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An exact expression is derived for the electron Green function in two-channel Kondo models with one and
two impurities, describing the crossover from non-Fermi liquid (NFL) behavior at intermediate temperatures to
standard Fermi liquid (FL) physics at low temperatures. Symmetry-breaking perturbations generically present
in experiment ensure the standard low-energy FL description, but the full crossover is wholly characteristic of
the unstable NFL state. Distinctive conductance lineshapes in quantum dot devices should result. We exploit a
connection between this crossover and one occurring in a classical boundary Ising model to calculate real-space
electron densities at finite temperature. The single universal finite-temperature Green function is then extracted
by inverting the integral transformation relating these Friedel oscillations to the ¢ matrix. Excellent agreement is
demonstrated between exact results and full numerical renormalization group calculations.
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I. INTRODUCTION AND PHYSICAL PICTURE

The full power of the renormalization group (RG) concept is
perhaps most clearly seen in its application to quantum impu-
rity systems.! The classic paradigm is the Kondo model,” being
the simplest to capture the fundamental physics associated with
all quantum impurity models: universal RG flow from an unsta-
ble fixed point (FP) to a stable one on successive reduction of
the temperature or energy scale. The Kondo model describes a
single local spin-1/2 “impurity,” coupled by antiferromagnetic
exchange to a single channel of noninteracting conduction
electrons. Here, perturbative scaling arguments® indicate an
RG flow from a high-energy unstable “free fermion” FP
(describing a free impurity decoupled from a free conduction
band), to a low-energy stable “strong coupling” FP (where the
impurity is screened by conduction electrons via formation
of a “Kondo singlet”). This RG flow is characterized by a
scaling invariant—the Kondo temperature Tx —which sets the
crossover energy scale. But analysis of the crossover itself goes
beyond simple scaling ideas and the conventional RG picture.
Wilson’s numerical renormalization group* (NRG) allows an
exact nonperturbative calculation of certain thermodynamic
and dynamical quantities that show the crossover (for a review,
see Ref. 5). Universal scaling of all physical quantities in terms
of the crossover scale Tx confirms the basic RG structure of
the problem.

However, a different RG flow occurs when the impurity is
coupled to two or more independent conduction channels.® In
this multichannel Kondo model, the frustration inherent when
several channels compete to screen the impurity spin renders
the strong coupling FP unstable. A third FP at intermediate
coupling® then dictates the low-energy physics. This FP
exhibits non-Fermi liquid (NFL) behavior, including notably
a residual entropy’ of %kg In(2) in the two-channel Kondo
(2CK) model. The crossover from the free-fermion FP to the
2CK FP has been the focus of much theoretical attention. In
particular, solution of the model using the Bethe ansatz yields
the exact crossover behavior of thermodynamic quantities,’
while NRG has been used to calculate thermodynamics® and
dynamics®!? numerically. It was also shown recently that this
2CK physics can arise in odd-membered quantum dot rings'!
and chains'? and in quantum box systems. '3~
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Indeed, the same type of NFL behavior'’~!" arises in the

two-impurity Kondo (2IK) model.?’ The tendency to form a
trivial local singlet state is favored by an exchange coupling
acting directly between the impurities, while the coupling of
each impurity to its own conduction channel favors separate
single-channel Kondo screening. The resulting competition
gives rise to a critical point®” that is identical to that of the
2CK model with additional potential scattering.!” 2IK physics
is also expected to appear in certain double quantum dot
systems,?! and other even-impurity chains.'®

A description of the NFL FPs of such two-channel models
in terms of an effective boundary conformal field theory
(CFT) shows that the operator controlling the FP has an
anomalous scaling dimension.?>?* This implies unconven-
tional energy/temperature dependencies of physical quantities
such as conductance G.(V,T), measured as a function of bias
voltage V and temperature 7. In the 2CK device of Ref. 24,
V' V/Tk and /T [Tk corrections to the NFL FP conductance
predicted by CFT were directly observed in experiment.
Similar signatures are expected'®?! in the channel-asymmetric
2IK model; although leading linear behavior emerges in the
symmetric 2IK.!” This behavior is of course in marked contrast
to (V/Tx)?* and (T / Tx)* Fermi liquid (FL) behavior obtained
ubiquitously in the single-channel case.?

The NFL FP itself (and the crossover to it) has now
been rather well studied. However, NFL physics is extremely
delicate: various symmetry-breaking perturbations destabilize
the NFL FP?>?* and generate a new crossover scale T*. At
T = 0, the impurities are thus completely screened and all
residual entropy is quenched. Indeed, regular FL behavior,'
including the standard (V/T*)? and (T/T*)? corrections to
conductance, must appear at low temperatures 7 < 7" and
energies V < T*. Therefore no evidence of nascent NFL
physics can manifest in the immediate vicinity of the FL FP.
Only on fine tuning the perturbation strength § — O to the
critical point so that 7* — 0 does one obtain NFL physics on
the lowest energy scales.

But RG analysis in the vicinity of the free fermion, NFL
and FL FPs implies two successive crossovers, with Tk setting
the energy scale for flow to the NFL FP, and T* characterizing
flow away from it. Even in the FL phase away from the critical
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point (which is the generic case relevant to experiment), NFL
behavior can be observed at higher temperatures and energies,
provided there is good scale separation 7% < Tk (see Fig. 1
for a schematic phase diagram). In this case, conductance
G.(V,T) through the 2CK quantum dot device of Ref. 24,
or proposed 2IK devices,'®!” should exhibit a clean NFL to
FL crossover.

In Ref. 26, we considered this conductance crossover at
T = 0 as a function of bias V, corresponding to the crossover
labeled by arrow (a) in Fig. 1 (and V here playing the role of the
external energy scale ). It was shown?® that the full crossover
is wholly characteristic of the high-energy NFL state. The
T = 0 crossover is expected to describe the behavior at very
low temperatures. From a scaling perspective, RG flow is cut
off on the energy scale V ~ T, so G.(V,T) >~ G.(V,0) for
T « T* since there are no further crossovers below 7.

By contrast, at higher temperatures 7 > T* (KTk), no
evidence of the NFL to FL crossover will be observed (see
Fig. 1), and only the NFL FP is probed. Indeed, this is the
likely scenario in the experiment of Ref. 24: rather than
tuning to the critical point § = 0, signatures of the true FL
ground state are simply washed out by temperature. But the
behavior as a full function of temperature 7 and energy scale
o for finite perturbation strength § is much more subtle, and
naturally strengthens connection to experiment. Exploring the
third temperature axis in Fig. 1, and considering the resultant
NFL to FL crossover [e.g., arrow (b)], is thus the focus of the
present work.

In this paper we combine Abelian bosonization
methods'”?"?® with the powerful machinery of CFT?>? to
obtain an exact description of the NFL to FL crossover in
two-channel Kondo models. In particular, we calculate the
full electron Green function at finite temperature, from which
conductance follows.?”3? The field-theoretic description links
the 2IK model with a classical Ising model on a semi-infinite
plane.”? Application of a boundary magnetic field % in this
boundary Ising model (BIM) results in RG flow from an
unstable FP with free boundary condition 2 = 0 to a stable FP
with fixed boundary condition # — +00.3!*? This RG flow
due to A is identical to that occurring between NFL and FL
FPs in the 2IK model due to a small perturbation 8.23 Indeed,
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FIG. 1. (Color online) Schematic phase diagram for the 2CK and
2IK models as a function of temperature 7', external energy scale w,
and symmetry-breaking perturbation strength §. The three FPs of each
model give rise to three distinct regimes: free fermion, NFL, and FL.
We considered the NFL to FL crossover at T = 0 in Ref. 26, indicated
by arrow (a). Here, we generalize the results to finite temperature,
arrow (b).
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an emergent symmetry of the NFL FP in the 2IK model,?’
together with the common CFT description of 2IK and 2CK
models,'*?>23 implies the existence of a single universal NFL
to FL crossover function for both models, resulting from
any combination of relevant perturbations.”® Exact results®>3*
for the BIM are the source of our solution, which becomes
exact when there is good scale separation T* « Tk, as sought
experimentally.

The exact crossover Green function at 7 = 0 was calculated
in Ref. 26 by exploiting the above connection. However, ambi-
guities appear at finite temperature that prevent straightforward
generalization of those results. Thus we take a different
route here: the BIM solution is used to calculate real-space
Friedel oscillations around the impurities at finite temperature,
which are themselves related by integral transformation® to
the Green function. The problematic analytic continuation is
avoided in this way.

The paper is organized as follows. In Sec. II, we intro-
duce the 2CK and 2IK models, together with representative
symmetry-breaking perturbations that generate the NFL to FL.
crossover. We then present and discuss our main results for the
exact finite-temperature Green function along the crossover.
The corresponding conductance crossover for quantum dot
systems that might realize 2CK or 2IK physics is then
calculated. In Secs. III-VI, we derive the analytic results.
First, we consider the 2IK model at T =0 with a single
detuning perturbation. In Sec. III, we calculate the resulting
crossover Green function, exploiting the analogy to the BIM.
In Sec. IV, we extend the calculation to finite temperatures,
extracting the desired ¢ matrix from Friedel oscillations. The
results are generalized to the 2CK model in Sec. V and to
an arbitrary combination of perturbations in Sec. VI. Exact
results are compared with finite-temperature NRG calculations
in Sec. VII. Other quantities showing the crossover such
as entropy and nonequilibrium transport are then briefly
considered in Sec. VIII. The paper concludes with a general
discussion in Sec. IX, and details of certain calculations can
be found in the appendixes.

II. MODELS AND RESULTS
We consider the standard 2CK and 2IK models,

Hacx = Ho + J S - (oL + Sor) + 8 Hack. (1)

Hox = Ho+ J(S. - Sor + Sk - Sor) + K Sy - Sk + 8 Hok,
()

where Hy = Za’k ekwgwwkw describes two free conduc-
tion electron channels @ = L/R, with spin density So, =

Zao’ w(-)roa(zada’)wO_g’a (and 1p(;[act = Zk vjklaa) Eoupled to
one spin—% impurity S (2CK) or two impurity spins Sy, g (2IK).
For 6§ Hycx = 0, the NFL ground state of Hyck is described by
the 2CK FP. Likewise, a critical interimpurity coupling K. can
be found such that the ground state of Hyyk is again a NFL,*°
and is similarly described by the 2CK FP for § Hyx = 0.'7-1°

Relevant perturbations to the above models (embodied by
8 Hyck and 8§ Hyik) are those that destabilize the NFL FP, and
result in a FL ground state. A new scale T* is thus generated,
characterizing RG flow from NFL to FL FPs. The relevance
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FIG. 2. (Color online) Schematic illustration of possible 2CK (a)
and 2IK (b) setups to measure conductance. The left lead is “split”
into source and drain, allowing the resulting conductance through the
attached impurity to be measured.

of such perturbations can be traced to the breaking of certain
symmetries,”>?* such as parity or particle-hole symmetries. In
fact, there are many possible perturbations to the 2CK and 2IK
models; but two perturbations may be considered “equivalent”
if they break the same underlying symmetry—and their effect
on the low-energy physics will be identical.>>?3

For concreteness, we consider now the simplest pertur-
bations that exemplify such symmetry breaking and that in
combination generate all possible NFL to FL crossovers at
low energies/temperatures. Specifically,

8H2CK = Z AV) Z Z lﬁoga< Gao’ra/s)l/fﬂo’ﬂ S

l=x,y,z a,f oo’

+B-5, 3)

describes L/ R channel asymmetry in the 2CK model for A, #
0, while charge transfer between the leads is embodied in the
A, and A, components of the first term [here, 7(o) are the
Pauli matrices in the channel (spin) sector]. The second term
describes a magnetic field acting on the impurity. For the 2IK
model, the critical point is destabilized by finite (K. — K), and
also through

SHak = Y (VirWiorVoox +He) + By - (5. — Sp). (@)

where Vg describes electron tunneling between the leads
and B, the application of a staggered magnetic field. Channel
anisotropy could also be included in the 2IK model, but the crit-
ical point can always be recovered'® on retuning K Similarly,
spin-assisted tunneling between channels Yo ‘ﬁoa V00 RSL
SR + H.c. (as arises in a two-impurity Anderson model)
is expected to have the same destabilizing effect as the Vg
term in Eq. (4), since they both have the same symmetry at
the NFL FP?7 (although the resulting crossover energy scales
may themselves be different*®). Thus we do not consider such
perturbations explicitly here.

A. Quantities of interest

Signatures of the NFL to FL crossover on the scale of
T* should appear in all physical quantities. In 2CK or 2IK
quantum dot devices that could access this physics,'®!%?* the
quantity of interest is the dI/dV conductance G¢(V,T) =
(Zezh’ng)G‘z,‘(V,T) through channel o« = L or R. Here,
G& = 4I'*T%/(I'* + I'%)? describes the relative strength of
coupling to source and drain leads (see Fig. 2 for an illustration
of the setup). At zero bias V = 0, the conductance is given
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exactly by?

—3f(w T)

G*(0,T) = — (@, T), ®)

PN

where f(w,T) = (e“/T +1)7! is the Fermi function, and
too(®,T) is the energy-resolved local density of states (or

“spectrum”),

loa(@,T) = _ﬂVImIZ:ra,Ua(va)v (6)

itself related to the # matrix! Tsa.calw,T), describing scattering
of a 0 =1 or | electron within channel ¢« = L or R, with
bare lead density of states per spin v. Note that for equal
hybridization to source and drain leads, I'y = I'J, Gj = 11is
maximal, while in the asymmetric limit I'Y < I'§, G < 1.
In the latter case, the weakly coupled source lead probes the
system perturbatively, so the system remains near equilibrium,
even at finite bias V > 0. The resulting conductance is then
simply,*

—af(a) V. T)

GH(V.T) = Z/ loa(@.T),  (7)
where ¢, is the equilibrium (zero-bias) spectrum.

The ¢ matrix itself must show signatures of the NFL to FL.
crossover since scattering is purely inelastic at the NFL FP,?>2?
but inelastic scattering must cease at energies << T*, where the
impurity degrees of freedom are fully quenched.®® Thus the
crossover also shows up in conductance. Our goal here is to
calculate the full crossover ¢ matrix, and hence conductance, at
finite temperature for the 2CK and 2IK models in the presence

of symmetry-breaking perturbations described by Eqs. (1)—(4).

B. Survey of results and discussion

In the next sections, we derive an exact expression for
the desired ¢ matrix, describing the universal crossover from
NFL to FL behavior in the 2CK and the 2IK models at finite
temperature—and which as such generalize the results of our
previous work in Ref. 26. Here, we pre-empt the full derivation,
and present our key results.

The NFL to FL crossover is characterized by a low-energy
scale T* arising due to the presence of symmetry-breaking per-
turbations to the 2CK and 2IK models. It is given generically
by39

T =22, 8)
where A% = Zf 1 AZ The eight contributions correspond to
relevant perturbatlons that have distinct symmetry at the NFL.
FP. Two perturbations that have the same symmetry correspond

to the same A ;. The perturbations given in Egs. (3) and (4) are
classified, viz.,

TABLE I. Classification of perturbations.

Aj 2CK model 2IK model

Al cvA Tk ci(Ke — K)//Tk
)\2 C]UAX\/ TK CvReVVLR\/ TK
)L3 ClvAy\/ TK CvlmVVLR«/ TK
AB cgB/VTk cp B/ Tk
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where XB = {\]} ,)vg,)»fg} = {)A4,As,A¢}. The perturbations as-
sociated with coupling constants A7 and Ag do not conserve
total charge’>?* and so are ignored here (although we note
that such operators can be of importance, for example, in the
context of strongly correlated superconductors*’).

ci.cy,cp = O(1) are fitting parameters® that depend on
the model and on J, and Tx e~ 77 is the Kondo temperature,
characterizing RG flow from the high-energy free fermion FP
to the NFL FP.!° We do not discuss the high-energy crossover
in the present work.

The various perturbations described by Egs. (3) and (4)
describe very different physical processes—but the resulting
crossover scale Eq. (8), has a simple form due to an emergent
SO(8) symmetry of the effective NFL FP Hamiltonians, as
discussed in the following sections.

The main result of this paper is the NFL to FL crossover ¢
matrix, given by

T
Zﬂivﬂa,a’a’(a)s T) = 80’0”5010/ - Saa,o”ot’g < @ > s (9)

T+ T*

where S, o 1S the scattering S matrix, whichis an @ = 0 and
T = 0 quantity characterizing the FL. FP. For the 2CK model,
it is given by

S2K = [8001 (s - Taa) +i(Rp - Goo)baal/h,  (10)
with & = {A2,%3,1}. For the 2IK model, it is
S v = [ Mo+ 18 (Tl + 272)
Fi(hp - Goe )Ty |/ an

The single function G describes the crossover due to a
generic combination of relevant perturbations in both 2CK and
2IK models. It does not depend on details of the model or the
particular perturbations present, except through the resulting
crossover scale 7*. Thus g(a),T) is a universal function of
rescaled energy @ = w/T* and temperature 7 = T/ T*. Our
exact result at finite temperature is

ixd

—i 1 1 .

~ & 27T F(§+2nf) e’
g(@,T) = 5 0 X
tanh 2% T'(1 + 271_T) —oo  sinhx

<R F 11 - 1 1—cothx (12)
€ =5 Pl S e— N
222 27T 2

where I is the Gamma function and , Fy(a,b,c,z) is the Gauss
hypergeometric function.*! At T =0, Eq. (12) reduces® to
the result of Ref. 26:

2
G(®,0) = ;K [—id], (13)

where K[z] is the complete elliptic integral of the first kind,
yielding asymptotically G(&,0) =1 —i®/4 — (3&/8)> +
O@) for @ < 1 and G(@,0) = Y [ — 2i In(16@)]@~"/ +
O@&%) for & > 1.

Below we consider the local density of states (spectrum)
tyo(w,T), from which conductance can be calculated [see
Egs. (5) and (7)]. It is related to the r matrix via Eq. (6),
and is thus given exactly along the NFL to FL crossover by
Egs. (9)-(12):

1 1 -
laa(w»T) = 5 - ERe[Saa,oag(d)vT)]v (]4)
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FIG. 3. (Color online) Spectrum #,; (w,T) vs w/T* for T/T* =
10~',1,10,107, approaching 7,;, = 1/2 from above (1; > 0) or below
(A1 < 0). Circles show T = 0 result of Eq. (13).

where the required diagonal elements of the full S matrix
[Egs. (10) and (11)] are more simply expressed as

SZCK

oca,oa

= (—ari +iory)/r = aSqy (15)

ca,oa

with o = =1 for spins 1 / | and & = £1 for channel L/R
(and we use Ap || 2 for simplicity). For A% =A% =0 and

A% = Ay = 0, scattering preserves channel and spin, and the
FL phase shift 85, then follows from S, sq = exp[2idsal.
These exact results for the crossover are compared with
finite-temperature NRG calculations in Sec. VII, with excellent
agreement.

We now examine the generic behavior of the spectral
function at finite temperatures in the crossover regime.
Although we consider explicitly L-channel spectra t,.(w,T)
in the following, note from Eq. (15) that#, (0, T) < t,g(®,T)
upon exchanging A, <> —A; inthe 2CK model, or I§s <~ —és
in the 2IK model. Also, t4(w,T) <> t,4(w,T) onreversing the
magnetic field, B < —B (and in the zero-field case, 0 =1 and
J spectra are of course identical).

In Fig. 3, we take the representative case of finite channel
anisotropy A, in the 2CK model, or finite detuning (K — K,)
in the 2IK model, and plot ,, (w, T') as a full function of w/T*
for different temperatures 7/ T*. Since only A; acts in either
case, Spu.0'a’ = E£850'04a 1s diagonal [see Eqs. (10) and (11)],
meaning that an electron in channel o scatters elastically at
low energies, and stays in channel «. By Eq. (14), the spectrum
tyo(w,T) then probes the real part of the universal function G
because Syq 5¢ 1S real.

General scaling arguments suggest that RG flow stops
on an energy scale given by the temperature. As seen from
Fig. 3, this is indeed the case, with the spectrum 7, (w,T) =~
t,1,(0,T) essentially constant for |w| < T. Mutatis mutandis,
for T <« T* one obtains t, (w,T) =~ t,(w,0), corresponding
to the 7 =0 limit considered previously.?® At T =0 and
w =0, Eq. (14) yields 7,4(0,0) =  — IReS,q.0q, Which is
determined solely by the § matrix and hence the phase shift
associated with the stable FL. FP. When only X; acts, the
spectrum is thus 7,,(0,0) = 0 or 1 only (with corresponding
phase shifts 0 or m/2). In particular, the Kondo phase is
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characterized by unitarity 7,,(0,0) = 1, obtained in the more
strongly coupled channel for the 2CK model, and in both
channels for K < K, in the 21K model.

In the opposite limit 7 > T* («KTk), RG flow to the
FL FP is completely cut off, and inelastic scattering®® at
the NFL FP results in t,,(w,T) =~ % for all |w| <« Tx. The
generic RG picture illustrated in Fig. 1 and supported by
Fig. 3, suggests an approximate complementarity between
w and T. This is explored further in Fig. 4, where we
compare the zero-frequency value of the spectrum as a
function of temperature with the zero-temperature spectrum as
afunction of frequency. As immediately seen, there is a striking
similarity. Indeed, a classic signature of FL physics (arising
at low-energies/temperatures |w|,7 < T*) is the common
quadratic dependence of the spectrum on both frequency and
temperature:

FL o \? T\’
taa(va)Ntaa(OvO)'i_a(F) +b<F) 5 (16)

with a and b constants O(1) that depend on the particular
model under consideration. Perturbation theory with respect
to the FL FP in the spirit of Noziéres,*? yields a/b = 9/(77?)
for the 2IK model (see Appendix A). This same ratio also
follows directly from the limiting behavior of the full crossover
function, Eq. (12), which yields |a| = 9/128 ~ 0.07 and |b| =
7% /128 ~ 0.54, and as such provides a stringent check of our
results.

But the exact symmetry between w and T in Eq. (16)
is a special property of the FL FP itself, and does not, in
general, apply at higher energies; although as seen from
Fig. 4, the qualitative behavior over the full crossover is in
fact rather similar. In the vicinity of the NFL FP [arising for
T* < max(w,T) < Tx], Eq. (12) gives asymptotically

NFL 1 , w ®\"1
fov(@.T =0 2 & (,3 +5In F> (T—) . (172
1
NFL 1 ST\ 2
tor(@=0,T) ~ 3 +8 (F ) (17b)
1 / 1
09 1y ) 09 &
T‘ €
|
z 08| 08 -
‘3 071 07 -
E =
061 06 |
05| Ny AT 05
[ [ [ [
10° 10” ],02 10* 10
y/ 1"
FIG. 4. (Color online) #,,(w=0,T=y) and t,.(w=

ya/bja,T =0)vsy/T*for A > 0. Common FL asymptote Eq. (16)
shown as dot-dashed line; NFL asymptotes Eq. (17) shown as dashed
and dotted lines.
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with +fora; = 0, g/ = HETHNE) x (.5061 (where y is
Euler’s constant), § = —ﬁ ~ —0.1125, and B” ~ 0.4925.
Terms of the form (w/T*)~"/? and (T/T*)~"? in Eq. (17)
signal the scaling dimension 1/2 of the relevant perturbation.
Whereas such power laws occur in both the frequency and
temperature dependencies, additional logarithmic corrections
appear in the frequency dependence only. This difference
can be understood by comparing the full 7 = 0 result [see
Eq. (13)] with the high-T behavior captured by perturbation
theory around the NFL FP (see Ref. 43 and Appendix B 2. The
full dependence on w and T described by Eq. (12) naturally
leads to more subtle behavior when |w| and T are of the same
order, as shown in Fig. 3.

When some degree of interchannel charge transfer is
also present, the NFL to FL crossover is generated by the
combination of relevant perturbations A; and A,. In the 2CK
model, this corresponds to finite channel anisotropy A, and
impurity-mediated tunneling A, [see Eq. (3)], while for 2IK it
corresponds to finite detuning (K — K,) and direct tunneling
Vir [see Eq. (4)]. The resulting behavior in the 2CK model
can be simply understood because the perturbations A, and A,
are related by a “flavor” rotation of the bare Hamiltonian, as
discussed further in Sec. VI A. The 21K model does not possess
such a flavor symmetry, although an emergent symmetry®>23
of the NFL FP Hamiltonian can be exploited when 7* < Tk.
In fact, as shown in Sec. VI C, this symmetry allows all the rel-
evant perturbations in either 2CK or 2IK models to be simply
related,?® implying the existence of a single crossover function.

The rotation (A;,A2) — A can be used to relate systems
where both A; and X, act, to those in which A; alone acts
(as in Fig. 3). But #,,(w, T) probes the system in the original
unrotated basis, and hence the spectra undergo a rescaling
when finite A, is included: 754 (w,T) — % + |’\k—‘| [foa(w,T) —
%]. In particular, the spectral function is totally flattened the
limit |Ay| > M|, with 75, >~ 1/2 at both FL and NFL FPs.
At the FL FP, electrons thus scatter elastically between o« = L
and R channels, and the corresponding S matrix |Syu.670/| =
850'(1 — 8qq) 1s purely off-diagonal when interchannel charge
transfer dominates [see Eqs. (10) and (11)]. Thus no crossover
shows up in the spectrum or conductance, although 7* is of
course finite [see Eq. (8)], and the crossover can still appear in
other physical quantities.'?

When a uniform (2CK) or staggered (2IK) magnetic field
acts (finite A% only), Syace = i is pure imaginary (with
phase shifts §,, = *m/4), and again, we obtain #,,(0,0) =
1/2 at the FL FP. However, #,,(w, T) now probes the imaginary
part of the universal function G [see Eq. (14)], and so the full
spectrum along the NFL to FL crossover due to A% is simply
the Hilbert transform of the spectrum due to A;—compare
Figs. 3 and 5.

A spectral feature in consequence appears on the inter-
mediate scale of T* for finite A, even though #,, = 1/2 at
both NFL and FL FPs, as shown in Fig. 5. The existence of
such a feature can be understood physically from the impurity
magnetization M ~ B* arising for small applied field B in
the 2CK model (or staggered magnetization M, ~ B? due to a
staggered field in the 2IK model). Since the magnetization
M(T) x ffooo dof(w,T)[te(@,T) — to(w,T)] # 0 is finite
for finite applied field, tyo(w,T) # tyo(w,T). A “pocket” thus
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FIG. 5. (Color online) t,;,(w,T) vs w/T* for T/T* =
10-1,1,10,102, in the presence of finite uniform (staggered) magnetic
field in the 2CK (2IK) model, A3 > 0. Spectra approach #,;, = 1/2
from above (¢ =7) or below (o =|). Circles show 7" = 0 result.

opens between the “up” and “down” spin spectra at |w| ~ T
whose area is proportional to the magnetization. In particular,
the temperature dependence of the magnetization can be
extracted from the universal function, Eq. (12), viz.,

T
>, (18)

Tx
M(T) / dof(w, T)ImQ( T

_TK
valid for small perturbations A%, such that 7* <« Tk as usual
[the high-frequency cutoff |w| ~ Tk then being justified since
tra(w,T) = tyo(w,T) for |w| 2 Tk, as confirmed directly from
NRG].

Using Eq. (13), the zero-temperature magnetization de-
pends on Tk via

M) =cy/TxkT*In <%> , (19)

and since T* ~ (B?)?/ Tk [see Eq. (8), it follows that M(0) ~
B*In(Tk /B*). The full temperature dependence M (T') versus
T is shown in Fig. 6, demonstrating scaling collapse for
different Kondo scales Tx. The asymptotic behavior in the
vicinity of the FL. and NFL FPs follows as

T*
: T
Y e (—) (20b)
T*

yielding in particular M(T) ~ B*In(Tx /T)when T* <K T <K
Tk . This asymptotic behavior can again be understood from
perturbation theory around the FL. and NFL FPs. Furthermore,
since Ximp(T) = limp:,o M(T)/B*, when T* K B* K T K
Tk, one obtains

. 2
T M) - MO TS g (1> . 0a)
K

Ximp(T) ~ In(Tk /T, 2

for the uniform (staggered) magnetic susceptibility of the 2CK
(2IK) model. This diverging susceptibility is a classic signature
of the NFL FP, known, for example, from the Bethe ansatz
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(1)~ M(0)] /V/TT*

107 10 10 10' 10° 10 10°
T/T*

FIG. 6. (Color online) Magnetization [M(T) — M(0)]//TxT*
vs T/T* for A3 > 0 and Ty /T* = 10°,107,10%,10°. NFL asymptote
Eq. (20b) shown as dashed line and FL asymptote Eq. (20a) shown
as dotted line in the inset.

solution of the 2CK model,** or from CFT for the 2IK model.?
However, at lower temperatures T < B*, M(T)/B* does not
correspond to the magnetic susceptibility; here, the NFL to FL.
crossover itself is being probed. Indeed, for T <« T* <« B?,
we obtain a quadratic (7/T*)? temperature dependence of
magnetization, Eq. (20a), characteristic of the FL FP.

Finally, we turn to conductance G?(V,T), obtained from
the spectrum f,4(w,T) by combining Eqs. (7), (12), and (14).
It follows as

~ rii+ -4
GV, T) = = G+ 57)

2 BaT)PRr(1+ 57)

xZIm{ m,m/ dxI(V,T,x)

R F 11 4 1 1—cothx
X Ke = 3
I\ T ogT 2

(22)

where the integral over w can be evaluated using contour
methods,

o exp(Z2)sech?(%+)
I1(V,T,x) = D =
(V.T.x) /;oo o sinh(x) tanh ﬂT)

= 2miTesch?(x)sech? <L>
(7))}

T
X {cosh(x) — exp (—;)
(23)

with rescaled V = V/T*, T = T/T*, & = w/T* as before.
In particular, at zero bias,

il

I(V=0Tx)=——r———.
( 2 cosh® (%)

(24)
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FIG. 7. (Color online) Conductance GLL,(V,T) =
GE(V,T)/(2¢*h 'GE) vs bias V and temperature T for A; > 0.
Black lines connect regions of constant conductance. Light colors
correspond to high conductance near the FL FP, dark colors
correspond to lower conductance near the NFL FP.

A color plot of conductance G‘Z_‘(V,T) along the NFL to
FL crossover is shown in Fig. 7, for the representative case of
A1 > 0. The black lines connect regions of equal conductance.
In the FL regime V,T <« T*, the quadratic form of Eq. (16)
thus yields a simple ellipse, while in the NFL regime there is a
pronounced V-T anisotropy. The detailed behavior of Eq. (22)
is seen on taking cuts through Fig. 7 at constant V and T, as
shown in Fig. 8.

Returning to the 2CK quantum dot system of Ref. 24, we
comment now on the possible strength of symmetry-breaking
perturbations present in the experiment. Due to the Coulomb
blockade physics of the quantum box, interchannel charge
transfer was effectively suppressed. In the absence of a
magnetic field, the dominant perturbation is thus channel
anisotropy, A, [see Eq. (3)]. The experiment showed”* 2CK
scaling of conductance around Tk, but no FL crossover at
T*. This implies T* <« T « Tx—see, for example, Fig. 3 for
T/T* = 100, which shows little sign of the crossover. Since
T/Tk ~ 0.1 in the experiment and taking 7/ T* > 100, from
Eq. (8) and Table I it follows that c; v A, could be at most ~0.03
[c1 = O(1) depends on details of the model/device setup]. The
observed 2CK physics is thus an impressive testament to the
tunability and control available in such quantum dot devices.
Having presented our main results and discussed their physical
implications, we turn in the following sections to the formal
derivation.
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FIG. 8. (Color online) Conductance GCL(V,T) =

GH(V,T)/(2¢*h~'GE) arising for finite ;. (Top) Conductance
vs temperature T/T* for V/T*=10"',1,10,10%, approaching
Gf = 1/2 from above (A; > 0) or below (A; < 0). Circles show
the exact zero-bias result. (Bottom) Conductance vs bias V/T* for
T/T* =107",1,10,10>. Diamonds show zero-temperature result.

III. EXACT T = 0 CROSSOVER GREEN FUNCTION IN
THE 2IK MODEL

Our goal is an exact expression for the NFL to FL crossover
t matrix, which is related to the electron Green function. In
Ref. 26, we calculated the crossover at T = 0; further details
of that calculation are presented here, providing as they do the
necessary foundations for our generalization of the results to
finite temperature.

A. Fixed point Hamiltonians and Green functions

The structure of the NFL fixed point Hamiltonian of the
2IK model allows for an elegant description of the NFL to
FL crossover.”® Before presenting that derivation, we discuss
first some relevant preliminaries that will be of later use. In
particular, we consider now the representation of the fixed
point Hamiltonians within CFT and the structure of the
corresponding Green functions.

Our starting point is a description of the free conduction
electron Hamiltonian Hy in terms of chiral Dirac fermions. A
1D quadratic dispersion relation e(k) = €, = k?/2m — e can
be linearized near the Fermi points k = +kp, €, >~ fvp(k F
kr) (with vy the Fermi velocity). This is the standard case'
and applies to arbitrary dimension within the assumption that
the bare density of states is flat at low energies.*> Conduction
electron operators can be Fourier transformed and expanded
near the Fermi points, focusing on states within width
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2D K vpkp around €f:

"I]zroz(x) = Z eikxwkaa
k
krp+D/vp
=e* N Yiea O+ (ke > —kp).
k=kp—D/vr
(25)
We thus define left and right movers,*
D/vp
Virea® =Y Vi, 0a- (26)
k=—D/vp

defined for x > 0, with x the distance from the impurities
located at the “boundary” x = 0. With a boundary condi-
tion ¥, 44 (0) = ¥y.54(0), we introduce a single left-moving
chiral Dirac fermion for all x, V¥,u(x) = 0(x)Y)ea(x)+
0(—x)V¥r.54(—x). Since the new operators satisfy the usual
fermionic anticommutation relations {y (x1), ¥, (x2)} =
856/ 8aar8(x1 — X2), the free Hamiltonian H can be expressed
as a chiral Hamiltonian,*

Hy=vrp ) / dxyrf ide, . @27)
o VX

Hereafter, we set vy = 1 [and the Fermi level density of states
isthenv = 1/Qnvr) = 1/2m)].
The free electron Green function then follows as*®

1
b _800’8010(’

(Voo (TXDVL o (0,02))0 =

sin[Z(7 4 ix; —ixp)]
= 850800 GU(T,x1 — X2),  (28)

where 7 is imaginary time. The corresponding Matsubara
Green function is then defined by the transformations

1 4
G(t,x1 —x) = 3 D e TG (x) — xyjiwy),

n

B/2 )
GOx1 — xp,iw,) = / dre' GOt x1 —x2),  (29)
—B/2
with Matsubara frequencies w, = %(1 + 2n) for integer n, and
where 8 = 1/kgT is inverse temperature. Direct evaluation of

Eq. (29) using Eq. (28) then yields simply,
GO(x) — x2,im,) = i€ 17855800 [0(,)0(x2 — x1)

—0(=w,)0(x1 — x2)]. (30)

Of course, the interesting behavior arises when coupling
to the impurities is switched on. As usual,! the full Green
function is related to the ¢ matrix via

Gx1,x2,iw,) = GO(x) — x2,iw,)
+ G (1, i) T (i0)G (—x2,iw,), (1)

where G, G°, and T are 4 x 4 matrices with indices taking
the values o =1 L, | L, 1 R, | R. In particular, it should
be noted that the # matrix is local. Equations (30) and (31)
also imply that if x; and x, have equal sign then the full Green
function reduces to the free Green function, reflecting the chiral
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nature of the Dirac fermion, Eq. (27). Since all such fermions
are now left moving, information about scattering from the
impurities located at the boundary x = O—and hence the ¢
matrix—is obtained from the full Green function with x; and
x; located on opposite sides of the boundary.

The free Green function (28) is naturally obtained at
FPs where the free boundary condition pertains. But at
any conformally invariant FP, the powerful machinery of
boundary CFT gives nonperturbative information about the
Green function. Specifically, when the boundary condition
is obtained from fusing with some primary field a, then
correlation functions are given generically by*?

Sa/S)
50/S0
(‘L’ + ix1 — i)CQ)Zd ’

(O,(1,ix1)0N(0,ixy)) = (32)

where d is the scaling dimension of the primary field O and S¢
are elements of the modular § matrix.*?> Using the conformal
mapping from the plane to the cylinder with circumference g,
one obtains®” the generalization to finite temperature T = S,
S4/84
S2/So
{£sin[Z(r + ix) — ixp)l}™
(33)

In the present context, we are interested in the electron
Green function at the conformally invariant free fermion, NFL,
and FL FPs of the 2IK model. With O = ¢, the d = 1/2
fermion field, the full FP Green functions takes the form??

(O,(1,ix))ON(0,ixy)) =

lzrzg
27 oa,0’'a’
GBCFT B

o (T,X1 — X2) = — )
7o sin [%(T +ix) — ix)]

(34)

where S can be understood as the one-particle to one-particle
scattering matrix and can be calculated from the modular
S matrix in the case of boundary conditions obtained by
fusion.’?> Thus the effective FP theory is identical to that of
the free theory discussed above, but with a modified boundary
condition that determines the scattering matrix S.

Choosing x; > 0 and x, < 0 in Eq. (31) yields i7 =1 —
S, or equivalently t,, = %( 1 —ReSs4.64), Where the above
convention v = 1/(2m) was used. At an FL FP, the scattering
matrix is unitary,' $TS =1, and as such describes purely
elastic scattering. By contrast, at the NFL FP of the 2IK
model, it has been shown? that § = 0, which implies fully
inelastic scattering: a single electron sent in to scatter off the
impurities decays completely into collective excitations, and
no single-particle state emerges. Such behavior is manifest
by a half-unitarity spectrum, #,, = 1/2. However, along a
crossover between FPs, the Green function does not, in general,
take the form of Eq. (34).

B. S0(8) Majorana fermion representation

Further insight into the FPs of the 2IK model is provided
by a representation in terms of Majorana fermions (MFs).
Considering again the free theory described by Hy, four
nonlocal fermions can be defined by Abelian bosonization and
refermionization'”**7 of the four original Dirac fermions v/
with spin 0 =1, | and channel index @ = L,R. 8 MFs are
then obtained by taking the real and imaginary part of each.
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Specifically, four bosonic fields ¢, are defined, viz.,
Vou ~ Frae ¥, (35)

where F,, are Klein factors.*® Linear combinations of these
bosonic fields are then used to construct new fields,

1 o o o+a
{bc.s.0f.0x} = Eg%a{l,(—l) LD (=D,

(36)

where 0 =1, |= 1,2 and o« = L,R = 1,2. Refermionizing
yields

Ya ~ Fae % (A =c,s, [, X), 37)

where the Klein factors F4 are related to F,, as described in
Appendix C. Thus four new fermionic species {4 are defined,
with A = ¢,s, f, X corresponding to “charge,” “spin,” “flavor,”
and “spin flavor.” The real and imaginary parts of each,

A_VAHVa . _ ViV G8)

X1 \/E ’ X2 \/Ei ’
fulfill the Majorana property ()(Z.A)T =x/ and sat-
isfy separately the fermionic anticommutation relation
{(X[A)T(x),xf(x’)} = §;;84p8(x — x’), and so are referred to
as MFs.
The free-fermion FP Hamiltonian [corresponding to
Egs. (1) and (2) with J =0 and § H = 0] then follows as

Hip = f A7 () - 9,5 (), (39)

(o]

where ¥ = {XZX,X{,Xg,xf,xg,xlx,xf,xzc}, and the scattering
states are defined by the trivial boundary condition j(x) =
%(—x)|x—0. The fixed point thus possesses a large SO(8)
symmetry in terms of these MFs.

Likewise, the FL. FP Hamiltonian (in which the impurity
degrees of freedom are quenched) is similarly described by
Eq. (39). The corresponding boundary condition is encoded in
the single-particle FL scattering S matrix Sy, o7o/- Although it
depends on the specific perturbations generating the crossover,
the boundary condition is thus trivial at the FL FP. In particular,
finite detuning K > K, results in X(x) = ¥(—x)|.-0, as
obtained at the free fermion FP.

The remarkable fact is that the NFL FP Hamiltonian
also takes the form of Eq. (39), and its nontrivial boundary
condition”® is again simple in terms of the MFs. It can
be accounted for by defining the scattering states x(x) =
— X5 (=X x—0, and x 1 (x) = %' (=x)|x0 for (j,A) # (2,X).
Thus seven of the eight MFs are described by the free theory
at the NFL FP.

C. Bose-Ising decomposition

The FP Hamiltonian (39) describes a higher SO(8) symme-
try than is present in the original Hamiltonian. The explicit
symmetries of the 2IK model also allow a separation of
the theory into different symmetry sectors. Specifically, the
SU2); x SU2); x SU2), x Z, symmetry sectors comprise
a Bose-Ising representation,”® describing a coset construction
of three Wess-Zumino-Witten (WZW) nonlinear ¢ models,
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together with a Z, Ising model. The two SU(2); theories
with central charge ¢ = 1 correspond to conserved charge in
the left and right channels. The SU(2), theory with ¢ = 3/2
corresponds to conserved total spin. Finally, the Ising model
Z, is a ¢ = 1/2 theory corresponding to a single MFE. This
non-Abelian representation is connected with the eight MFs, as
discussed in Ref. 47. The symmetry “currents” of those sectors,
such as the spin current Ji x) = wf(x)%w(x), are represented
quadratically in terms of MFs as described in Appendix C.
Specifically, the SU(2); x SU(2); charge currents in left and
right channels are represented in terms of 4 MFs { le , Xzf }
and {x;, x5}, while the SU(2), spin current J is represented
in terms of three MFs, x, = {Xf,xj,xlx}. The Z, theory
corresponds to the remaining MF, x .

The important implication for our purposes is that the Green
function can be factorized into pieces coming from different
sectors associated with the various MFs. We now exploit the
above Bose-Ising construction,? in terms of which the fermion
field can be expressed by the bosonization formula,

Voa(x) X [ha]i(x)gs(x)oL(X). (40)

Here, the dimension d = 1/2 fermion field has been decom-
posed into a dimension dj, = 1/4 factor [h,]; representing the
o = L, R spin-1/2 primary field of the SU(2); charge theories,
a dimension d, = 3/16 factor (g, ) representing the spin-1/2
primary field of the SU(2), spin theory, and the dimension
dy, = 1/16 factor o originating from the Ising sector. The
subscript L emphasizes that oy, is only the left-moving chiral
component of the full spin operator o of the Ising sector, arising
here because ¥/, is the chiral left-moving fermion field. Since
the NFL FP of the 2IK model is conformally invariant,”® we
may use Egs. (40) and (33) to determine the contribution to
the full Green function coming from each of the sectors:

ool

GNFL

oa,0’a

(T, X1 — X2) X 850 8ua [G(T,x1 — X2)]
X (op(t,ix1)or(0,ixy)). “41)

The free boundary condition in the charge and spin sectors
yields the first factor, corresponding to the free Green
function Eq. (28) but with power 2(d), +d,) = 7/8 arising
because seven of the eight MFs are associated with these
sectors. The NFL boundary condition is expressed in terms
of fusing with the d, = 1/16 field o, from the Ising sec-
tor in Eq. (40). The second factor thus comes from the
remaining Ising sector. At the NFL FP it follows from
1/16 , o1/16
Eq. (33) that {0.(7,ix1)0,(0,ix2)) = (%)[Go(z,xl -
xz)]%. Since the modular S matrix for fusion with the a =
1/16, Ising operator has a vanishing element Sl1 //112 =0, the
entire Green function thus vanishes at the NFL FP;2? consistent
with Eq. (34) with Sy4 50 = 0.

In summary, the nontrivial boundary condition at the NFL
FP affects only the Ising sector of the 2IK model. The function
(or(t,ix1)or(0,ixy)) in Eq. (41) is a quantity pertaining to
the Z, Ising model and contains the nontrivial physics; while
the spin and charge sectors are simply spectators. In the
next section, we exploit Eq. (41) and a connection’® between
the 2IK and a classical Ising model to determine the Green
function along the crossover from the NFL FP to the FL FP.
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D. Crossover due to K # K, in the 2IK model

As highlighted above, the NFL FP of the 2IK model
is described by the free theory in all sectors except the
Ising sector, which takes a modified boundary condition.
When the small perturbation A; is included (corresponding to
detuning K # K_.), the NFL FP is destabilized. The effective
Hamiltonian in the vicinity of the NFL FP is then Hgcp =
Hep[x]+ 6 Hqcp, with Hgp the FP Hamiltonian itself, given
in Eq. (39) and parametrized in terms of the scattering states
% that encode the boundary condition. The correction is given
by

8Hocp o i x5 (0)a, (42)

where a is a local MF involving impurity spin operators'’ that
satisfies a2 = 1 and anticommutes with all other MFs, X;‘.

The perturbation A; thus acts only in the Ising sector.
Indeed, the difference in boundary conditions between the
NFL and FL FPs is also confined to the Ising sector (all other
sectors have free boundary conditions at both FPs). The entire
crossover from NFL to FL FP thus occurs completely within
the Ising sector because the A; perturbation does not spoil the
decoupling of the sectors, which becomes exact>? in the limit
T* « Tk. The other sectors then act as spectators along the
Crossover.

This implies a generalization of Eq. (41) to the full
crossover. One can still interpret the first factor in Eq. (41)
with power 7/8 as the product of autocorrelation functions
of seven spin fields that undergo no change in the boundary
condition. But the o field originating from the Z, sector in
the SU(2); x SUQ2); x SU(2), x Z, construction has flowing
boundary condition (which is not conformally invariant).

We consider first the equal-time Green function with x| =
—Xx, positioned symmetrically on either side of the boundary:

(Voo (T (T, = X)) = G (0%, — X),
e [G°(0,2x)]% X (op(t,ix)or(r, —ix)), 43)

where the factor (o, (t,ix)o (T, —ix)) now describes the
crossover in the Ising sector in terms of the chiral (left-moving)
Ising magnetization operator o (t,ix).

We now use standard boundary CFT methods?! to relate the
two-point chiral function (o (7,ix)or(t, — ix)) living in the
full plane [see Fig. 9(b)] to the product of chiral holomorphic
or(t 4 ix) and antiholomorphic og(r — ix) operators living
in the half plane with a boundary. But bulk operators in CFT
may be expressed as o(t,x) = o (t +ix)og(t —ix), and
so the desired correlator is simply (o, (t,ix)or (T, —ix)) =
(o(7,x)) in terms of the bulk Ising magnetization operator,
evaluated at a distance x from the boundary [see Fig. 9].
Finally, we note that o(7,x) = o(x) is independent of 7 due
to translational invariance along the boundary. The Green
function along the NFL to FL crossover then follows as

1
1 8
Gaa,a’w’(ov-xv - x) = 800”8010/ <_> [GO(O,ZX)]%(O'(X)),
8mi

= Gaot,a’vt’ ()C), (44’)

[with the factor (87i)~'/® required for normalization]. At
long distances where the Green function describes the FL FP,
Eq. (44) implies (o(x)) = (2/x)"/3 as T — 0. We now exploit
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(a) (®) (©)

X X X
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. e Z =Ttix
° ® Z=ix S
@Y T T T
°
e Zt=—ix z=Tx

FIG. 9. A one-point function of a bulk operator evaluated at
distance x from the boundary in (a) is mapped to the two point
function of the associated chiral fields in the absence of a boundary
shown in (b) and evaluated at image positions with respect to the line
x = 0. (c) Generalization of the two point function away from image
points.

a connection?® between the 2IK model at criticality with a
simpler Ising model to obtain (o (x)) and hence the exact Green
function G464/ (x) along the NFL to FL crossover.

When a small magnetic field % is applied to the boundary
of a classical Ising model on a semi-infinite plane, the local
magnetization shows a crossover'*? as a function of distance
from the boundary. The crossover in this boundary Ising model
(BIM) can be understood as an RG flow?!*? from an unstable
FP at short distances (with free boundary condition 7 = 0),toa
stable FP at large distances (with fixed boundary condition & =
400). The universal crossover is characterized by an energy
scale T* = 4w h? (or a corresponding lengthscale £* oc 1/T*).

Importantly, it was shown in Ref. 23 that the RG flow in the
BIM due to small # at the critical temperature is identical to
the RG flow in the 2IK model due to small detuning K # K,
at T = 0. As such, the NFL and FL FPs of the 21K model can
be understood in terms of the BIM FPs with free and fixed
boundary conditions. The crossover energy scale in the 2IK
model can then be identified as

cf(K — KC)2 _
Tx -
= 47 h?

T* = A 12IK,

: BIM, (45)

with ¢; = O(1) as in Table 1.

In Ref. 33, Chatterjee and Zamolodchikov derived an exact
expression for the Ising magnetization (o(x)) on the semi-
infinite plane geometry in the continuum limit. Their result®?
is

(0(X))cz = £(2/x)"/3V8h2x ™ * Ko(4rh®x),  (46)

with K, the modified Bessel function of the second kind;
and =+ for 7 = 0. We take now & > 0 (corresponding to K >
K. ) for concreteness. Note that Eq. (46) yields asymptotically
(o(x)) = (2/x)/? at long distances x — oo, consistent with
the normalization of Eq. (44).

We now show that the analyticity of the Green function
and the local nature of the Kondo interaction implies a
generalization of G,4o/(x) in terms of spatial coordinate
x [see Fig. 90)], 10 Gouow(Ti = 22) = (Ypq (V)0 (22))
in terms of general complex coordinates z; = T +ix; and
7o = ix; [see Fig. 9(c)]. Using the free chiral Green function

235127-10



UNIVERSAL LOW-TEMPERATURE CROSSOVER IN TWO- . ..

Eq. (30) in the definition of the ¢ matrix Eq. (31), one obtains
_Soa’aaa/g(_wn)
X eI 4 Ty (i), (47)

gaa,a’a’(xl v-xZ’iwn) =

where x; > 0 and x, < 0 as before, and the r matrix is local
in space.
The Matsubara transform then yields

800”60101’
Gaa,d’a’(fvxhXZ) = - ZG(_wn)

p
Xeiiwn(rﬂmiixﬁ[i + %a,a’a/(ia)n)]
i1 — 22
= Goao'a . . 43
: ( 2 ) (43)

Thus the Green function only depends on (z; — z»). This is a
somewhat counterintuitive result, because the boundary breaks
the translational invariance along the spatial coordinate x.
In Appendix B 1, we give an alternative proof, showing that
Eq. (48) holds to all orders in perturbation theory around the
NFL FP.

Comparing Eqgs. (48) and (44), it follows
that Gouoa(0,x, —x) = Gog o (T,X1,X2) when
x = (z1 — 22)/(2i). Employing this substitution in Eqgs.
(44) and (46), then taking the Matsubara transform, we obtain

00 eia),,r
gaa,a’a’(xlv-xLlwn) = 800’8010(’/ dt ( )

oo 4mix

xN/8h2x et Ko(4h’x),  (49)

where we have used 8 — oo as appropriate for Eq. (46), and so
w, = %(1 + 2n) is continuous. Setting x; = 0% and x, = 07,
we define the infinitesimal 6§ = x; — x, > 0, such that x =

% With the integral representation of the Bessel function
. —2kz .
Ko(z) = e ¢ fooo dkﬁ (for Rez > 0), we obtain

8(7(7’8010(’ o " 4 h2k
gaa,g/c[/(0+,07,i(,()n) = h M’
avi o Jo kK + D)
(50)

with the integral over t evaluated by contour methods,

( ) /w+i8 4 eizr 9( ) 4mi (51)

8(2) = T = 0(—7). ] —.
—00+i8 ﬁ z

For negative Matsubara frequencies w, < 0, the Green func-
tion then follows as

wpn

Sooduar 2 dk
gaa,a’a’(0+70_’iwn) = N / o
T Jkhk (52— k)
2 n
= 500’60{&’_.1{ - ) (52)
i \4mh?

where the k integral has been expressed more simply in the
last line in terms of the complete elliptic integral of the first

. /2 46 _rl dt
kind, K(z) = 0 1—zsin20 /0 Ja=—z?)’

Since K (z) has a branch cut discontinuity in the complex
z plane running from 1 to oo, the analytic continuation to
real frequencies, iw, — @ + i0" can be performed without
crossing any singularity. Thus, if one has Gsq4.4¢/(x) as an
analytic function of spatial coordinate x [as in Eq. (44)], then
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a full knowledge of both space and time dependencies of the
Green function is implied by analytic continuation.

Using Eq. (31), one recovers our earlier result?® for the
T = 0 crossover ¢ matrix in the 2IK model due to perturbation
K # K.,

2
2ﬂiU7;ia,a’a/(wsT = 0) = 856/ 80e |:1 F —K(—ZCL)/T*):| ,
4
(33)

in terms of 7* = 4w h? [and with v = 1/(27) as before]. Here,
Fisused for K 2 K., corresponding to local singlet or Kondo
screened phases of the 21K model, respectively. Eq. (53) is thus
equivalent to Eqs. (9) and (13) with the scattering S matrix
Soa.0'ar = 850840 In the next section, we generalize these
results to finite temperature.

IV. DERIVATION AT FINITE TEMPERATURES

Our starting point for the derivation of the finite-
temperature crossover Green function is Eq. (44). Gyy.070/(X)
thus follows from the Ising magnetization (o (x,)) evaluated
at temperature T = B~'. In Ref. 43, we considered the
magnetization at temperature 8~ and distance x from the
boundary in a quantum 1D transverse field Ising critical chain,
with a magnetic field / applied to the first spin at the point
boundary. It is given by

(o(x.B) = f(Bh?) x (o(x.B))LLs. (54)
with
> [ +28h°]
f(Bh?) = WF[H—W, (55)
and where

4n §
<o(x,ﬂ>>LLs=< b )

: 2mx
sinh <&+
B

AL Lo LT EY s
X212,2,+/3, 5 . (56)
is the result of Leclair, Lesage, and Saleur (LLS) in
Ref. 34, who generalized the T = 0 result of Chatterjee and
Zamolodchikov3® for the semi-infinite plane geometry [see
Eq. (46)] to the geometry of a semi-infinite cylinder with
circumference B, and magnetic field # > 0 applied to the
circular boundary. The latter is equivalent to the quantum
Ising chain with transverse field. We showed*® that while
(o (x,B))LLs gives the full and highly nontrivial x dependence
of (o (x,p)), it misses the multiplicative scaling function of the
variable Bh?, given in Eq. (55).

In the low-temperature limit B — oo, one obtains
f(Bh?) — 1and

11 1 —coth 2Zx\
2 F (575; 1 +2ﬁh2,#ﬂ> ﬂ—>oo
(8h2x) /24 °x K (4 h2x), (57)

such that Egs. (54) and (56) reduce as they must to Eq. (46). In
the limit 7 — oo, one recovers the fixed boundary condition,

235127-11



ANDREW K. MITCHELL AND ERAN SELA

describing the FL fixed point. Again, f(Bh?) — 1butEq. (56)
reduces now to

4 §
(o (x, ))LLs h3°°< 7 ) : (58)

2w x
sinh <+
B

This limiting behavior can also be obtained using the con-
formal mapping from the semi-infinite plane geometry with
boundary Imz =0, to the semi-infinite cylinder geometry
parametrized by Rez’ € (—8/2,8/2), with boundary Imz’ =

0,
z = tan <%Z/> . (59)

On the semi-infinite plane, the Ising magnetization in the limit
h — oo is known* to decay as (o(x)) = (2/x)"/8, yielding
precisely Eq. (58) on the semi-infinite cylinder.

Combining Egs. (44), (54)—-(56), we obtain the crossover
Green function at finite temperature,

V2812 T[S +28h%
28i sinh(z”Tx) T'[1 4+ 28h2]

1—coth2”Tx
2’T . (60)

Gaa,a’a’(x) =34

60’8010(’

11
X2F1 <§,§, 1 +2ﬂh

For h — oo, this gives correctly Ggyoe(0,x, —x) =

Goaiora (0%, —x) = 1/[2pi sinh(=5= 271)], as expected from the
boundary CFT result for the FL FP Green function, Eq. (34)
(with Sy 00 = 1).

Of course, the function f(Bh?) does become important
when considering the behavior of the Green function over the
entire range of Sh” (or equivalently, T/T*). In particular, at
high temperatures § — 0 (and finite ), one obtains f (Bh?) —
0. Thus G ow(0x, —x) = GNFL (0.x, —x) =

correctly recovering the known boundary CFT result™ for
the NFL FP Green function (34) (with Sy 4 = 0). The
factor f(Bh?) is indeed necessary to cancel the unphysical
logarithmic divergence of (o(x,8))iLs as B — 0 (see also
Appendix A).

0, again
{23

A. Ambiguities in analytic continuation at finite 7

The quantity of interest is of course the ¢ matrix 7 (iw,),
related via Eq. (31) to the Matsubara Green function, itself
obtained from Eq. (60) via

B/2

Gro (X1, x2,iw,) = /

drezwanTL i (Zl Z2>’ 61)
—B/2 2i

with z; = v +ix; and z, = ix; as usual. Using the integral
representation of the hypergeometric function,

Fabien = — Tl / g
2RO G = S e — b T =i
we then obtain

2 h2 I)ZIlz;Sf—
G11.10°0" i) = Y20 / A 63
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where

47
B

L ey |
A, = / gretromen___m[50-m)] (64)

—B/2 \/l . tlfcolh [Z%(zsfir)] ’

for x; = 0" and x, = 0~ such that § = x; — x, > 0, and with
n= ﬂ — — 1/2 a negative integer. Using contour integration,
it can be shown that

(1— 1yt
F(—n)F(% + n)

1 3 1
XzFl E,I—I-I/l,z-l-l’l,l_t . (65)

However, the naive substitution iw,, — w (orn — 57‘”1 — —) is
problematic here and leads to unphysical divergences. Indeed
such analytic continuation always involves ambiguities due
to the fact that (—1)*" = 1 on the integers, but it becomes
—eP upon analytic continuation. Thus it is hard to find the
function Gyp 4 £(0%,07,iw,) that gives the physical analytic

continuation.

An — 87T3/2(_ l)ﬂ+l

B. Finite-T Green function from Friedel oscillations

Equation (60) describes the chiral electron Green function
Gouoa(X) = (You (x)wi,a,(—x)). The information contained
in such Green functions is directly linked to the physical
density oscillations around impurity (Friedel oscillations),
which in turn can be calculated from the ¢ matrix, 7 (w).3>#90
Indeed, in Ref. 35, the real-space densities and hence Green
function G4q ¢ (x) for the NFL to FL crossover in the 2CK
model was explicitly calculated at T = 0 using the exact ¢
matrix announced in Ref. 26. It was also highlighted®® that
far from the impurity, the integral transformation relating the
¢ matrix to the Friedel oscillations can be inverted.

In this section, we exploit these connections to calculate
T(w) directly from the density oscillations described by
Goa.00(x), and thus circumvent the need for problematic
analytic continuation. For simplicity, we restrict ourselves
to 1D in this section; although we note that the resulting
¢t matrix is general, because at low energies, the standard
flat band situation of most interest is recovered. The den-
sity of the 1D fermion field W(x) at position x is given
by p(x) = (W) W(x)). Expanding around the left (/) and
right (r) Fermi points at low energies using Eq. (26), one
obtains

W(x) = Y, (x)e* ™ + gy (x)ekr, (66)

with the oscillating part of the density following as

Posc(x) = e ¥ (yl oy, () — ¥, (Y] () + He (67

In the presence of particle-hole symmetry, p(x) = 1/2 for all
x (with lattice spacing set to unity), and there are no density
oscillations, pesc(x) = 0. However, an introduction of potential
scattering breaks particle-hole symmetry and leads generically
to real-space density oscillations, which contain information
about the ¢ matrix. Such potential scattering produces a phase
shift 6p at the Fermi energy, independent of the underlying
Kondo physics, but which does modify the boundary condition
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at x = 0, according to ¥,(0) = €*°71;(0). As before, we
define a chiral left-moving field on the infinite line, but now
take into account this change in the boundary condition:

Y(x) = Yr()0(x) + e 27, (—x)0(—x). (68)

Using the imaginary time ordering of the chiral Green
function defined in Eq. (44), we have G(—x +i0") =
(W(=0)y¥(x) and G(—x —i0") = —(Y ()Y (—x)), from
which it follows that

1o
;Oosc(x) — _EeZlk,.x+218p

X [Gaa.aa(_-x _i0+) + Gga,ga(—x+i0+)]+H.c..
(69)

The oscillating part of the density given by Eq. (69) can
also be obtained>**° from the # matrix. Generalizing to finite
temperatures, we have

1 o0
Posc(X) = __/ dof(0,T)
T J_

o0

xIm{[G*(0,)* Tog.0a(®,8p)},  (70)

where f(w,T) is the Fermi function, G%w,x) is the free
Green function Eq. (28) as a function of real frequency w,
and 7,4 00(w,8p) is the scattering ¢ matrix, defined in the
presence of the potential scattering. As shown in Ref. 50, at
low energies,

21V 5 4.00(@,8p) = e 2V T5 g po(@) +i1— i (71)

in terms of the desired ¢ matrix defined without the po-
tential scattering. Indeed, far from the impurity one obtains
asymptotically>”

_LeZikpx+2iwx/vp. (72)
2
L

(G0 =
The oscillating part of the density can then be expressed as

1 & . . )
posc(-x) — _2 / d(,z)[l _ 2f((,(),T)]ezlkFx+216P+2lwx/vF
dmvg Jooo

X [i?}a,ga(a)) - 271%:| + H.c. (73)

Comparing now to Eq. (69) and inverting the Fourier transform

by operating on the resulting equations with /_OOOO th_x e2i0x we
obtain
4y 00 .
27'”'1)7:,%00(((1)) =1- LI;F/ derwa/vF
tanh(5°) /oo
X[Gog.oa(x —i07) + Gogoa(x +i01)],

(74)

where G,y »4(x) 1s given as an analytic function in Eq. (60).
Wenow setvy = 1 and 2w v = 1 as before. Note that the hyper-
geometric function , F(a,b,c,z) has a branch cut discontinuity
in the complex z plane running from 1 to co. The discontinuity
occurs only in the imaginary part of the function, with
Im, Fi(a,b,c,z +i0") = —Imy Fi(a,b,c,z —i0") for z > 1.
Furthermore, Im; Fy(a,b,c,z) = 0 for z < 1. Thus, integrating
symmetrically above and below the real x axis, as per Eq. (74),
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amounts to taking only the real part of , Fi(a,b,c,z), whence
we obtain our final result

2i/2Bh2 T'(4 +28h?)
tanh (£2) T(1 +28h?)

o0 eZiwx
o B sinh 5

1 — coth %
— )

2nivIseea(w) =1+

11 5
XR62F1 E,E,I—FZﬂh s

Using the definition of the crossover scale T* = 4wh? [see
Eq. (45)], this gives the announced results (9) and (12) for
the 2IK model in the special case of perturbation K > K,
where Soo.0'00 = 860'8aer- By simple extension, for K < K,
(corresponding to & < 0), one obtains the same crossover but
with Spo o'y = —040'Saq - Finally, we note that taking the limit
B — oo of Eq. (75) yields correctly Eq. (53). In the next
section, we show that an identical crossover occurs in the 2CK
model due to channel anisotropy.

V. CROSSOVER IN THE 2CK MODEL

The NFL fixed point Hamiltonians of the 2IK and the 2CK
models have the same basic structure.'®!%272847 Although
the underlying symmetries of the 2CK model are different
from those of the 2IK model, the free conduction electron
Hamiltonian can be written in terms of the same MFs in both
cases [see Egs. (35)—(38)]. The CFT decomposition®? of the
2CK model into U(1) x SU(2), x SU(2), symmetry sectors
(corresponding to conserved charge, spin, and flavor), can then
be expressed in terms of these MFs: the U(1) theory with
central charge ¢ = 1 consists of a free boson or equivalently
two MFs x7(j = 1,2); the spin SU(2), theory with ¢ = %
consists of three MFs X, = (x}, x5, x{*); similarly, the flavor
SU(2), theory consists of three MFs  ; = ( Xif ,— X if , — sz ).
The charge, spin, and flavor currents can also be written in
terms of the MFs corresponding to those symmetry sectors, as
given in Eq. (C3) of Appendix C.

In particular, the NFL fixed point Hamiltonian is of the form
of Eq. (39), with a boundary condition that is again simple in
terms of the MFs. In the 2CK model, the NFL physics arises
due to a modification of the boundary condition in the spin
sector only (the free boundary condition pertains in charge
and flavor sectors). The nontrivial boundary condition can
be accounted for by defining the scattering states x,(x) =
— (=) and };(x) = % (=), x5 () = x§(=x) for j = 1.2.
Indeed, the finite-size spectrum at the NFL FP?? can be
understood in terms of excitations of a free Majorana chain.’!

The NFL fixed point of the 2CK model is destabilized by
certain symmetry-breaking perturbations. These perturbations
can again be matched to MFs, with the correction to the
NFL fixed point Hamiltonian being of the form of Eq. (42)
in the simplest case of channel anisotropy A; x A, # 0
(see Table 1).%

Importantly, it was shown recently in Ref. 19 that the NFL.
fixed points of the 2CK and 2IK model are in fact identical
in the sense that they both lie on the same marginal manifold
parametrized by potential scattering. Indeed, the low-energy
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effective model for the 2IK model in the limit of strong channel
asymmetry is the 2CK model,'®!® but with an additional 7 /2
phase shift felt by the conduction electrons of one channel.!’
For concreteness, we consider now a variant of the standard
2IK model in which channel asymmetry appears explicitly:

Hoy = Ho+ J.S1. - Sor + JrSk - Sor + K S, - Sk. (76)

One thus recovers Eq. (2) at the symmetric point J; = Jg.
In the limit J; > Jg, the left impurity is Kondo screened
by the left lead on the single-channel scale Tf. At energies
~TE, the right impurity is still essentially free. However, it
feels a renormalized coupling to its attached right lead, and
an effective coupling to the remaining Fermi liquid bath states
of the left lead (which suffer a full /2 phase shift due to the
first-stage Kondo effect in that channel). The relative effective
coupling strengths between left and right channels can be tuned
by the interimpurity coupling K. Tuning K to its critical value
K. yields the 2CK critical point,'® while deviations K # K
correspond to finite channel anisotropy A, # 0 in the effective
2CK model. In consequence, one expects the NFL to FL
crossover in the two models to be simply related.

Since the NFL fixed point itself is the same in both 2CK
and 2IK models (up to potential scattering),'® and because
the correction to the fixed point Hamiltonian due to the X,
perturbation is the same,*>?* the RG flow along the NFL to FL
crossover is identical. To calculate the corresponding crossover
Green function, we simply incorporate the additional /2
phase shift felt by the left-channel conduction electrons into
our scattering states definition. Using v/, (x) = sign(x)¥/s .,
one straightforwardly obtains

(Voalz1 )l/f;fo,r (z2))ack,a.=0 = (YL, (21 )Iﬂll/af(@))zm, K>K,

1 — 22
= _T()Z(a/GUOZ,O',Ol/ < 2i ) s

77

in terms of the analytic crossover Green function for the 2IK
model given in Eq. (60). Following the steps of Sec. IV B, the
t matrix follows as

2riv s (@) =1 — 12, [2nivIN (w)—1].  (78)

ou,0d oo, 00

This result was obtained at T = 0 in Ref. 26, where the corre-
spondence was checked by explicit numerical renormalization
group calculation.

Inthe 2CK model with A, > 0, the leftlead is more strongly
coupled, and completely screens the impurity at the FLL FP
on the lowest energy scales, while the right lead decouples
asymptotically. The physical interpretation of Eq. (78) is thus
that a Kondo resonance appears in the spectral function on
the scale of T* in the @ = L channel, while the resonance is
destroyed in the @ = R channel (hence the dependence on the
flavor-space Pauli matrix z7,.).

VI. GENERALIZATION TO ARBITRARY COMBINATION
OF PERTURBATIONS

In Sec. IV, we considered the finite-temperature crossover
Green function in the 2IK model due to the detuning pertur-
bation K # K, while in Sec. V, we calculated the analogous
crossover Green function in the 2CK model due to channel
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anisotropy A, # 0. In this section, we generalize the results to
an arbitrary combination of perturbations in either model.

A. Flavor rotation in the 2CK model

Before discussing the full calculation, we motivate the
general approach by exploiting a bare symmetry of the 2CK
model, in a simple intuitive example. Unlike the 2IK model,
the 2CK model possesses a bare flavor symmetry [see Eq. (1)].
The perturbations A,, Ay, and A, break this symmetry, but
are themselves related by rotations in flavor space.

A canonical transformation of the conduction electron
operators of the bare Hamiltonian is defined, viz.,

WkaA 1a”ko’L
( Vo B ) < Vko R ) (79
such that the unitary matrix U satisfies U(A - DU = |A|z*.
With the parametrization A= |A|(sin @ cos ¢, sin 6 sin ¢,
cosf), one obtains explicitly U= exp[%(— singt* +
cospt?)]. It follows that  SHhck(Ax,Ay,A;) —
§Hock(0,0,A,), with A2 = A2+ A% 4+ AZ [cf. Eq. (8)].
The physical 1nterpretat10n is that the 1mpur1ty couples more
strongly to one linear combination of channels than the other.
Thus the perturbations A;, Ay, and A3 in Table I are 51mply
related, and their combined effect enters only through A r-In
particular, this implies only one fitting parameter c; for the
different components of the perturbation A in the 2CK model.
The physical behavior in the case of arbitrary A f cannow be
understood in terms of the situation where A; alone acts using
the flavor rotation Eq. (79). For example, the Green function
(VoL w,j,g 1)) probes the physical channel o« with o = L
in the original basis. Using the transformation Eq. (79), it can
be expressed as

Y B

n 1
(Vkors Vg = 3 < ) ((WkaA,lﬂkraA»

1 | A, A
+5(1- Z. {(VioB: Yoo
(30)

in terms of the Green functions in the rotated basis, which
correspond to those calculated for A, only, as considered in
the previous section. It is then easy to show that the 7 matrix
for arbitrary A ¢ is given by

A -
27 ivT 50 00(@) = 1+ H 27ivTsa0a(@) — 11 (81)

in terms of the r matrix 7 due to A; given in Eq. (78). The
simple rescaling of the spectral function discussed in Sec. II B
and the precise form of Eq. (10) follow immediately.

B. Emergent symmetries

In this section, we make use of the field theoretical
description of the NFL fixed point for both 2CK and 2IK
models in the presence of relevant perturbations.””>* A large
SO(8) emergent symmetry at the fixed point allows these
perturbations to be related by a unitary transformation, in full
analogy to the method demonstrated explicitly in the previous
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section for the case of the bare flavor symmetry in the 2CK
model.

We express the NFL fixed point Hamiltonian in terms the
free MF scattering states,

Hqcp = Hrp[ X1+ 8 Hocp, (82)

where Hpp[X]is given in Eq. (39), and with ¥ a vector of the
eight MFs. As already commented, the structure of the NFL
fixed point Hamiltonian is the same for 2CK and 2IK models;
only the definition to the scattering states is different. To fix
notation, we define

X1y oxs) = [ = signOxoxid oot xi o x xS )
(83)
for the 2IK model and
i eeoxs) = { = x5, — xil sign(0x;,sign(x)xs,

sign()x{*, x{ . x5 } (84)

for the 2CK model. With this ordering of components, the
correction to the NFL fixed point due to relevant perturbations
is given by

8
SHocp oci Y xjx;(0)a, (85)
j=1
with a alocal MF as before. The A perturbation corresponding
to K # K, in the 2IK model or A, # 0 in the 2CK model was
considered explicitly in Eq. (42). The other coupling constants
are defined in Table I; with the single resulting crossover
energy scale being the sum of their squares, Eq. (8). For a
detailed derivation of Eq. (85), see Refs. 17,52 and 53. The
two MFs x7, xs corresponding to the real and imaginary parts
of the total charge fermion are not in fact allowed in the 2CK
and 2IK models due to charge conservation.

C. Unitary transformations

The crucial observation following from Eq. (85) is that only
the linear combination A~! Z?:l Ajxj(x) of the eight MF
scattering states participates in the crossover. The particular
linear combination depends on the ratios of the various
perturbations (for example, K — K., Vpg, B; in the 2IK
model).

From Secs. IV and V, we know the crossover Green function
caused by the A perturbation. The strategy is thus to fix the 1|
perturbation as the direction in the eight-dimensional space of
perturbations along which the Green function is known, then
use an SO(8) rotation to obtain the general crossover Green
function.

We search now for a unitary operator UU' =1 that
transforms the full Hamiltonian with an arbitrary combination
of perturbations into one involving the single perturbation A;.
Specifically, we demand that

UHpp[{1U" =
USHocpU' =

Hrp[X1,
irx1(0)a.

(86)

This transformation is accomplished by an operator that rotates
the eight-component vector X in the eight-dimensional space
of perturbations. The 28 generators of such rotations are of the
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form i f dxyj(x)A;j xj(x), where A;; is areal antisymmetric
8 x 8 matrix. It is easy to verify that the desired operator
satisfying Eq. (86) is

U=¢ e dxX1(x)XL(X)’ (87)
where
. )\J_ 2
0 =arcsin —, A =./A2—Af,
A
XL = 27" a0, (88)

J#1
One can apply this transformation to the expectation value
of an operator written in terms of the original elec-
trons, such as the Green function (Y, (x)l//;,a,(x’)) Hocr =
<U1/fw(x)UTij,a,(x/)UUUHQCPw. The crucial property of
the unitary transformation Eq. (87) is that it acts as a simple
rotation also on the electron fields. This occurs due to the
existence of linear relations between the 28 quadratic forms of
the original electron fields and of the MFs x jA, as discussed in
Appendix C and Ref. 55.

As a simple relevant example, consider the 2IK model, per-
turbed by a combination of K — K, and tunneling Vg, such
that only A; and X, are finite. In this case, the unitary operator

reads U = ef /o dx 0100 with Al =Aand A = ,/Az + Az

Using Eq. (83). xu(x)xa(x) = —sign(0)x3 ()x{ (x). The
quadratic form x; X(x) X1 (x) 1s related to a quadratic form for
the original electrons x; X(x) Xi (x) = ——1//%"1# as shown in
Appendix C. The operator U can now be understood as a
simple rotation of electron fields,

U'oa(x)UT = Z svoraWora (X), (89)

for x
space,

2 0, and where the rotation matrix acts here in flavor

0 0
(M2, o )i17as0 = Soo [aaa/ cos - F ity sin 5} . (90)

The Green function then follows as

<W(r0!(x)wao¢ (X ) Hoep = Z oa, O‘10tl M<T)a{ai*a/a/
0’]0{]0’10(1
X(lbala](x)w;{ai (x/»UHQchTv
oD

where x > 0 and x’ < 0 is assumed. In terms of complex
coordinates z; = t + ix; and z, = ixp (with x; > 0, x, < 0),
the full Green function (V44(z1 )Iﬂ;ra/(&)) Hocp 1S then obtained

from ooy ofeq (U52) = = (Voo GOV, @) v pgeprts 3
given in Eq. (60) for the case of finite A; < 0 in the 2IK
model.
Now we define a 4 x 4 unitary Fermi liquid scattering S
matrix for the 2IK model
St = =M™ - M Dgqora 92)

O'(IO'LX

such that

. 21 — 2
(¢aa(ZI)WJ/a’(ZZ)>HQCP = Sout,a’a’Gaa,aot< l 2 2)~ (93)
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Using Eq. (90), one obtains Sy 6¢ = —860'(8er COSO —

o A1 S Hi ko T, .
i8inf1,,) = 850 —————=« for the case of finite A; and

A3 in the 2IK model; consistent with Eq. (11).
For arbitrary combination of {XA{, ...,A¢}, one has

U = =0 dxsign(xxd Doxd +aax{ +7p 71/3

(94)

— i 5 [ dxsign(OV Dot +As T+ ()T I s
From Eq. (89), it then follows that

0 0 | at* + A3 + (hp - 6)TF
M2 = cos 2 isin b | 220 TR H G )T g
2 2 o

(suppressing spin and channel indices). Using Eq. (92), we
recover our final result for the 2IK model, Eq. (11).

Following the same steps for the 2CK model [and noting
Eq. (77)], we obtain

SZCK

oa,0'd’

= —(M"TM Ny (96)

with

0 O A1’ — Ayt £ (hp - 0)T7
M= = cos — — i sin — 27 3t (hg-0)T
2 2 AL

], o7

yielding precisely Eq. (10) for the 2CK model.

VII. NUMERICAL RENORMALIZATION GROUP

Wilson’s numerical renormalization group* (NRG) has
been firmly established as a powerful technique for the accurate
solution of a wide range of quantum impurity problems.’
Its original formulation provided access to numerically exact
thermodynamic quantities for the Kondo* and Anderson
impurity’® models. An increase in available computational
resources subsequently allowed straightforward extension to
multi-impurity and multichannel systems.’

More recently, the identification of a complete basis within
NRG (the “Anders-Schiller basis” comprising discarded states
across all iterations®’) has permitted rigorous extension to
calculation of dynamical quantities. In particular, equilibrium
spectral functions can be calculated using the full density
matrix approach,’®> yielding essentially exact results at zero-
temperatures on all energy scales. Although discrete NRG
data must be broadened to produce the continuous spectrum,>
artifacts produced by such a procedure are effectively elimi-
nated by averaging over several interleaved calculations (the
so-called z trick®). Indeed, resolution at high-energies can be
further improved by treating the hybridization term exactly.®!
Our exact analytic results were tested and confirmed by
comparison to NRG at 7 = 0 in Ref. 26.

Due to the logarithmic discretization of the conduction band
inherent to NRG,* finite-temperature dynamical information
cannot however be captured® on the lowest energy scales
|w| < T. But spectral functions for |w| > T are accurately
calculated, and the total normalization of the spectrum is
guaranteed,” implying that the total weight contained in
the spectrum for |w| < T can be deduced. From a scaling
perspective, one expects RG flow to be cut off on the energy
scale |w| = O(T), so that there should be no further crossovers
in spectral functions for |w| < T. The somewhat arbitrary
strategy>® commonly employed is thus to smoothly connect
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the spectrum calculated at w &~ £T, in such a way as to
preserve the total weight. Our exact finite-temperature results
for the crossover ¢ matrix of the 2CK and 2IK models thus
offers the perfect opportunity to benchmark NRG calculations
for interacting systems exhibiting a nontrivial temperature
dependence of their dynamics.

For concreteness, we consider now the 2CK model with
channel-anisotropy A, > 0 [see Eqgs. (1) and (3)]. To obtain
the numerical results, we discretize flat conduction bands of
width 2D logarithmically using A = 5, and retain 8000 states
per iteration in each of z = 6 interleaved NRG calculations.’
All model symmetries are exploited.

To ensure the desired scale separation T* <« Tx, we
take representative vJ =0.15 and small 2vA, = 1076,
yielding Tx/D =2 x 1073 and T*/D =9 x 107 [T ~
D exp(—1/vJ) is defined in practice here from the ¢ matrix
(6), too(w =Tk, T =0)=1/4, T* is defined according to
Eq. (9), corresponding here to f,4(w = T*,T = 0) >~ 0.95].
From Eq. (8) and Table I, we thus obtain ¢; ~ 14. The t matrix
for this 2CK model can be expressed as

Jo\* =
%a,a’zx’(a)s T) = 866'00a’ <?) Ga(ws T) (98)

with J, = J + %AZ for @ = L,R, where
Ga(wsT) = ((S_I/f0¢a + SZwOTa; ‘§+1/f(1;¢oz + Sznga>)w,T'
99)

As usual ((A E)}w’T is the Fourier transform of the retarded

correlator  ((A(11); B(12))r = —i0(t1 — ) ({A(11), Bt} 1.
The alternative expression given in Ref. 12 is

—1
2 \? Gu(w,T)

%aca T)=—i|1 5 ’
TV 5a,00(@,T) l|: +(ana> Ga(va):|

(100)

where Go(0,T) = {({(V,,: wgm))wj is the Green function for

the “0”-orbital of the &« = L, R Wilson chain.’ Both G, (w,T)
and G,(w,T) can be obtained directly by NRG, but Eq. (100)
gives much better numerical accuracy'? and is employed in
the following. The desired spectral function #,,(w,T) is then
obtained from Eq. (6) and is plotted in Fig. 10 as the dotted lines
for temperatures 7/T* = 10~',1,10,10?, as in Fig. 3. The
corresponding exact results for the NFL to FL crossover from
Eq. (9) are plotted as the solid lines. As immediately seen, near-
perfect agreement is obtained for all energies |w| <« Tx and
temperatures 7 < Tx where comparison between numerical
and exact results can be made.

To obtain such an agreement, we found that high-accuracy
NRG calculations must be performed. In particular, the region
|w| ~ T was most problematical, with artifacts only being
removed upon averaging over several band discretizations,
and necessitating a large number of states to be kept at each
NRG iteration. The precise shape of the numerically-obtained
spectrum then still depends on how the discrete data is
smoothed. We found that the broadening scheme described in
Ref. 59 produced the best results: for z = 6 and A = 5 as used
here, a broadening parameter b = 0.25 and kernel-crossover
scale wy = T'/1.5 were optimal.
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021

FIG. 10. (Color online) Spectrum #,.(w,T)
vs w/D for the 2CK model with vJ =0.15
and small channel anisotropy 2vA, = 107 at
various temperatures T /T* = 1071,1,10,10%,
approaching 7,;, = 1/2 from above. Dotted lines
are results from full NRG calculations; solid
i lines are exact results from Eq. (9) for the NFL
to FL crossover.

O ‘ L
107" 10" 10”° 10

w/D
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It should also be noted that if the correction factor’
Ap = 32 In(A) is used in the NRG calculations (in which
case J, — JyA,), then the many-particle energies used to
calculate the density matrix must be accordingly scaled
[En(r) = En(r)Aa]so that the results are independent of the
discretization parameter A and hence approximate accurately

the desired A = 1 limit.

VIII. OTHER EXACT CROSSOVER FUNCTIONS

As discussed in the previous sections, the Hamiltonian
controlling the NFL-FL crossover in the 2CK or 2IK models
has a free fermion structure in terms of MFs. In fact, this feature
allows calculation of various quantities along the crossover.
The difficulty of such calculations is dictated by the relation
between the physical quantity of interest to the MFs. In the
preceding sections, we concentrated on the two-point function
of the electron field (the Green function), related’! here to the
one-point function of the magnetization operator in the Ising
model (which is in turn related nonlocally to the Ising MFs®?).
More generally, 2 p-point functions of the electron field are
related’! to p-point functions of the magnetization operator.
Multielectron correlators can thus, in principle, be calculated
in this way, but require knowledge of the corresponding
multipoint correlation functions of the Ising magnetization
operator.

A. Impurity entropy

Since thermodynamic quantities are local in the MFs, their
calculation is rather straightforward. Here, we will focus on
the NFL-FL crossover of the impurity entropy, following
closely the earlier calculations for the 2CK?”?® and the 21K
models, performed in the Toulouse limit. The Toulouse limit
corresponds here to maximal spin anisotropy in the exchange
couplings, and as such breaks the overall SU(2) spin symmetry
of the models. Although the high-energy (~Tk) crossover
to the NFL fixed point is strongly affected by large spin

10° 10

anisotropy, we stress that for low energies < Tk (and given a
clear scale separation 7* < Tk), the results become formally
exact, and are universally applicable to the SU(2) symmetric
case of interest.

The key point is that the spin-anisotropy perturbation is RG
irrelevant at the NFL fixed point. In particular, the effective
theory obtained in the Toulouse limit describing the NFL-
FL crossover due to relevant perturbations such as channel
anisotropy or magnetic field in the 2CK model?® or detuning
K — K, staggered magnetic field, or left-right tunneling in the
2IK model,'” act exactly as in Eq. (85). A detailed discussion
for the 2IK model can be found in Ref. 52.

Turning now to the crossover in the impurity entropy, one
finds?® that

1 (T
S(T)= 32+ 3 (T—> , (101)

in terms of the universal function

sy | R AN BN IR A
(’)_?[w<5+?>_ }_n[ﬁ <5+?>]
(102)

defined in Ref. 28 for the limit Tx — oo. Here, ¥ (z) is the
psi (digamma) function and 7* is a particular definition of
the NFL-FL crossover scale (proportional to our definition,
Eq. (9), such that 7% = y x T* with y &~ 4.6). Two regimes
can thus be distinguished. In the FL regime, obtained for
T « T*, the impurity is always completely screened: S ~
11—2(%). By contrast, in the NFL regime, T* « T < Tk,
the impurity entropy is close to %ln(Z). Interestingly, we
find that independently of the relevant perturbations which
act, the entropy crossover is always given by the universal
function Eq. (101) in the limit 7* « Tk, in both 2CK and 2IK
models. This is, of course, not the case for the Green function,
because the FL scattering S matrix is affected differently
by different perturbations [see Eqs. (9)—(12) and Figs. 3
and 5].
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FIG. 11. (Color online) Impurity contribution to entropy Simy(7) vs T'/ T* for the 2CK model (upper panels) and the 2IK model (lower panels)
in the presence of various perturbations. Entire temperature-dependence calculated by NRG for the full models (black lines); low-temperature
T < Tk behavior in each case compared with the single exact NFL-FL crossover function Eq. (101) (red circles). All results presented for
vJ = 0.25. Left: effect of channel asymmetry 4vA, = 107> (2CK) or deviation from critical coupling (K. — K)/D = %107 (2IK). Center:
effect of including also finite left/right tunneling, 2vA, = £107> (2CK) or 2vV, ; = £107* (2IK), with 4vA, = (K, — K)/D = £107° as
before. Right: effect of including finite magnetic field, B*/D = £107"/? (2CK) or B/ D = £107%/2 (2IK), again with 4vA, = (K, — K)/D =
+1073. Parameters chosen to allow direct comparison to Fig. 1 of Ref. 26.

The 2CK model has also been solved exactly using the
Bethe ansatz,’ yielding the full evolution of thermodynamics
in any parameter regime. However, it cannot be seen directly
from the Bethe ansatz equations that there is an emergent
SO(8) symmetry at the NFL fixed point, or that this leads to a
single NFL-FL crossover function for the entropy, Eq. (101),
regardless of the perturbation causing the crossover. Indeed,
the fact that the same crossover occurs in the 2IK model cannot
be extracted using Bethe ansatz since the 2IK model is not
integrable.

In Fig. 11, we present numerically exact NRG results for
the temperature-dependence of the entropy due to various
perturbations in the 2CK and 2IK models to confirm the
validity of the field theoretic description. As in Fig. 10, we
exploit all model symmetries to obtain high-quality numerics,
discretizing flat conduction bands of width 2D logarithmically,
using A = 3 here, and retaining 8000 states per iteration in a
single NRG calculation.”> At low temperatures T < T (and
since T* <« Tk), we obtain an essentially perfect agreement
between the exact result Eq. (101) (points) and NRG data
(solid line).

B. Nonequilibrium transport in two lead devices

It was shown in Refs. 52,53 and 63 that the effective free-
fermion theory of the 2IK model allows to calculate certain
nonequilibrium quantities. Finite conductance was found to
arise in the weak-coupling limit of 2IK systems close to the
critical point 7* « Tk at low energies << T*. This result was
understood in terms of the growth under RG of the left-right
tunneling perturbation Vi, z. Here, we generalize these results

to the 2CK model, which has the same effective free-fermion
description. Related multichannel setups have been considered
in Refs. 64 and 65.

We consider a finite source-drain voltage V across left and
right metallic leads, which are exchange coupled to a single
impurity spin. To this system we add a small but finite channel
anisotropy perturbation, corresponding left/right tunneling
mediated via the impurity spin. The setup is illustrated in
Fig. 12. The corresponding Hamiltonian is given by Egs. (1)
and (3), with finite A, and possibly magnetic field B, but now
with left/right lead chemical potentials at £V /2.

The applicability of our exact solution is in the parameter
regime A, < J, so that the system is close to the NFL
critical point. This situation is not in practice obtained in
standard quantum dot devices, although more sophisticated
experimental techniques such as those employed in Ref. 24,
do allow suppression of cotunneling perturbations such as A .

As per Eq. (8), the crossover energy scale is T*
(c1vA)?* Tk + |cgB|?/ Tk . In the limit where v A, is initially
very small, we thus have T* <« Tx. At higher energies 2Tk,
we then expect conductance to be very small o(vA,)?,

J J
¥ N N
‘\/A\/‘

FIG. 12. (Color online) Schematic illustration of a nonequilib-
rium 2CK setup. We consider the case of A, < J.
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FIG. 13. (Color online) Scaling function for the nonlinear con-
ductance of a 2CK device with small A,. From top to bottom at the
peak: T/T* = 0,0.25,0.5,1.

corresponding to the weak coupling limit. However, upon
reducing the energy scale E = max{eV,T} below Tk, the
conductance starts to increase since A, switches on a relevant
operator with scaling dimension 1/2 near the NFL FP.
Below T*, a characteristic peak in the conductance is thus
expected, signaling growth of the relevant operator to order
one.

The exact lineshape of the nonequilibrium conductance
peak can be calculated from the fixed point Hamiltonian,
Eq. (82) [including the correction due to relevant perturbations
given by Eq. (85)]. The dependence on the ratio between
the magnetic field and the tunneling perturbations is obtained
using the SO(8) rotation outlined in Sec. VI. The method of
calculation, and the result for the universal lineshape of the
peak, was obtained for the spin-exchange anisotropic version
of the model by Schiller and Hershfield in Ref. 66. As argued
in the previous section, we can borrow those Toulouse-limit
results if we restrict attention to the low-energy crossover. The

final result for the nonlinear conductance is thus
T eV
G =GoF|—,— |,

T T*

1 o1
Fltool= —Reyy [~ + — + ), (103)
4t 2  dmt  2nt

with Gy = zhiz AE;M and v the trigamma function. Note that
the definition of T* here is as in Ref. 52. At T =0, one
obtains G/ Gy = [1 + (2eV/T*)*]7!, while at zero bias V =
0 and low temperatures 7 < T*, the asymptotic conductance
is G/Go — 1 — (2w T/+/3T*)?. The full bias dependence of

conductance for various temperatures is shown in Fig. 13.

IX. CONCLUSIONS

In this paper, we present a rare example of an exact
nonperturbative result for the finite-temperature dynamics of
a strongly correlated quantum many-body system. We focus
on the two-channel Kondo and two-impurity Kondo models;
although the same low-energy physics characterizes a wide
class of quantum impurity problems in which competition
between two conduction channels causes a frustration of
screening. The unusual non-Fermi liquid critical points of
these systems are destabilized by various symmetry-breaking
perturbations, naturally present in experiment. In consequence,
a crossover to regular Fermi liquid behavior always occurs
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on the lowest energy scales. Exploiting the connection®’
to an exactly-solved classical boundary Ising model,*3*
we calculated the exact finite-temperature crossover Green
function. In quantum dot systems that could access this
crossover, the relevant experimental quantity is conductance,
which we extract from the exact Green function.

Remarkably, we show that due to the free-fermion structure
of the effective low-energy theory in terms of Majorana
fermions and a large emergent SO(8) symmetry, a single uni-
versal function pertains for any combination of perturbations
in either model. This single crossover is also starkly manifest
in the behavior of thermodynamic quantities such as entropy,
as confirmed directly by NRG.

The method developed in this paper goes beyond the
impurity models we considered explicitly, and finds powerful
application to a wider family of systems. At heart, our solution
relies upon a formal separation of the theory into a sector
containing all the universal crossover physics, and a sector
acting as a spectator along this crossover. Importantly, the
crossover is confined to a sector that can be identified with
Ising degrees of freedom, described by a minimal conformal
field theory with central charge ¢ = 1/2. For example, in the
two-channel Kondo models studied here, the full set of degrees
of freedom consist of ac = 4 CFT, butalarge c = 7/2 sector of
the theory plays no role in the crossover from non-Fermi-liquid
to Fermi-liquid physics.

Interestingly, there exist other models (whose full set
of degrees of freedom are not necessarily described by a
¢ = 4 CFT) that undergo precisely the same crossover due
to their underlying ¢ = 1/2 Ising sector. Those include certain
Luttinger liquids containing an impurity,** and coupled bulk
and edge states in certain non-Abelian fractional quantum Hall
states®”%8 (see also Ref. 69).

There are further interesting generalizations and questions
arising from this work. For example, the two-channel Kondo
effect evolves continuously as interactions are switched on in
the leads, as was shown in the case of Luttinger liquid’"’" and
helical liquid’>"# leads. It is an open question as to whether the
low-temperature crossovers in the presence of such interacting
leads are described by the same boundary Ising model, or, e.g.,
by coupled boundary Ising models. It would also be interesting
to use the present formulation of the crossover in terms of a
minimal Ising theory to study time-dependent phenomena,
quench dynamics, and other nonequilibrium physics.
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APPENDIX A: PERTURBATION THEORY AROUND THE
FL FIXED POINT

In this appendix we consider the 2IK model for K < K,
and its FL fixed point describing the ground state where
each impurity forms a Kondo singlet with its attached lead.
In particular, we calculate the ¢ matrix for w,7 < T* as a
stringent consistency check of our full crossover ¢ matrix,
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Eq. (9). Indeed, we also see that the multiplicative function
f(Bh?) that we included in Eq. (54) is precisely needed to
reproduce the correct FL limit.

We use here the Fermi liquid theory of Nozieres,** applied
to the 2IK model. Naturally, our derivation of the ¢ matrix in
the vicinity of the FL fixed point follows closely the analogous
calculation for the simpler single channel Kondo (1CK) model.
Thus we first recap some of the basic concepts and results for
the 1CK model.?>4254

The irrelevant operator in the effective Nozieres
Hamiltonian*? for the FL fixed point of the 1CK problem
may be written in CFT language as*

1 - -
Tk
3 4. ’ AN ’ ’
= 3 Wi 0¥y V¥ W i (AD

where f(x) = w’j,(x)%w’(,,(x) is the spin current for a
single channel of conduction electrons (implicit summation
over repeated indices is implied). The first term of the
second line may be interpreted as an elastic single particle
scattering, and the second term can be interpreted as a
residual electron-electron interaction giving rise to inelastic
scattering. Accordingly, one can separate the contributions to
the ¢ matrix 7icx(w,t) = Ta(w,t) + Tin(w, 1) into elastic and

inelastic contributions, respectively, and where?>3*
—mvTg(w,t) =i —w — iw?,
. (A2)
i
—mvTy, (w,t) = —E[w2 + 7212).

[For simplicity, we omit spin indices; 7Zickeo(w,t) =
8o Tick (w,1)]. Here, w = w/Tg,t = T/ Ty, and Ty, is a par-
ticular definition of the Kondo temperature.?? The fermionic
diagram yielding the inelastic contribution is shown in Fig. 14.

The imaginary part of the # matrix in the 1CK model can
thus be expanded as

Im7T;cx (w,t) = ImT;ck (0,0) + aw? + b2,  (A3)
where from Eq. (A2) one obtains
a/blick = 3/7% ~ 0.3039. (A4)

Similar to the Nozieres Fermi liquid theory for the 1CK
model, an effective Fermi liquid Hamiltonian was constructed
using CFT methods based on the emergent SO(7) symmetry

B

B

FIG. 14. Diagram for the inelastic contribution to the # matrix. It
describes interaction between two fermionic species A # B. In the
1CK model, A,B € {1, |}, in two-channel Kondo models A,B €
{tL, 1L, TR, | R}
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of the crossover for the 2IK model.®*’> The leading irrelevant
operator takes the form®’

SHp = —— (I} + T3 — 6J1.J) _» (A5)

o

where J,(x) = w/lg(x)(’”z”’ Yoo (x), W' is a scattering
state incorporating the /2 Kondo phase shift, ¥/, (x) =
sign(x)Vy,(x), and T* is a particular definition of the low-
energy crossover scale.”> We now calculate the ¢ matrix
resulting from this Hamiltonian in the FL regime w,T < T*.
In the following, we suppress the indices o,«, and note that
the ¢ matrix is proportional to 5,84 in the present situation.

Comparison of the irrelevant operators in the 1CK and
2IK models, Eqs. (Al) and (AS5), shows that the first two
terms in Eq. (A5) are identical to the Nozieres irrelevant
operator (up to the exchange of energy scales 7" < Tk). In
consequence, the elastic and inelastic scattering contributions
within each channel of the 2IK model are the same as
those arising in the 1CK model. Indeed, from the diagram
Fig. 14 we see that to second order they do not yield
any mixed terms. Thus Tpx (w,t) = Ticx (w,1) + Tpr (w,t),
where 7 g (w,t) originates from the third term in Eq. (A5),
representing interaction between channels. We separate the
latter into jL A R = Za:x’ V.2 J{'Jg and note that the second
order a = x,y,z contributions are equal, since the quantity of
interest is invariant under spin rotations, and the Hamiltonian
is also SU(2) spin symmetric. The latter can be written in terms
of fermion fields as

6 z 72 3 i z / i z /
_F‘]L JR = _ﬁ(w (rLUaaw aL)(w nRUz;aw JR)' (A6)

Considering now the ¢ matrix for a single electronic
species with quantum numbers A = o,«, Eq. (A6) describes
the interaction with a second species of either B = o,o or
&,a, and thus contributes a term proportional to the inelastic
contribution 7y, (w,?). In fact, the amplitude for this interaction
is jzz%, identical in absolute value to the intralead interaction
amplitude between up and down electrons [the second term
of the second line in Eq. (A1)]. But since the contributions to
inelastic scattering are of second order (see Fig. 14), the sign
of the scattering amplitude is unimportant in calculation of the
¢t matrix. Summing over the second species B yields an extra
factor of 2, yielding Ty g (w,t) = 37, = 67; (w,t). Putting
all the contributions together, we have

Dok (w,t) = Ty (w,t) + 7T (w,1) . (AT)

As a result, one again obtains Im751k (w,t) = Im75k (0,0) +
aw? + bt?, but with

a/blak = (14 2/7)/7* ~ 0.13027. (A8)
This result is in perfect agreement with a numerical evaluation
of our full finite-temperature crossover # matrix (9) in the limit
T,w < T*; as demonstrated in Fig. 4. This calculation also
confirms the need for the function f(Bh%) used in Eq. (54).
The asymptotic result Eq. (A8) also follows from renormalized
perturbation theory calculations presented recently in Ref. 76
for a related 2IK model.
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APPENDIX B: PERTURBATION THEORY AROUND THE
NFL FIXED POINT

1. General structure

In Sec. Il D, we used the analyticity of the Green function
and the locality of the ¢ matrix to argue that G4 0o/ (21 — 22)
depends only on the difference (z; — z»). This result should
hold to all orders in perturbation theory, as shown explicitly in
this appendix.

Our starting point here is the NFL FP Green function for
the 2IK model, Eq. (41), written as

Gi\gifl’JM (Zl ’ ZZ) = 800’80101’ !

(BI)

whose factorized form originates from the Bose-Ising decom-
position of the 2IK model into spin, isospin and Ising symmetry
sectors.”* Seven of the eight MFs (those corresponding to the
part of the fermion field carrying spin and isospin quantum
numbers) remain free at the NFL FP, and thus give rise to
the first factor [see Eq. (28)]. The second correlator involves
the chiral part o7(z) of the Ising magnetization operator
0(z) = o1(2)oL(z*), due to the remaining MF in the Ising
sector (see Fig. 9).

When the detuning perturbation A; o (K — K,) acts, the
NFL FP is destabilized. The perturbation appears as a
correction to the action,”’

38 =X /dre(O,t). (B2)
where € is the CFT d = 1/2 boundary operator from the
Ising sector interpreted as a boundary magnetic field.??
The resulting corrections to the Green function can then
be calculated within perturbation theory. The full crossover

NFL-FL NF
Green function is then G5 o70(21,22) = Ghgo (21 — 22) +

ZN:l dnNGoao'a(21,22), where the Nth order correction is
given by (suppressing spin and channel indices)

v wi |
"] sin [5(z1 — 22)]

pN al
x/ Hdri(aL(m)UL(Zz)1_[6(0’?1'»'
0 i1 j=1

dnG(z1,22) X A

(B3)

Generically, correlation functions up to three-point func-
tions are determined by CFT. However, the Ising CFT is
special because essentially all correlation functions are known
exactly. In particular, Ardonne and Sierra obtained explicit
expressions’® for the correlators appearing in Eq. (B3). In the
case of even N, their result reads’®

N
(oL(@oL(z2) [ [ €00,7)) o (1 — 22) 78
j=1
1 (z1 — )Ml
2”' Hfi je 5
x ; ( I @ — Tj)z) [ljer(zi — 1)z — 7))
(B4)

—E]} (oL(z1)or(22)),
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where the sum is over all subsets of {1,2,...,N}, containing
an even number of elements |/|. Hf (M) denotes the Haffnian
of a symmetric N x N matrix and is given by Hf(M) =
m ZaesN ]_LNZ/I2 Ms@i-1).00i, With o a permutation.
The setf(containing |7| elements) is equalto{1,2,...,N}\ I.
Using the conformal mapping Eq. (59) from the plane to
the cylinder, each coordinate difference z — 7’ in Eq. (B4)
is replaced by sin[ % 5 (z — 7)]. The dependence on z; and z;
is through factors that explicitly depend on z; — z;, and terms
inside the square root of the form

1
Hjei sin [%(Z] — rj)] sin [%(12 _ fj)] :

With the aid of the trigonometric identity,

2 sin I:%(Zl — ‘L'):| sin [%(Zz - T)]

= cos |:z( — )i|—cos |:z( + —21)i| (B6)
= 3 21— 22 5 21+ 22 ,

(B5)

and by shifting all 7; integration variables by (z; + z2)/2 into
the complex plane (which can be done without encountering
any singularities), the resulting integral in Eq. (B3) then
depends only on z; — z,. The same conclusion is reached for
odd N by a similar calculation.

Thus SN Gaa,a’a’(ZIvZZ) = SNGaa,a’ot’(Zl - ZZ) for all N,
and hence the full crossover Green function depends
only on (z; — z2). The analyticity of the Green function
(waq(x)wi,a,(—x)) = Gyg.00(x) thus allows determination

of (!/fag(m)lﬁl,a,(zg)) = Gog.oe(¥52) in terms of general
coordinates z; and z; by analytic continuation.

2. Leading order perturbation theory

Here, we derive the NFL coefficients 8/,6 and B” of the
asymptotic ¢ matrix discussed in Sec. II B. Since the Green
function vanishes at the NFL fixed point, the leading correction
arises to first order. We now use the first-order result for (o (x))
derived in Ref. 43,

4z 1/8
) B
= h./27
(o(x))g B (sinh ZZX )

11 l—cothzm
x2Fy E’E;I’T +Oh?*). (B7)

Note that , F; (2 ! z) 21; <l with K the complete elliptic
integral of the first kind. We will also use the short distance
x — 0 limit of this formula,

(0))np = =2 [In(x) + O(1)], (B8)
valid for x <« B,h2. Equation (44) and (BS) give
Gx = 0) = fz f[ln(x) +OM). (B9)

To obtain the expansion of the r matrix at 7 = 0 at large o,
we use G(x — 0) in Eq. (74). Recalling that T* = 47 h?, and
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writing Inx = In(wx) — Inw and y = wx, Eq. (74) becomes

1 VT o / lny Inw
———1Im .

+ G (B10)

Note that the y integral should be made symmetrically around
the branch cut, as described in Sec. IV B. One then obtains

Eq. (17a) with
1 o0
g = _i/ d ,
V2732 Jo VY
sin(2y)

1 (o]
b= |
T G

with the numerical values of these integrals announced below
Eq. (17a). At finite temperature and w = 0, we use Eq. (B7)
in Eq. (44). Taking the limit @ — 0 of Eq. (74) and defining
y = x/f, we obtain Eq. (17b) with

1 th(27ry)
//24«/_f yK CO2 77}]

sinh(2wy)

sin(2y)Iny

(B11)

(B12)

APPENDIX C: LINEAR RELATIONS BETWEEN
QUADRATIC FORMS FOR ORIGINAL FERMIONS AND
MAJORANA FERMIONS

There are 8§ x 7 = 28 independent quadratic forms involv-
ing w;a and ¥, , which together comprise the generators
of the SO(8) symmetry group. These generators are linearly
related to the 28 quadratic forms of the MFs xjA. In this
appendix, we gather and rederive some of these relations,
which can also be found in, e.g., Ref. 47.

First, we define a convention relating the Klein factors F4
for the new fermions ¥4, to the Klein factors F,, for the
original fermions v,. The relations are fully determined by*®

FYF} = F;LFlL’ FyF| = F;RFiR’ FTF' = FTLFTR’

(C1)
and by the anticommutation relations® {F,,Fgp} = 2643,
FAFl =FlF,=1.

We now consider the instructive example of the operator

i le XIX, and use Eqgs. (37) and (38) to relate it to a quadratic

term involving the original fermions:
L fox _ Lo i _ bt P
ixd X = S+ U+ U = S+ YUy + Hee,
= %E}F;el“i’f“@l’x + %FfF;e_i¢f'+i¢x +He (C2)
Using Egs. (C1) and (36), we obtain

i I -
i X = =S F]L Free® % — SF[gFye#r % L e,
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Finally, using the bosonization formula Eq. (35), we have

Fox _ Lo o’
IXi xi = E'/waTR ¢¢R¢¢L+HC —yil > V.

In a similar fashion, all of the relations between quadratic
forms can be determined. Conserved currents in the 2CK
and 2IK models can be expressed in terms of the original
fermions or the MFs, and the relations between them are
needed for our generalization of the crossover ¢ matrix to
arbitrary perturbation, as considered in Sec. VI. The conserved
currents of the 2CK model are

charge : J = Jyfy = ixSxf,
spin : J; = %WTFNﬁ = =i (XX XA X K3)
flavor : J; = %WT?IP =(- iX{Xz)(’inxXzfviXQinf)'

Equivalently, one can define a three-component spin vector

Xs = (x}.x3,xi) and flavor vector X, = (xzf, - le, —x3)
such that

e U

Js = —— Xs X Xs» Jf = _Xf X Xf (C3)

2 2

Furthermore, the nine spin-flavor current components can be
expressed as

1 T _a_b = Nars \b
Ellf o'ty =i(x)(Xy)” (a.b=x,y,2). (C4)

Thus the decomposition of the 2CK model into U(1) x
SU(2), x SU(2), charge, spin, and flavor sectors can be
understood also in terms of MFs.

In the 2IK model, there is no flavor SU(2) symmetry since
each channel couples to a different impurity. However, one can
make use of the SU(2) total spin c_:}urrentjy as well as SU(2)
isospin currents for each channel /; and Ik, where

1 _
= E Z w;awaav Ia = leﬂw- (CS)
In terms of MFs, we have
I+ 1, =J=ix5xf,
L R 2f 1f (C6)
I =Tz =J;=ixaxi
and
IT +1x =iy X ,
R 1 X2 7

I} — 13 = ixd x¢.

Hence one can understand the conformal embedding of the 2IK
model as a SU(2), x SU(2); x SU(2); x Ising decomposition
into total spin, left/right channel isospin and Ising sectors. three
of the eight MFs represent the total spin sector: four represent
the isospin symmetry sectors (the charge and flavor MFs) and
the remaining MF, X2X ,is associated with the Ising model (and
restores the total central charge ¢ = 4).
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