green function at low frequen-
cies is straightforward but tedious. In the following we sketch
it: While the imaginary part follows trivially from the density
of states the real part has to be evaluated from Kramers-Kronig
relation

GO(w) =P / a2 _izpw). (AD)
w—¢€
The real part can be brought into the form
A sgn(w) ol dE
Re Gigg(a)) =In— & / 2 Elo| (A2)
Dy ol o (1—E)EIn* =4

After an integration by parts one arrives at

sgn(w)|w|

In &

1-6
1
ReGw) = lim| - ———
& loc 50 In El\\a)\(l _ EZ)

0
20

1 Tol
+ lim | ——
60 [ In (1 — E2)j|

1468
1-8 2EdE

+ lim — =
~0Jy (11— E??In 2
i o 2EdE
m _—.
=0 J14s (1 — E2)2In 2

(A3)
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At this point it is important to notice that in the limit || < A
we can rewrite the above expression to leading order

1-5
1
B N Re G ~ fim | - g ——
In D s—0| In %(1 — E2) .

Do
N l 1 2]
m | ———-—-
=0 mELA-EY |
2EdE

1 1-5
lim
+»wmwhé (1 — E2)?

/ 2EdE
5—>0 ln 146 (I — E?)?
(AD)

This expression directly leads to Eq. (4).

APPENDIX B: LOGARITHMIC CORRECTIONS

Here we obtain analytically the first logarithmic correction
to the impurity entropy, from the free energy of an effective
resonant level model. The general formula to calculate the free
energy of a local level is given by

f:—TZZln[—

Using residual calculus this can be converted into a
line integral along the branch cut along the real axis

G, (wn)]e . (BI)
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given by

F=_ Z /;oo %np(z)ez(ﬁlm In [—Gr_’(l7 (Z)], (B2)

where the subscript » refers to the retarded Green function.
Consequently, we obtain the entropy as

aF ©d 2
S:——:/ = 5 Imln[—Gr’;
oT oo T cosh”z

where the factor of 2 is due to the spin summation. The low-
energy properties will be entirely dominated by the self-energy,
which is of the form

(22T)], (B3)

A
Z@)%”Q——:%&L—p ‘Z‘zgn@)+z] (B4)
2lz/In* ||

It is then straightforward to derive an expression for the
impurity entropy. It follows as

S /‘°° dz 2z
- o 7 cosh®z

Realizing the low-temperature limit, this can be approximated

T
7w + 2arctan ——— | . B5
( zln|aﬂ|) "

as
o0 2z 1
S~ — dz 1+ , B6
/<; cosh2z< ln|%|) (B6)
which, to leading order, yields
1
S%—]n4(1+ ’2T|> (B7)
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