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SO(5) critical point in a spin-flavor Kondo device: Bosonization and refermionization solution
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We investigate a well-studied system of a quantum dot coupled to a Coulomb box and leads, realizing a
spin-flavor Kondo model. It exhibits a recently discovered non-Fermi liquid (NFL) behavior with emergent
SO(5) symmetry. Here, through a detailed bosonization and refermionization solution, we push forward our
previous work and provide a consistent and complete description of the various exotic properties and phase
diagram. A unique NFL phase emerges from the presence of an uncoupled Majorana fermion from the flavor
sector, whereas Fermi liquid-like susceptibilities result from the gapping out of a pair of Majorana fermions from
the spin and flavor sectors. Other properties, such as a T 3/2 scaling of the conductance, stability under channel
or spin-symmetry breaking, and a reappearance of NFL behavior upon breaking the particle-hole symmetry, are
all accounted for by a renormalization group treatment of the refermionized Majorana model.
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I. INTRODUCTION

Quantum dots (QDs) are among the most basic building
blocks of mesoscopic circuits [1], providing a testbed for
strongly correlated and entangled problems within the simple
context of a quantum impurity model. The physical properties
of QDs depend essentially on their level spacing δ, charging
energy Ec, and precise form of the coupling to their surround-
ings: They can exhibit Coulomb blockade phenomena at low
temperatures [2] T � Ec and build up entangled Kondo-like
states of various kinds [3–6] below the Kondo temperature
T � TK . Within the Coulomb blockade regime, one may ei-
ther have small QDs dominated by a single quantum level
due to a large level spacing δ � T , or large QDs which are
metallic grains with δ � T , referred to here as “Coulomb
boxes,” having a large density of states, yet displaying charge
quantization [7,8].

This combination of large charging energy and large
density of states has been a central ingredient in the first
experimental realization of the two-channel Kondo (2CK)
effect [9–11]. Here, multiple Coulomb boxes act as effec-
tive screening channels of a small central QD carrying an
unpaired spin, and the boxes’ charging energy completely
suppresses interchannel charge transfer. Its exotic non-Fermi
liquid (NFL) behavior is reflected in nontrivial electronic scat-
tering properties which were calculated using conformal field
theory (CFT) [12] accounting for anomalous experimental
signatures [10,11].

These experiments opened a line of research activity on the
quantum critical nature of this NFL state [13–17], the role of
charge fluctuations near charge degeneracy of the Coulomb
box [18–20], the nonlocal role of the Coulomb charging
energy [21], various transport [22–25] and capacitance [26]
properties, and multiple impurities generalizations [27] and

related devices [28]. Also, the nontrivial entropy of these mod-
els was recognized as a possible way to realize non-Abelian
anyons [29,30]. More recently, Coulomb boxes were imple-
mented in the strong-magnetic-field regime [31–33] leading
to a convenient experimental platform to study multichannel
charge-Kondo effects achieved near charge degeneracy points
of the Coulomb box [8,32,34–38].

The lead-dot-box device of Refs. [9–11] on which we
focus (see Fig. 1) exhibits a rich phase diagram invoking
correlations between spin and charge degrees of freedom, as a
function of gate parameters controlling the charges of the box
and small QD. In particular, a certain tuning of parameters
gives rise to a spin-flavor Kondo effect: a phase in which
the spin-1/2 formed in the small QD, �S, gets entangled with
a “flavor” pseudospin-1/2 operator �T , associated with two
charge states of the box.

To model the lead-dot-box system in Fig. 1 we
study the low-energy Hamiltonian H0 + δH , where H0 =∑

k

∑
α=L,B,σ=↑,↓ εkc†

kασ
ckασ describes the leads (α = L) or

the box (α = B), respectively, and

δH =
∑

a=x,y,z

Jψ† σ a

2
ψSa +

∑
b=x,y,z

Vbψ
† τ b

2
ψT b

+
∑

a,b=x,y,z

Qbψ
†σ aτ bψSaT b,

Qx = Qy ≡ Q⊥, Vx = Vy ≡ V⊥. (1)

Here Pauli matrices σ a and τ b act in the spin and flavor
sectors, respectively. In Eq. (1) we suppress spin and flavor
indices; for example, ψ†σ aτ bψ ≡ ∑

α,β,σ,σ ′ ψ†
ασ σ a

σσ ′τ
b
αβψβσ ′ ,

where we define local field operators ψασ = ∑
k ckασ . In this

paper, we study the rich phase diagram of this Hamiltonian
with a number of additional perturbations.
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FIG. 1. A quantum dot (d) coupled to a quantum box (B) and
source and drain leads (Ls and Ld).

Previous results and emergent symmetry

An earlier work on this model by Borda et al. [39] found
that at low energies, the ratios between the various coupling
constants J , Qb, and Vb (b = x, y, z = 1, 2, 3) flow under
renormalization group (RG) to unity. Remarkably, the re-
sulting low-temperature fixed point has an enlarged SU(4)
symmetry. Using numerical RG (NRG) and CFT it was found
that this SU(4) symmetric state is a stable Fermi liquid (FL).
This high-symmetry state is featured in a number of QD
experiments [40–42] and theories [43–45].

Le Hur et al. [18,19] explored the consequences of this
stable SU(4) FL state on the conductance and capacitance.
The model in Fig. 1 was also elaborated on in a series of
papers by Anders, Lebanon, and Schiller (ALS) [46–48]. They
focused on the particle-hole (PH) symmetric case and found a
NFL ground state, rather than a FL behavior claimed by Le
Hur et al. Also, ALS found a smooth crossover from spin
to flavor 2CK NFL behavior as a function of the box’s gate
voltage.

Below, these two seemingly conflicting results will be rec-
onciled by the introduction of a NFL fixed point, located at the
PH symmetric point and characterized by an SO(5) symmetry
[49], exhibiting both FL-like susceptibilities and NFL frac-
tional entropy, along with a T

3
2 scaling of the conductance.

While the key features of this SO(5) fixed point were found
in Ref. [49], here we provide a detailed analysis of the phase
diagram and interplay of different perturbations.

Our main endeavor is the investigation of this unique SO(5)
point along with its stability to the following perturbations:
magnetic field (	HB = BSz), flavor field (	HB f = B f T z),
channel symmetry breaking (	Has = J−ψ† �στ z

2 ψ �S), and PH
symmetry breaking [nonzero V⊥ and Qz in Eq. (1)]. We show
that the NFL phase at the SO(5) point is stable to the inclusion
of a magnetic field or channel symmetry breaking. While this
stability of the NFL state is reflected by a fractional entropy
of 1

2 log 2, other quantities such as the spin susceptibility show
FL-like behavior [18,19] of an inherently NFL state.

The addition of PH symmetry breaking including a flavor
field, however, can destabilize the NFL to a FL. Interest-
ingly, when both destabilizing perturbations occur, it is still
possible to tune them to cancel each other and restabilize a
NFL phase, which persists along a curve in the plane spanned
by the PH symmetry breaking perturbation and flavor field
perturbation (bold curve in Fig. 2). In the QD device in Fig. 1

FIG. 2. A schematic drawing of the NFL line (in bold) emanating
from the SO(5) fixed point in the plane spanned by Bf and V⊥
perturbations. The NFL line becomes a NFL 2D manifold as we add
the J− term as a third perturbation. We describe this curve explicitly
in Sec. VI using Eq. (61).

this corresponds to a curve in the phase diagram spanned by
the gate voltages Vd and VB (drawn in Fig. 5 for different
parameter choices). Adding a third axis representing, e.g.,
	Has, results in a two-dimensional (2D) NFL manifold in
Fig. 2. This means that the NFL line in the phase diagram
exists for generic ratios between the tunneling coefficients of
the leads and the box [49].

We also note that related works on the spin-flavor Kondo
model [50–52], which used bosonization and refermionization
methods as in the present paper, did not focus on the special
role of PH symmetry to be elucidated below, which stabilizes
the high-symmetry SO(5) NFL fixed point.

The plan of the paper is as follows. In Sec. II we present the
lead-dot-box Hamiltonian and map it to the low-energy form
of Eq. (1) by the Schrieffer-Wolff transformation. We examine
the system’s RG behavior with and without PH-symmetry-
breaking terms, and make the emergent symmetry explicit.
In Sec. III we apply bosonization and refermionization tech-
niques, obtaining a Majorana representation of the problem. In
Sec. IV, we analyze the spin-flavor phase at the SO(5) point in
terms of thermodynamic quantities (entropy, spin, and flavor
susceptibilities) and conductance. In Sec. V, we explore how
these quantities change under different perturbations, and in
Sec. VI we combine PH-symmetry-breaking perturbations to
show the emergence of a NFL line from the SO(5) point in the
phase diagram. Our field theory results in Secs. V and VI are
compared with our NRG calculations. We briefly conclude in
Sec. VII.

II. MODEL

A. Lead-dot-box model

As shown in Fig. 1, our system, studied in numerous earlier
works [9,13,19,20], consists of a central QD (d) connected to
source and drain leads (Ls, Ld), and to a quantum box (B). It
is described by the Hamiltonian H = H0 + HB + Hd + Hhyb.
The hybridization term Hhyb = ∑

α Hα
hyb couples the small

dot with the various reservoirs. Here H0 = ∑
k,α,σ εk c†

kασ
ckασ
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TABLE I. Summary of interaction terms, their couplings, their LR and PH symmetries, their RG role with respect to the SO(5) fixed point,
and their Majorana fermion form.

Interaction, O j Coupling LR symmetry PH symmetry Role EK form

ψ† �σ
2 ψ �S J + + SO(5) ≈ id−χ+

T zψ† τ z

2 ψ Vz + + SO(5)

ψ† �σ
2 (τ−T + − τ+T −)ψ �S Q⊥ + + SO(5) ≈ id+a−

ψ† τ+T −−τ−T +
2 ψ V⊥ + − → SU(4) ≈ ia+χ−

T zψ† �στ zψ �S Qz + − → SU(4) ≈ ia+χ−
ψ†ψ φ + − marginally

irrelevant

ψ† �στ z

2 ψ �S J− − + marginal ≈ id+χ−
T zψ† �σψ �S Q−

z − − irrelevant
1
2 T zψ†ψ V −

z − + irrelevant

ψ†τ zψ φ− − − marginal ≈ ia−a+
T z Bf − − marginal ≈ ia−a+

describes the three conduction electron reservoirs, consisting
of the two leads (α = Ls, Ld) plus the one box (α = B) that
surround the small quantum dot. In addition,

HB = Ec(N̂B − N0 − ng)2, (2)

Hd = εd nd + Un↑n↓, (3)

describe the box Coulomb interaction and the Hamiltonian
of the small dot, respectively, and the hybridization term is
given by Hα

hyb = ∑
k,σ (tkαd†

σ ckασ
+ H.c.). Here, σ = ↑,↓ de-

notes (real) spin, and dσ or ckασ are annihilation operators for
the dot or conduction electrons, respectively. nσ = d†

σ dσ and
nd = ∑

σ nσ measure the number of electrons in the dot, and
N̂B = ∑

k,σ c†
kBσ

ckBσ
is the number operator for the box.

The dot and box occupations are controllable by gate
voltages

Vd ∝ η = εd + 1
2U, VB ∝ ng − 1

2 , (4)

respectively (see Fig. 1). We take equivalent conduction elec-
tron baths εαk ≡ εk with a constant density of states ν (which
we set to unity). We define t2

α = ∑
k |tαk|2 and t2

L = t2
Ls + t2

Ld .
The two leads can be effectively treated as a single lead. Thus,
the combined lead (L) and box (B) act as two channels [13].
We will often refer to the lead and box as the left (L) and
right (R) channels. At ng = 1

2 , the box states with N0 and
N0 + 1 electrons are degenerate. Neglecting other high-energy
box charge states we may define a pseudospin- 1

2 operator
T + = |N0 + 1〉〈N0|, T − = (T +)†, and T z = 1

2 (|N0 + 1〉〈N0 +
1| − |N0〉〈N0|). The charge pseudospin is flipped by electronic
tunneling between the dot and box. The lead-dot-box Hamil-
tonian is then

HALS =
∑

α=L,R

∑
k,σ

εkc†
kασ

ckασ + Ec(T z + 1/2 − ng)2 + Hd

+
∑
k,σ

[d†
σ (tLckLσ + tBckBσ T −) + H.c.]. (5)

We refer to this model in which the tunneling terms are sup-
plemented by the T -pseudospin operator as the ALS model.

B. PH transformation

In the next section we map the lead-dot-box model to the
spin-flavor Kondo model, Eq. (1), perturbed by various terms.
Before doing so, we introduce a PH transformation allowing
us to distinguish various interactions. The PH transformation
takes

ψ → σ yψ†, d → −σ yd†,

T + → T −, T z → −T z. (6)

For example, this symmetry takes ψ†τ zψ → −ψ†τ zψ so the
(ψ†τ zψ )T z term (associated with the Vz coupling) respects
the symmetry since T z also changes sign. On the other hand,
it takes ψ†τ+ψ → −ψ†τ−ψ and T + → T − so the ±-flavor
Kondo terms (with coupling V⊥) change sign and are PH
odd. Importantly, this PH symmetry holds only when both
conditions εd = −U/2 and ng = 1/2 hold. It is easy to check
that also Qz in Eq. (1) is odd under PH symmetry. Table I
summarizes the PH transformation of the various operators in
Eq. (1) as well as other perturbations that we discuss next.

C. Schrieffer-Wolff (SW) transformation

We expand the Hamiltonian at low temperatures T �
Ec,U around the two possible box charge states N0, N0 + 1,
and around the two spin states of the small dot, using the SW
transformation [53]. To second order one generates the terms
that appear in Table I, which consist of the Hamiltonian

H = H0 + δH (J,Vz,V⊥, Qz, Q⊥) + δHps(φ) + 	HB f (B f )

+	HB(B) + δH−(J−,V z
−, Qz

−, φ−). (7)

Here, δH was introduced in Eq. (1). 	HB f = B f T z describes
a flavor field, namely, an energy difference between the charge
states of the box,

B f = Ec
[
(1 − ng)2 − n2

g

] = Ec(1 − 2ng), (8)

(to zero order in the tunneling). We also included a magnetic
field term 	HB = BSz, which requires spin-symmetry break-
ing. δHps(φ) = φψ†ψ is a potential scattering term.
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All terms in δH− break channel symmetry. We refer to
the channel symmetry of exchanging the lead and box as a
left-right (LR) symmetry (see Table I). This symmetry also
takes T z → −T z, and is satisfied in Eq. (1). Among the terms
that break this symmetry in δH−, specifically J− describes an
asymmetry in the spin-Kondo interaction.

We relegate full explicit expressions of the coupling con-
stants to Appendix A. PH-even couplings such as J , Q⊥, and
Vz are generically finite, and specifically at the PH symmetric
point εd = −U/2, ng = 1/2, are given by

J = 4

U

(
t2
L + t2

B(Ec + U/2)

2Ec + U/2

)
, Q⊥ = 4

tLtB
U

,

Vz = 4
Ect2

B

U (2Ec + U/2)
.

On the other hand, the PH-odd couplings vanish at the PH
symmetric point; for example, V⊥ takes the form

V⊥ = −tLtB
Ec(2ng − 1) + 2εd + U

(εd + Ec(2ng − 1))(εd + U )
. (9)

D. RG equations and emergent symmetries

In this section we consider the Hamiltonian H +
δH (J,V, Q). The analysis of the remaining terms, such as
channel asymmetry, and magnetic and flavor fields, is post-
poned to Sec. V.

We have seen that, away from the PH symmetric point
(ng, η) = ( 1

2 , 0), generically all coupling constants J , Vz, V⊥,
Qz, and Q⊥ in Eq. (1) are finite. They satisfy the following
weak-coupling RG equations [19]:

dJ

dl
= J2 + Q2

z + 2Q2
⊥,

dVz

dl
= V 2

⊥ + 3Q2
⊥,

dV⊥
dl

= V⊥Vz + 3Q⊥Qz,

dQz

dl
= 2JQz + 2V⊥Q⊥,

dQ⊥
dl

= 2JQ⊥ + VzQ⊥ + V⊥Qz. (10)

Here l is the logarithmic RG scale parameter. In a similar
fashion to the Kondo RG equations displaying the irrelevancy
of spin anisotropy, it was noticed [19,39] that the present
system of RG equations flows to a strong-coupling fixed point
with equal couplings. When the system reaches isotropy V =
Q = J , these RG equations become dJ/dl = 4J2. The system
flows to the upper fixed point in Fig. 3 on the Kondo scale
[19]:

T SU(4)
K ∼ De−1/4J , (11)

where D is the conduction electron’s bandwidth.
Now consider the (ng, η) = ( 1

2 , 0) point where V⊥ = Qz =
0. A similar analysis of the isotropy of the remaining cou-
plings J , Vz, and Q⊥, suggests a flow to an isotropic fixed point
(see lower fixed point in Fig. 3) with dJ/dl = 3J2, and the
partially isotropic Hamiltonian flows to the lower fixed point

FIG. 3. Schematic RG flow for the PH-even couplings (horizon-
tal axis) and PH-odd couplings (vertical axis). In the infrared, the
couplings flow to one of two fixed points: a NFL phase or a FL phase.
A quantum phase transition from the former to the latter distinct
phases occurs as the PH-odd couplings are turned on.

in Fig. 3, with a slightly smaller Kondo scale,

T SO(5)
K ∼ De−1/3J . (12)

1. SU(4) versus SO(5)

Consider the matrix of 15 generators:

T ab = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎝

0 σ 3 −σ 2 σ 1τ 1 σ 1τ 2 σ 1τ 3

−σ 3 0 σ 1 σ 2τ 1 σ 2τ 2 σ 2τ 3

σ 2 −σ 1 0 σ 3τ 1 σ 3τ 2 σ 3τ 3

−σ 1τ 1 −σ 2τ 1 −σ 3τ 1 0 τ 3 −τ 2

−σ 1τ 2 −σ 2τ 2 −σ 3τ 2 −τ 3 0 τ 1

−σ 1τ 3 −σ 2τ 3 −σ 3τ 3 τ 2 −τ 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(13)

The 15 independent generators appearing in the upper triangu-
lar part (T ab = −T ba with a, b = 1, . . . , 6) satisfy the algebra
[T ab, T cd ] = −i(δbcT ad − δacT bd − δbd T ac + δad T bc). Hence
[54] they are 15 generators of SO(6), which is isomorphic to
SU(4). Specifically, these matrices form a four-dimensional
representation.

We can organize the impurity operators S and T into
generators of this SO(6) symmetry. One introduces a singly
occupied fermionic site carrying spin and flavor indices [55],
f †
ασ fασ = 1, in terms of which Sa = f † σ a

2 f , T b = f † τ b

2 f , and

2SaT b = f † σ aτ b

2 f . Then the four impurity states form a repre-
sentation of SO(6):

f †T ab f = Mab

=

⎛
⎜⎜⎜⎜⎜⎝

0 Sz −Sy 2SxT x 2SxT y 2SxT z

−Sz 0 Sx 2SyT x 2SyT y 2SyT z

Sy −Sx 0 2SzT x 2SzT y 2SzT z

−2SxT x −2SyT x −2SzT x 0 T z −T y

−2SxT y −2SyT y −2SzT y −T z 0 T x

−2SxT z −2SyT z −2SzT z T z −T x 0

⎞
⎟⎟⎟⎟⎟⎠.

(14)

Evidently, the fully isotropic situation with J = Vz = V⊥ =
Qz = Q⊥ allows us to write Hamiltonian H + δH in Eq. (1)
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in SO(6) [or equivalently SU(4)] isotropic form,

HSO(6) = H0 + J
15∑

A=1

JAMA, (15)

where JA = ψ†T Aψ and
∑15

A=1 = ∑6
a<b,a,b=1.

The case with PH symmetry in our model corresponds to
V⊥ = Qz = 0. Then the Hamiltonian (1) can be written in
terms of the ten generators of SO(5), which is a subgroup
of SO(6). These ten generators are given by T ab with a, b =
1, . . . , 5 [given by the matrix in Eqs. (14) by removing the last
column and row],

HSO(5) = H0 + J
10∑

A=1

JAMA, (16)

where
∑10

A=1 = ∑5
a<b,a,b=1.

2. Generalized anisotropic RG equations

The RG equations (10) assumed spin SU(2) symme-
try as reflected, e.g., in the Kondo coupling J . Similarly
it assumed flavor U(1) symmetry implying Vx = Vy and
Qx = Qy. Motivated by the next section based on the
anisotropic Emery-Kivelson approach, in which the spin
SU(2) symmetry is broken, we now generalize the RG
equations to the fully anisotropic case of the form H0 +∑6

a<b,a,b=1 λab(ψ†T abψ )( f †T ab f ). We associate each of
these terms with a coupling λab:

λab =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 Jz Jy Qx
x Qx

y Qx
z

Jz 0 Jx Qy
x Qy

y Qy
z

Jy Jx 0 Qz
x Qz

y Qz
z

Qx
x Qy

x Qz
x 0 Vz Vy

Qx
y Qy

y Qz
y Vz 0 Vx

Qx
z Qy

z Qz
z Vy Vx 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (17)

Here, we defined Qa
b by generalizing the spin-flavor coupling

terms Qb in Eq. (1) to Qa
bψ

†σ aτ bψSaT b, yielding 15 inde-
pendent coupling constants. As demonstrated in Appendix C,
these 15 coupling constants satisfy the RG equation

dλi j

dl
=

∑
k �=i, j

λikλk j . (18)

For example, the RG flow of Jx is given by

dJx

dl
= dλ23

dl
= λ21λ13 + λ24λ43 + λ25λ53 + λ26λ63

= JzJy + Qy
xQz

x + Qy
yQz

y + Qy
zQz

z. (19)

This system of equations is numerically solved in Appendix
C, showing that the isotropic fixed point is achieved for
anisotropic bare values including spin anisotropy, which cor-
responds to the Toulouse limit discussed in the next section.

III. MAPPING TO A MODEL OF MAJORANA FERMIONS

A. Bosonization and refermionization

In this section we apply the techniques that Emery and
Kivelson (EK) employed to the spin-2CK model [56], to solve

our spin-flavor model [Eq. (1)]. The resulting model consists
of a fixed-point Hamiltonian which is quadratic in terms of
bulk and local Majorana fermions. While in this section we
present the mapping to the various terms of the Hamiltonian
into the Majorana description, in Sec. IV we will apply this
approach to construct the phase diagram.

As discussed in detail in Refs. [57,58], the starting point
is to write the free part of the Hamiltonian in terms of chiral
one-dimensional fermions, H0 = ∑

α,σ ivF
∫ ∞
−∞

dx
2π

ψ†
ασ ∂xψασ ,

where vF is the Fermi velocity. We now treat the various
perturbations. We first consider the terms HJ + HVz , i.e., (i)
the spin-Kondo interactions in Eq. (1) which we assume to be
anisotropic,

HJ = 1
2 JzS

z(ψ†
α↑ψα↑ − ψ

†
α↓ψα↓)

+ 1
2 J⊥(S+ψ

†
α↓ψα↑ + S−ψ

†
α↑ψα↓), (20)

together with (ii) the Vz term HVz = 1
2VzT zψ†τ zψ .

The EK transformation begins with the replacement of the
fermionic fields ψασ (x) with bosonic fields φασ (x), using the
relation

ψασ (x) = Fασ a−1/2e−iφασ (x). (21)

Here a is a short distance cutoff [57,59] which we set to
unity. The Klein factors Fασ retain the fermionic commutation
relations. The spin-flip Kondo term becomes

Hj⊥ = 1
2 J⊥(S+F †

α↓Fα↑eiφα↓e−iφα↑ + H.c.). (22)

We then use the bosonization identity [58] ψ†
ασ (x)ψασ (x) =

∂xφασ (x) to bosonize the Jz term,

HJz = 1
2 JzS

z(∂xφα↑ − ∂xφα↓). (23)

Likewise, the free Hamiltonian maps to H0 =∑
ασ vF

∫ ∞
−∞

dx
2π

1
2 (∂xφασ )2. Next, the bosonic fields φασ are

reexpressed in a basis of charge, spin, flavor, and spin-flavor
degrees of freedom, denoted by φA (A = c, s, f , s f ):

φc = 1
2 (φ1↑ + φ1↓ + φ2↑ + φ2↓),

φs = 1
2 (φ1↑ − φ1↓ + φ2↑ − φ2↓),

φ f = 1
2 (φ1↑ + φ1↓ − φ2↑ − φ2↓),

φs f = 1
2 (φ1↑ − φ1↓ − φ2↑ + φ2↓). (24)

Thus

H0 + HJ

= vF

∫ ∞

−∞

dx

2π

1

2
(∂xφs)2 + JzS

z∂xφs(0)

+ 1

2
J⊥S+e−iφs [F †

1↓F1↑e−iφs f (0) + F †
2↓F2↑e+iφs f (0)] + H.c.

(25)

We proceed to perform unitary rotations generated by the Sz

and T z operators,

U = ei(γsSzφs+γ f T zφ f ). (26)
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In the spin-flip term J⊥, the spin ladder operators transform as
S± → S±e±iγsφs , yielding

H0 + HJ + HVz →
H0 + 1

2 J⊥(S+eiγsφs )e−iφs [F †
1↓F1↑e−iφs f

+ F †
2↓F2↑e+iφs f ] + H.c.

+ (Jz − γsvF )Sz∂xφs + (Vz − γ f vF )T z∂xφ f . (27)

A particular choice of the anisotropy parameters Jz and Vz,
satisfying

γs = Jz

vF
, γ f = Vz

vF
(Toulouse point), (28)

results in a cancellation of the last two lines in Eq. (27). In
addition, the vertex parts e−iφA of both spin and flavor sectors
cancel in all Kondo interactions, including those of the Q and
V operators, if γs = γ f = 1.

The spin-flip term becomes
1
2 J⊥S+[F †

1↓F1↑e−iφs f + F †
2↓F2↑e+iφs f ] + H.c. (29)

We proceed to define new Klein operators expressed in the
basis of A = c, s, f , s f , satisfying the following relations
[57,59]:

F †
x F †

s ≡ F †
↑1F↓1, FxF †

s ≡ F †
↑2F↓2,

F †
x F †

f ≡ F †
↑1F↑2, F †

c F †
s ≡ F †

↑1F †
↑2. (30)

Then the spin-flip term becomes

HJ⊥ = 1
2 J⊥S+[Fs(Fs f e−iφs f + F †

s f eiφs f )] + H.c. (31)

Finally we refermionize, i.e., rewrite these interactions in
terms of the new fermionic operators (either local or bulk
fermions),

ψA(x) = FAe−iφA(x) (A = c, s, f , s f ), (32)

d = F †
s S−, a = F †

f T −, (33)

where ψA are bulk fermions and d, a are local fermions,
corresponding to the spin and flavor impurity degrees of free-
dom, respectively. The bulk fermions can be used to define
Majorana fermion fields evaluated at x = 0,

χA+ ≡ ψ
†
A + ψA√

2
, χA− ≡ ψ

†
A − ψA

i
√

2
. (34)

We also define local Majorana fermions (“Majoranas”)

a+ ≡ a† + a√
2

, a− ≡ a† − a

i
√

2
, (35)

and similarly for d±. Notice that a†a = 1
2 + T z = 1

2 + ia−a+
and a2

± = 1
2 (and similarly for d±).

Thus, after the EK transformation we ended up with (i) four
local Majoranas, accounting for the 2 log 2 impurity entropy
of the free fermion fixed point, due to the spin and flavor
impurity degrees of freedom S and T , and (ii) eight Majo-
rana fields χA±. Our J⊥ term, for example, takes the form
iJ⊥d−χs f +(0), which couples the local spin Majorana (d−)
and the conduction electrons’ spin-flavor degree of freedom
χs f +.

B. Toulouse limit of the SO(5) fixed point

The PH-symmetric model which flows to the SO(5)-
symmetric point is obtained by combining the terms H∗

SO(5) =
H0 + HJ + HVz + HQ⊥ . At the Toulouse point, it is given by

H∗
SO(5) = H0 + iJ⊥d−χ+ − 2Qz

⊥a−χ+d−d+ − 2iQ⊥
⊥d+a−,

(36)

where χ± ≡ χs f ±(x = 0).
We now consider the Hamiltonian Eq. (36) from a RG

perspective. With respect to the free-fermion fixed point H0,
bulk fermions such as χ± have scaling dimension 	χ = 1/2
(with correlation function decaying as 1/t2	χ ), while local
Majoranas have scaling dimension zero. Boundary operators
of scaling dimension � 1 are relevant.

First, the J⊥ term resulting from the spin-flip interaction
is relevant (	J⊥ = 1/2). At energies lower than the Kondo
temperature ∼J2

⊥ the Majorana d− gets “absorbed” into the
Majorana bulk field χ+, resulting in [60]

d− ≈ χ+√
TK

. (37)

Thus d− picks up a scaling dimension 1/2 near the Kondo
fixed point.

The Q⊥
⊥ operator of dimension zero gaps out the d+ and

a− operators. The product ia−d+ obtains then an expectation
value. Replacing this operator in Qz

⊥ by a constant results
in a term of the same form as χ+d−, which can be used to
redefine J⊥ → J ′

⊥. We end up with a Majorana fixed-point
Hamiltonian, whose couplings are represented visually in the
figure in column 1 of Table II,

H∗
SO(5) → H0 + iJ ′

⊥d−χ+ − 2iQ⊥
⊥d+a−. (38)

1. Perturbations

Next, we add symmetry-breaking perturbation to the
Toulouse fixed-point Hamiltonian. Channel symmetry break-
ing represented by the J− term in Eq. (7) takes the form

HJ− = iJ−d−d+ψ
†
s f ψs f − iJ−d+χ−. (39)

As will be discussed in Sec. IV, both terms are irrelevant since
d+ is already gapped out. The least irrelevant (second) term
couples d+ to χ−, in addition to the couplings of Eq. (38) (see
figure in column 3 of Table II).

Additional key perturbations emerge from breaking PH
symmetry. First, those include V⊥ and Qz:

HV⊥,Qz = −iV⊥a+χ− + 2Qz(a−a+)d+χ−

− Qz(a−a+)d−d+ψ
†
s f ψs f . (40)

As before, we can use the finite expectation value of id+a−
to see that the second term (Qz ) simply renormalizes the first
term (V⊥). Similarly the third term in the second line is less
relevant than the first two.

Second, one has the flavor field perturbation

HB f = iB′
f a−a+. (41)

In addition to the bare flavor field Ec(1 − 2ng), this operator
corrects the coefficient of B f due to higher-order terms includ-
ing φ−. We thus consider this as a renormalization of ng.

195131-6



SO(5) CRITICAL POINT IN A SPIN-FLAVOR KONDO … PHYSICAL REVIEW B 103, 195131 (2021)

TABLE II. A summary of characteristics of different states of our spin-flavor model (rows and columns correspond to different observables
and states, respectively). The system’s states are as follows (from left to right): (1) SO(5) symmetry with both PH symmetry (ng = 1

2 , η = 0) and
LR symmetry (tL and tB tuned such that J− = 0). (2) Broken spin symmetry with an external magnetic field B. (3) Channel asymmetry, where
the tunneling couplings tL, tB are detuned such that J− �= 0. (4) PH breaking I: Upon adding generic PH asymmetry (εd/U �= −1/2, ng �= 1/2),
the system becomes a FL. (5) PH breaking II: PH-symmetry-breaking parameters are fine tuned such that a NFL is restored. The rows, from
top to bottom, stand for T → 0 impurity’s entropy, spin susceptibility, flavor susceptibility, and conductance between source and drain leads.
The final row illustrates the couplings between the local and bulk Majorana fermions. The red, blue, and green balls represent local-spin,
local-flavor, and bulk Majorana fermions, respectively. Dashed lines connect local Majoranas, while reddish strips represent couplings of a
local Majoranas to a Majorana field. Mixed-color balls imply that a Majorana basis rotation was performed.

(1) SO(5)
symmetry

(2) Magnetic field,
B

(3) Channel asymmetry,
J−

(4) PH symmetry breaking
I (Bf , V⊥)

(5) PH symmetry breaking
II, NFL line

Simp
1
2 log 2 1

2 log 2 1
2 log 2 0 1

2 log 2
χs ω ω ω ω const
χ f ω const const ω const
δG(ω) ( ω

Tk
)

3
2 ( ω

Tk
)

1
2 ( ω

Tk
)

1
2 ( ω

Tk
) ( ω

Tk
)

1
2

Majorana
coupling
scheme

2. Deviations from the Toulouse point

Generically there are deviations from the Toulouse point
condition, Eq. (28), resulting in terms of the form

δHs = i(Jz − vF )d−d+ψ†
s ψs,

δHf = i(Vz − vF )a−a+ψ
†
f ψ f . (42)

As we see in the following section, these terms are important
for the analysis of the effect of generic perturbations on trans-
port and thermodynamic properties of the system.

IV. NFL SO(5) FIXED POINT

The PH-symmetric NFL SO(5) point is located at ng = 1/2
and η = 0, where in addition a channel symmetry is im-
posed by tuning the tunnelings tL, tB so that J− = 0. Then
the effective Hamiltonian is given by Eq. (38). As summa-
rized in column 1 of Table II, in this section we present the
thermodynamic behavior in terms of entropy, spin and flavor
susceptibilities, and the conductance at the SO(5) point.

A. Entropy

Looking at H∗
SO(5) in Eq. (38), the Hamiltonian with both

channel and PH symmetries, we see that out of the four local
Majoranas, only a+ is decoupled (see schematic illustration in
column 1 in Table II).

Similar to the spin-2CK case with an unpaired Majorana
[56], this explains the fractional entropy of 1

2 log 2, observed
for T → 0 in either one of the NRG plots in the first row in
Fig. 4 where the perturbations are sent to zero [LR symmetry,
λ = 1, in Fig. 4(a); zero magnetic field, B = 0, in Fig. 4(d); or
PH symmetry, η = εd + U/2 = 0, in Fig. 4(g)]. In contrast to
the spin-2CK model, in our case the free Majorana is assigned
to the flavor degree of freedom T .

B. Spin and flavor susceptibilities

Consider the spin susceptibility χs(t ) = 〈Sz(t )Sz(0)〉. The
impurity’s spin can be written in the Majorana language as
Sz = d†d − 1

2 = id−d+ using Eq. (35). From Eq. (37) we then
obtain

χs(t ) ∝ 1

TK
〈χ+(t )χ+(0)〉〈d+(t )d+(0)〉. (43)

For the dimension-1/2 fermion field χ+, we have
〈χ+(t )χ+(0)〉 ∝ 1

t . We now study the behavior of
〈d+(t )d+(0)〉.

For comparison, in the spin-2CK model the Majorana
d+ is decoupled and thus has no dynamics, in which case
〈d+(t )d+(0)〉 = 1/4 and χ

spin-2CK
s (t ) ∝ 1

t ; Fourier transform-

ing, χ
spin-2CK
s (ω) ∝ const. In other words, the impurity spin

operator admits a low energy expansion in terms of a
dimension-1/2 field,

Sz
spin-2CK ∼ i√

TK
χ+d+ (scaling dimension 1/2). (44)

In our spin-flavor Kondo model, to find 〈d+(t )d+(0)〉 we
recall that d+ is gapped out along with a− by the Q⊥

⊥ term
in Eq. (38). This relevant term separates the Hilbert space
into low-energy and high-energy subspaces, with energy dif-
ference 2Q⊥

⊥, which are the ±1/2 eigenspaces of id+a−.
Equivalently we define a complex fermion f = 1√

2
(a− +

id+), so that f † f = 1
2 + ia−d+ and d+ = f − f †√

2i
. Namely,

HQ⊥ = −2iQ⊥
⊥d+a− = 2Q⊥

⊥( f † f − 1
2 ). The ground-state sub-

space ia−d+ = −1/2 corresponds to f † f = 0, and the excited
subspace ia−d+ = 1/2 to f † f = 1. We define projectors into
these subspaces,

P0 = 1 − f † f , P1 = f † f . (45)

The operators f † ( f ) appearing in Sz bridge the low-
and high-energy subspaces. Therefore, P0SzP0 = P1SzP1 =
0, meaning that 〈d+(t )d+(0)〉 strongly oscillates as ei2Q⊥

⊥t .
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FIG. 4. NRG results for the ALS model with different perturbations. Different columns stand for different perturbations: column 1, channel
asymmetry; column 2, magnetic field B �= 0; column 3, particle-hole-symmetry breaking η �= 0. Different rows stand for different observables:
row 1, the impurity’s entropy; row 2, the spin and flavor susceptibilities; and row 3, conductance. The LR asymmetry λ is defined as λ = ξ 2t2

L/t2
B

where ξ is found numerically such that at tB = ξ tL the system displays LR symmetry; we vary λ for fixed t2
B (1 + λ) = 0.02. In our NRG

calculations we measure energy in units of the bandwidth D = 1, setting Ec = 0.1; for further details see Ref. [49]. The dotted curves in
(c) and (f) are power-law fits; see discussions in Secs. IV C and V B.

Similar to a SW transformation, to obtain the leading operator
expansion of Sz at the spin-flavor fixed point, we perform
perturbation theory in off-diagonal operators with respect to
projectors P01. We define for any operator Oi j = PiOP j , in-
cluding for the Hamiltonian Hi j = PiHP j . For the fixed-point
Hamiltonian Eq. (38), off-diagonal terms H01, H10 do exist
and originate from deviations from the Toulouse point [see
δHs, f in Eq. (42)], since they include only one Majorana out
of the pair d+, a−. To second order in off-diagonal operators,
we find that the expectation value of any off-diagonal oper-
ator (like Sz) takes the form 〈O〉 = 〈O01(E − H11)−1H10 +
H10(E − H11)−1O10〉, where E here is the ground-state en-
ergy. Using E − H11

∼= −2Q⊥
⊥ for the excitation energy, we

see that off-diagonal operators do obtain an effective operator
form acting in the ground-state subspace,

O00,eff = 1

−2Q⊥
⊥

(O01H10 + H10O10). (46)

Thus, we obtain

Sz
spin-flavor ∼−Jz − vF

4Q⊥
⊥

ψ†
s ψs − i

Vz − vF

2Q⊥
⊥
√

TK
χ+ψ

†
f ψ f a++· · ·.

(47)

The first term has a scaling dimension 1, and coincides with
the spin current [61]. This term appears in any FL state. The
second term has scaling dimension 3/2 and the dots stand for
less relevant terms.

From the first leading term, the spin susceptibility decays
as 1

t2 . In frequency space this becomes χs(ω) ∼ ω, as dis-
played column 1, row 2, in Table II, matching the linear
behavior of the NRG calculated spin susceptibility in Fig. 4.

The flavor susceptibility χ f (t ) = 〈T z(t )T z(0)〉 can be dealt
with in a similar manner using its fermionic form T z = a†a −
1
2 = ia−a+. The leading term is

T z
spin-flavor ∼ −Vz − vF

4Q⊥
⊥

ψ
†
f ψ f + · · · , (48)

which has scaling dimension 1 (with an additional dimension-
3/2 operator originating from Jz − vF ), leading to a FL-like
behavior χ f (t ) ∼ 1

t2 , or χ f (ω) ∼ ω, matching our NRG re-
sults in Fig. 4.

C. Leading irrelevant operator and conductance

The temperature dependence of the conductance for the
multichannel Kondo effect probes the leading irrelevant
(boundary) operator at the nontrivial fixed point [13,62]. From
scaling analysis, a boundary perturbation of dimension 	

yields to first order a temperature dependence of the conduc-
tance of the form δG ∼ T 	−1.

In the spin-2CK state there exists an anomalous operator
of dimension 	 = 3/2 originally found by CFT [62], leading
to the experimentally observed δG ∼ T 1/2 scaling of the con-
ductance [10]. We can identify this dimension-3/2 operator in
the Majorana fermion language: In the spin-2CK case, with
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the Q⊥
⊥ term absent and hence d+ being a free Majorana, δHs

in Eq. (42) becomes

(δHs)(spin-2CK) ∼ i(Jz − vF )√
TK

(χ+ψ†
s ψs)d+

(scaling dimension 3/2). (49)

As discussed in Sec. IV B, in the spin-flavor model δHs

does not commute with Q⊥
⊥ and is off-diagonal in our two-

subspace decomposition, Eq. (45). The leading irrelevant
operator can be obtained from second-order perturbation the-
ory in off-diagonal operators,

H00,eff = H01(E − H11)−1H10. (50)

To obtain a nontrivial operator, this time we have to combine
δHs and δHf to obtain

δHirr = −i
(Jz − vF )(Vz − vF )

2Q⊥
⊥
√

TK
(χ+ψ†

s ψsψ
†
f ψ f )a+

(scaling dimension 5/2). (51)

We see that the leading irrelevant operator involves both spin
and flavor degrees of freedom and has a total scaling dimen-
sion of 5/2. It leads to a conductance scaling δG ∼ T

3
2 , as

observed in Figs. 4(c), 4(f), and 4(i) (see graphs for unper-
turbed cases).

V. PERTURBATIONS

Having analyzed the effective Hamiltonian and the re-
sulting physical properties at the SO(5) fixed point, as
summarized in the first column of Table II, we now dis-
cuss perturbations summarized in the remaining columns of
Table II.

A. Magnetic field

In the middle column of Fig. 4 we show NRG results for
the entropy, susceptibilities, and conductance in the presence
of a magnetic field B. We can see that a residual 1

2 log 2
entropy persists as T → 0, implying a NFL state. We also
observe a log 2 intermediate temperature plateau, indicating
the quenching of the spin degeneracy at T < B, followed by a
NFL behavior. While neither the 1

2 log 2 entropy at T → 0 nor
the ω scaling of the spin susceptibility are affected by B, the
flavor susceptibility χ f is no longer linear in ω, and becomes
a constant instead.

These behaviors can be accounted for within the Majorana
fermion framework. The magnetic field term −iBd+d− can be
incorporated into the fixed-point Hamiltonian (38). It can be
readily combined with the −2iQ⊥

⊥d+a− term by a Majorana
rotation, (

a′
−

d ′
−

)
=

(
cos αB sin αB

− sin αB cos αB

)(
a−
d−

)
, (52)

where sin αB = B√
(2Q⊥

⊥ )2+B2
, yielding

H∗
SO(5) − iBd+d− = H0 + iJ ′

⊥(cos(αB)d ′
− + sin(αB)a′

−)χ+

− i2Q′d+a′
−, (53)

where Q′ =
√

(Q⊥
⊥)2 + (B/2)2. We first notice that a+ re-

mains free (see scheme in column 2 of Table II), support-
ing the observed 1

2 log 2 entropy at T → 0. Although the
Majorana rotation, Eq. (52), maintains the system in a NFL
state, it does modify certain correlation functions.

The operator expansion of the impurity spin operator Sz,
to leading order in B, remains as in Eq. (47), governed by
the dimension-1 operator ψ†

s ψs, so that the spin susceptibility
remains FL-like.

On the other hand, the flavor impurity operator T z = ia−a+
now obtains a diagonal component in terms of the rotated
projectors P0,1, which are defined as in Eq. (45), but in terms
of the rotated Majorana pair (d+, a′

−) instead of (d+, a−).
In the expression T z = ia−a+, the Majorana a+ is free, and
a− = cos αBa′

− − sin αBd ′
− contains a component ∝ sin αB ∝

B/(2Q⊥
⊥) which is diagonal in the low- and high-energy sub-

spaces associated with the Q′ term. Thus,

(T z
(+B) )00 ∼ −i

B

2Q⊥
⊥
√

TK
χ+a+

(scaling dimension 1/2). (54)

Hence, the magnetic field causes the flavor operator to scale
like the fermion field χ+, and acquire a scaling dimension 1/2.
As a result χ f (t ) ∼ 1

t (χ f (ω) ∼ const).
To address the effect of the magnetic field on the con-

ductance, we identify the leading irrelevant operator. In the
absence of B the leading operator of dimension 5/2 in Eq. (51)
resulted from combining δHs and δHf , each of which in-
dividually bridges the low- and high-energy sectors of Q⊥

⊥.
However, in the presence of B and the associated Majo-
rana rotation, δHf alone contributes to the leading irrelevant
operator

δH (+B)
irr = (δHf )00 = −i(Vz − vF )

B

2Q⊥
⊥
√

TK
(χ+ψ

†
f ψ f )a+,

(55)
which has scaling dimension 	 = 3/2. Thus, the conductance
scaling is modified into a δG ∼ T 1/2 form. This is indeed
observed in Fig. 4(f).

B. Breaking channel symmetry

We now consider broken LR symmetry while still preserv-
ing PH symmetry. Among the list of operators in Table I, this
case includes J− and V −

z . The most relevant term is δH− =
−iJ−d+χ− [see Eq. (39)]. This extra coupling between χ− and
d+, shown in Table II, column 3, still leaves the a+ Majorana
decoupled, implying a fixed point with 1

2 log 2 entropy.
To determine the low-energy behavior of the spin suscepti-

bility, we look at the operator expansion of Sz, which in the
absence of J− is given by the dimension-1 operator ψ†

s ψs

in Eq. (47). The leading-order expansion of Sz = id−d+ is
obtained from Eq. (46) where H10, H01 ∝ J−. However, due to
anticommutation relations, Eq. (46) yields a vanishing contri-
bution in this case. Hence the FL-like behavior of χs persists.

As for the flavor susceptibility, the flavor impurity operator
T z = ia−a+ now combines with J− according to Eq. (46) to
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yield a dimension-1/2 operator of the form

T z ∼ −i
J−

2Q⊥
⊥

χ−a+. (56)

Namely, the flavor susceptibility acquires NFL behavior at
low energy.

Finally, the leading irrelevant operator stems from δHf

combined with H− in Eq. (50). It yields a dimension-3/2
operator

δHirr ∼ −i
J−(Vz − vF )

2Q⊥
⊥

χ−(ψ†
f ψ f )a+, (57)

which leads to a T 1/2 scaling of the conductance as confirmed
in Fig. 4(c).

These low-energy limits of the entropy, spin and flavor
susceptibilities, and conductance are summarized in Table II,
column 3.

We now further discuss these results from our NRG simu-
lations. In Fig. 4(a) we see the impurity entropy as a function
of temperature for (ng, η) = ( 1

2 , 0) and for various ratios be-
tween the left and right tunnelings λ ∝ t2

L/t2
B. While the T =

0 fixed-point entropy remains 1
2 log 2 in all cases, channel

asymmetry changes the way in which the entropy goes to
its fixed-point value. As asymmetry grows, two successive
crossovers appear: one from log(4) to log(2) on a scale T 1

K ,
and a second from log(2) to log(2)/2 at a scale T 2

K < T 1
K .

This is in contrast to the symmetric case which shows a single
drop from log(4) to log(2)/2. In the strongly asymmetric limit
one can associate [63,64] the first drop with a 1CK screening
of the spin degree of freedom, while the 1

2 log 2 drop is a
nontrivial signature of a 2CK partial screening and relates to
the flavor degree of freedom. This claim is supported by our
NRG calculation of the magnetic susceptibility in Fig. 4(b),
where only one crossover is observed at T 1

K . This indicates
that the second crossover at T 2

K for large asymmetry occurs in
the flavor sector.

C. Breaking particle-hole symmetry

PH symmetry is broken away from the point (ng, η) =
( 1

2 , 0). As can be seen in our NRG calculations in the right
column of Fig. 4, in this case the NFL is destabilized, with a
drop of the entropy to zero in Fig. 4(g). Notice that the flavor
field which is turned on for ng �= 0, breaks PH symmetry as
well as LR symmetry. Thus we should consider all the cor-
responding terms in Table I (V⊥, Qz; φ; J−, Q−

z ,V −
z , φ−; B f ).

We focus on a subset of these perturbations which leads to a
relevant instability of the SO(5) NFL state.

As in Sec. V A, we begin with incorporating the Majorana-
Majorana flavor coupling, iB f a−a+, into the fixed-point
Hamiltonian. It can be combined with the −2iQ⊥

⊥d+a− term
by another Majorana rotation,(

d̃+
ã+

)
=

(
cos αB f sin αB f

− sin αB f cos αB f

)(
d+
a+

)
, (58)

where sin αB f = B f√
(2Q⊥

⊥ )2+B2
f

, yielding

H∗
SO(5) − iB f a+a− = H0 + iJ⊥d−χ+ − i2Q̃d̃+ã−, (59)

where Q̃ =
√

(Q⊥
⊥)2 + (B f /2)2. We first notice that instead of

a+, at this stage ã+ is free (see Majorana scheme in column 4
of Table II). However, adding generic perturbations that break
PH and LR symmetry, no Majorana remains free. We identify
three perturbations, V⊥, Qz, and J−, that when turned on,
take the form of a dimension-1/2 coupling iã+χ−. Explicitly,
keeping only relevant operators in HV⊥,Qz + δH− in Eqs. (39)
and (40), we find

HV⊥,Qz + δH− → −iV ã+χ−,

V = cos αB f (V⊥ + Qz ) − sin αB f J−. (60)

Due to the coupling V which is generically finite when PH
symmetry is broken, the so-far-free Majorana ã+ is coupled
to the conduction electrons; hence the residual entropy is
quenched, and the system turns into a FL [see Fig. 4(g)]. In
this case, resorting to the methods developed above, one can
show that the system shows no anomalous NFL behavior;
i.e., the impurity spin and flavor operators acquire scaling
dimension 1, and the leading irrelevant operator has scaling
dimension 2. This is summarized in column 4 of Table II.
However, as we discuss next, the NFL state can be recovered
even in the PH- and LR-symmetry-broken phase, upon fine
tuning.

VI. EMERGENCE OF NFL LINE FROM SO(5) POINT
IN THE (ng-η) PHASE DIAGRAM

The coupling constant V in Eq. (60) depends on the tunnel-
ing amplitudes of the lead-dot-box model through the explicit
forms of the various couplings, obtained through the SW
transformation in Appendix A. The condition

V (J−,V⊥, Qz, B f ) = 0 (NFL) (61)

implies that the system is fine tuned to a NFL state with a
residual 1

2 log 2 entropy.
For a given tL/tB one can solve the equation

V (εd ,U, Ec, tL, tB) = 0 for ng as a function of η. The
resulting function is a NFL curve in the (ng, η) phase diagram
which approaches the SO(5) point. This is plotted in Fig. 5,
where we solved Eq. (61), V (εd ,U, Ec, tNRG

L α, tNRG
B α) = 0

for different tunneling ratios. The cutoff scheme in NRG is
different, allowing one fitting parameter α which is found to
give optimal fitting for α ∼= 0.11. We see that these curves
qualitatively match the observed NRG NFL lines in the
proximity of the ng = 0.5, η = 0 point. While our NRG
results of Ref. [49] extend in the entire (ng, η) phase diagram,
which is periodic in ng → ng + 1 (see Fig. 1 in Ref. [49]), our
SW mapping which considered a limited number of charge
states is restricted to the vicinity of point ng = 1/2.

While the fit shows the various NFL curves emanating
from the SO(5) point with a LR-asymmetry-dependent slope,
the Toulouse limit approach is expected only to reproduce
reliably the scaling properties (summarized in Table II), but
not the detailed dependence on model parameters.

Along the NFL curve, the Majorana ã+ remains decoupled.
At the SO(5) point, B f = 0, it coincides with a+ from the
flavor sector [see Eq. (58)]. As B f increases, the free Majorana
tends towards d+ from the spin sector. This indicates a smooth
rotation in the spin and flavor space [46–48].
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FIG. 5. Numerical solutions of Eq. (61), representing the evo-
lution of the NFL curve in the ng-εd plane in the proximity of
the ng = 1

2 point. These numerical solutions (continuous curves)
are qualitatively fitted to NRG results using a single parame-
ter α; see main text. The caption denotes the values tNRG

L =
0.08, 0.09, 0.1, 0.11, 0.092235 and tNRG

R = 0.12 used in the NRG
calculations for the ALS model.

Physical properties

We see that if we deviate from the SO(5) point along a
specific direction, the system’s NFL nature persists. We then
have a free Majorana fermion, ã+, as illustrated in the scheme
in column 5 of Table II. Rather than the SO(5) NFL, we have
generically on the NFL line a behavior similar to the spin-2CK
NFL state, as implied by the physical signatures discussed
next.

Using Eqs. (37) and (58), the spin operator contains the
terms Sz = id−d+ = i χ+√

TK
(cos(αB f )d̃+ + sin(αB f )ã+). Keep-

ing only its low-energy component,

(Sz )00 ∼ 1√
TK

sin(αB f )iχ+ã+. (62)

Comparing with Eq. (44) in the spin-2CK case, the spin
susceptibility along the NFL curve contains a NFL compo-
nent ∝ sin2(αB f ) which vanishes at the SO(5) point, χs(ω) ∝
const × sin2(αB f ) + O(ω).

As for the flavor susceptibility, since we generically have
a finite J− operator on the NFL line, we have the same
dimension-1/2 operator as in Eq. (56) leading to a NFL fla-
vor susceptibility. Similarly, there is a dimension-3/2 leading
irrelevant operator ∝ J− as in Eq. (57).

VII. SUMMARY

We revisited a quantum impurity problem describing a
quantum dot device where two channels of electrons interact
both with an impurity spin and with an additional “flavor”
impurity. Using bosonization and refermionization, we con-
structed a consistent picture describing the coupling of the
impurity degrees of freedom with the conduction electrons,
and allowing to compute the various observables. Our field
theory results are consistent with our numerical renormaliza-
tion group calculations, and with a non-Fermi liquid fixed
point exhibiting SO(5) emergent symmetry.

So far, it was believed that the device displays exotic two-
channel Kondo behavior upon tuning the channel asymmetry
to zero. Our study shows that the NFL behavior is much
more robust and extends to generic values of the channel
asymmetry, upon tuning of the quantum dot level position.
As demonstrated here in great detail, we reached this under-
standing from the high-symmetry fixed point. Using NRG,
as already demonstrated in Ref. [49], we found how this
SO(5) fixed point connects in the phase diagram to the more
conventional spin-two-channel Kondo state. Our predictions
within the system’s complex phase diagram can be tested
experimentally, in terms of conductance [10,11] and also more
recent entropy measurements [65–67].
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APPENDIX A: SCHRIEFFER-WOLFF (SW)
TRANSFORMATION

We derive the effective Hamiltonian (1) among the various
additional interaction terms summarized in Table I, starting
from the lead-dot-box model. The system is initially either in
the (N0, N0 + 1) or (N0 + 1, N0) charge state of the lead and
box, with one electron (with spin up or down) in the small
dot. To second order in the tunneling amplitude, depending
on the initial state, the system visits one of the four interme-
diate states depicted in Fig. 6. As long as the lead and box
are equally treated as left and right reservoirs, the left and
right sides of Fig. 6 are related by left-right transformation.
Here, solid and dashed arrows represent the first and second
tunneling events, respectively. For later use we detail the asso-
ciated energies at zero tunneling. The energy is obtained from
Eqs. (2) and (3), E = Ec(NB − N0 − ng)2 + εd nd + Un↑n↓.
For the two initial states, E (N0,N0+1) = Ec(1 − ng)2 + εd and
E (N0+1,N0 ) = Ecn2

g + εd . We assume without loss of generality
that ng � 1/2, so the ground-state energy is EGS = E (N0+1,N0 ).
For example, the energy of the first intermediate state in
Fig. 6, in which an electron tunnels from the small dot to
the box, is ε+

1 = Ec(2 − ng)2, while ε−
1 = Ecn2

g. We define
E±

j ≡ EGS − ε±
j ( j = 1, 2, 3, 4), which are given explicitly by

E+
1 = εd + 4Ec(ng − 1),

E+
2 = εd + Ec(2ng − 1) = E−

2 ,

E+
3 = −εd + Ec(2ng − 1) − U,

E+
4 = −εd − U = E−

4 ,

E−
1 = εd ,

E−
3 = −εd − Ec(2ng + 1) − U . (A1)
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FIG. 6. Schematic representation of virtual transitions considered in our SW expansion. The two middle columns of the first row represent
the two possible initial charge states (N0, N0 + 1) on the left and (N0 + 1, N0) on the right. The red circle represents the dot, the blue
ellipse represents the box and/or leads, and the small open or solid circles indicate occupancy by electrons. The two outer columns show
the intermediate states. Solid arrows represent the direction in which electrons hop to reach the intermediate state, and dashed arrows represent
the electronic hopping yielding final state. The intermediate states’ energy is denoted by ε±

i . For instance, the process that begins with an initial
state of (N0 + 1, N0) becomes (N0 + 1, N0 − 1) after an electron hops from the box to the dot, through the intermediate state of energy ε−

3 .

To perform perturbation theory in the hybridization, we
start from the ALS model,

HALS =
∑

α=L,R

∑
k,σ

εkψ
†
kασ

ψkασ + Ec
(
T z

B − N0 − ng
)2 + Hd

+
∑
kασ

tα (d†
σψkασ T −

α + H.c.), (A2)

where in comparison to Eq. (5), we added another pseudospin
T operator to the lead for convenience. Denoting the lead as
the left (L) reservoir, and the box as the right (R) reservoir, we
thus have two pseudospin operators TL,R, whose z component
measures whether the corresponding reservoir is in the N0 + 1
state (Tα = 1/2) or N0 state (Tα = −1/2) and T + increases the
charge from N0 to N0 + 1.

Treating the tunneling operators as a perturbation, HALS =
H0 + Hhyb where H0 = H0 + HB + Hd , to second order the
effective Hamiltonian is

δHeff = Hhyb
1

E − H0
Hhyb, (A3)

where E = EGS, giving

δHeff =
∑

k,k′,α,β,σ,σ ′
tαtβ

(
d†

σ ckασ T −
α

1

E − H0
T +

β c†
k′βσ ′dσ ′

+ T +
α c†

kασ
dσ

1

E − H0
d†

σ ′ck′βσ ′T −
β

)
. (A4)

The first term corresponds to hole processes with an empty
small dot intermediate state (states ε±

1,2 in Fig. 6) while the
second corresponds to particle processes involving a doubly
occupied small dot (states ε±

3,4 in Fig. 6). The energy denom-
inator represents (minus) the energy difference between the
virtual and initial state as given in Eq. (A1). We now reduce
the two pseudospin operators back to a single one representing
the pair of states (N0, N0 + 1) or (N0 + 1, N0), defined as

T + = T −
L T +

R , T − = T +
L T −

R , T z = T z
R = −T z

L . (A5)

We also define projection operators, P+, P−, into the
(N0, N0 + 1), (N0 + 1, N0) states, respectively:

P+ = 1/2 + T z, P− = 1/2 − T z. (A6)

The effective interactions can be separated as δHeff = H+ +
H− depending on whether the system starts in the + or − state,
each of which contains four terms linked with the processes in
Fig. 6. For the (N0, N0 + 1) initial state we have

H+ =
[ ∑

k,k′,σ,σ ′
t2
R

1

E+
1

(d†
σ ckRσ T −

R T +
R c†

k′Rσ ′dσ ′ )

+
∑

k,k′,α,σ,σ ′
tLtα

1

E+
2

(d†
σ ckασ T −

α T +
L c†

L,k′,σ ′dσ ′ )

+
∑

k,k′,σ,σ ′
t2
L

1

E+
3

(T +
L c†

kLσ
dσ d†

σ ′ck′Lσ ′T −
L )

+
∑

k,k′,α,σ,σ ′

tαtR
E+

4

(T +
α c†

kασ
dσ d†

σ ′ck′Rσ ′T −
R )

]
P+. (A7)

Similarly, from the (N0 + 1, N0) state (right side in Fig. 6) we
generate the interactions

H− =
[ ∑

k,k′,σ,σ ′
t2
L

1

E−
1

(d†
σ ckLσ T −

L T +
L c†

k′Lσ ′dσ ′ )

+
∑

k,k′,α,σ,σ ′
tRtα

1

E−
2

(d†
σ ckασ T −

α T +
R c†

k′Rσ ′dσ ′ )

+
∑

k,k′,σ,σ ′
t2
R

1

E−
3

(T +
R c†

kRσ
dσ d†

σ ′ck′Rσ ′T −
R )

+
∑

α,k,k′,σ,σ ′

tαtL
E−

4

(T +
α c†

kασ
dσ d†

σ ′ck′Lσ ′T −
L )

]
P−. (A8)

Defining local fermion operators ψασ = ∑
k ckασ and impu-

rity spin �S = d†
σ

�σσσ ′
2 dσ ′ , the resulting effective Hamiltonian

can be written as δHeff = ∑
i λiOi, where the local operators

Oi and coupling constants λi are listed in Table I. Each oper-
ator has a well defined left-right (LR) transformation and PH
symmetry.

We separated the coupling constants into (i) a pair
of operators that transmit charge from left to right (V⊥
and Q⊥) containing T ±, (ii) four operators which are LR
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even (J,Vz, Qz, φ), (iii) LR-odd versions of the former four
(J−,Vz−, Qz−, φ−), and (iv) the flavor field T z.

Following a tedious but straightforward algebra, the cou-
pling constants can be obtained. The explicit form of the
pseudospin-flip operators are

Q⊥ = −tRtL

(
1

E−
2

+ 1

E−
4

)
,

V⊥ = −tRtL

(
1

E+
2

− 1

E+
4

)
. (A9)

The four couplings which have a LR-odd version, such as J ,
can be written as J = JL + JR and J− = JL − JR, and simi-
larly for Vz, Qz, and φ where

JR = − t2
R

2

(
1

E+
1

+ 1

E−
2

+ 1

E−
3

+ 1

E+
4

)
,

QR
z = t2

R

2

[(
1

E+
1

− 1

E−
2

)
−

(
1

E−
3

− 1

E+
4

)]
,

φR = − t2
R

8

[(
1

E+
1

+ 1

E−
2

)
−

(
1

E−
3

+ 1

E+
4

)]
,

V R
z = t2

R

4

[(
1

E−
3

− 1

E+
4

)
+

(
1

E+
1

− 1

E−
2

)]
,

and JL, QL
z , φL, V L

z are obtained from these expressions by in-
terchanging E+

j ↔ E−
j and tR ↔ tL. Similarly, the flavor field

is given by BR = t2
R( 1

E+
1

− 1
E−

2
). This term correcting Eq. (8)

leads simply to a shift in the definition of ng.

APPENDIX B: PH TRANSFORMATION OF BOSONIC
AND MAJORANA FIELDS

Under the PH transformation Eq. (6), ψα↑ → −iψ†
α↓ and

ψα↓ → iψ†
α↑. Rewriting this in terms of boson fields and

Klein factors using Eq. (21), we have

Fα↑e−iφα↑ → −iF †
α↓eiφα↓ ,

Fα↓e−iφα↓ → iF †
α↑eiφα↑ . (B1)

This transformation rule is consistent with

Fα↑ → F †
α↓, Fα↓ → +F †

α↑, (B2)

and

φα↑ → −φα↓ + π/2, φα↓ → −φα↑ − π/2. (B3)

Here we made a choice attaching the minus sign in the PH
transformation to the bosons rather than Klein factors.

Moving to the A = c, s, f , s f bosons using Eq. (24), we
have

φs f → φs f , φs → φs + π,

φ f → −φ f , φc → −φc. (B4)

The relevant perturbation V⊥ in Table I is PH odd. It adds
to the Hamiltonian the perturbation −iV⊥a+χ−, which con-
sists of the Hermitian operator

ε = (a† + a)(ψs f − ψ
†
s f ), (B5)

where a = F †
f T −. (The notation ε relates to our CFT solution

of the problem [49], where this field belonged to the Ising
CFT.) We would like to show that ε is PH odd. Explicitly

ε = (Ff T − + F †
f T −)(Fs f e−iφs f + F †

s f eiφs f ). (B6)

Now we perform the PH transformation on the pair of Klein
factors,

F †
s f F †

f = F †
1↑F2↑ → F1↓F †

2↓ = −F †
2↓F1↓ = −F †

s f Ff . (B7)

In the last equality we used the relation in Eq. (30) and the
unitarity of Klein factors. We conclude that under PH symme-
try Ff → −F †

f . Combining this with T + → T −, we see that
ε → −ε.

APPENDIX C: WEAK-COUPLING RG EQUATIONS
AND FLOW TOWARDS THE SO(5) FIXED POINT

Derivation of Eq. (18)

We begin with a derivation of Eq. (18) following the per-
turbative RG approach [68]. Consider a fixed-point theory
described by a set of operators Oi having scaling dimensions
	i, and satisfying the operator product expansion (OPE)

Oi(x)Oi(y) =
∑

k

ci jk
Ok (y)

(x − y)	i+	 j−	k
. (C1)

FIG. 7. (a) The value of the couplings (there are 15 of them in
total) normalized by Jx , as a function of the RG scale parameter �, for
an initial value where all couplings are equal to u = 0.00018, except
for Jz = 1.5u, Vz = 1.1u, and Vx,Vy, Qx

z , Qy
z , Qz

z = 0. We see that all
ratios of couplings flow to unity. (b) For the same RG flow we display
on a logarithmic scale the absolute values of the couplings. We see
that isotropy is reached together with strong coupling, in which the
weak-coupling RG equations become uncontrollable.
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Now consider the fixed-point Hamiltonian H∗ perturbed by
δH = ∑

i λiOi. In our case all these operators are marginal,
	i = 1. Then the perturbative RG equations are determined
by the OPE coefficients [68],

dλi/d� =
∑

jk

ci jkλ jλk. (C2)

We have 15 operators OA = (ψ†T Aψ )( f †T A f ) with TA

given in Eq. (14). PH symmetry reduces this to 10
operators. We can gain further insight into the proper-
ties of OA by analyzing its two factors. In Sec. II D 1
we defined Mab = f †T ab f and Jab = ψ†T abψ , such that
A ∈ (ab) (a, b = 1, . . . 5, a < b). The impurity operators
Mab satisfy [Mab, Mcd ] = −i(δbcMad − δacMbd − δbd Mac +
δad Mbc). The Jab operators satisfy a similar OPE. This can

be seen if we define a vector of Majorana fields �ξ via

�ξ = (χs+,−χs−, χs f +, χ f −, χ f +,−χs f −, χc+, χc−).

(C3)

By explicitly using the EK bosonization and refermionization
one can show that Jab = iξaξb (a, b = 1, . . . , 6). The OPE of
the Jab’s then follows from Wick’s theorem, and from this one
can obtain the OPE satisfied by the OA operators, leading to
the RG equation [Eq. (18)].

Numerical integration

In Fig. 7 we integrated Eq. (18) starting with anisotropic
finite values of the ten PH symmetric couplings. We see a flow
to the isotropic SO(5) fixed point.
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