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Electric and heat transport in a charge two-channel Kondo device
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Motivated by the experimental realization of a multi-channel charge Kondo device [Iftikhar et al., Nature
(London) 526, 233 (2015)], we study generic charge and heat transport properties of the charge two-channel
Kondo model. We present a comprehensive discussion of the out-of-equilibrium and time-dependent charge
transport, as well as thermal transport within linear response theory. The transport properties are calculated at,
and also in the vicinity of, the exactly solvable Emery-Kivelson point, which has the form of a Majorana fermion
resonant level model. We focus on regimes where our solution gives exact results for the physical quantum dot
device, and highlight new predictions relevant to future experiments.
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I. INTRODUCTION

The Kondo model is one of the paradigmatic models of
strong correlation physics [1]. In its original context, it was
introduced to describe the physics of dilute magnetic im-
purities embedded in a metallic system [2,3]. The magnetic
impurity is screened below an emergent low-temperature scale
TK , the Kondo temperature, forming a nontrivial many-body
singlet state which shows the behavior of a local Fermi liquid
(FL) [4]. This scenario explained the unexpected increase in
resistivity of such systems in the low-temperature regime as
a consequence of enhanced spin-flip scattering from the im-
purities [5]. More recently, it was realized that semiconductor
quantum dot devices with strong local Coulomb interaction
can also display Kondo physics [6,7]. The Kondo model also
played an important role on the theoretical side: it led to many
new concepts and developments [8–10] and still plays an im-
portant role as a testbed for techniques of strong correlations.

The two-channel Kondo (2CK) model [11] is a nontrivial
extension of the Kondo model: two independent metallic baths
couple to a single impurity spin degree of freedom, and com-
pete to screen it (see Fig. 1 with JLR = 0). In the case where
one of the two baths couples more strongly, this bath eventu-
ally screens the impurity spin, while the less strongly coupled
bath decouples asymptotically in the zero-temperature limit,
leading to an effective single channel Kondo effect with the
ground state properties described as a FL. However, if both
baths are coupled equally strongly (Fig. 1 with JLR = 0 and
JLL = JRR) the Kondo screening is frustrated, and the ground
state shows non-Fermi liquid (NFL) behavior with an impurity
entropy indicative of a ground state degeneracy of

√
2, charac-

teristic of a Majorana fermion. The effective Emery-Kivelson
theory [12] describing the critical point is indeed a local
Majorana fermion, resonantly coupled to one-dimensional
Majorana fermions.

Despite being a very interesting model showing non-Fermi
liquid behavior, an experimental realization is notoriously

difficult, but not impossible [13–16]. One of the main chal-
lenges is to ensure the strict independence of the two baths,
meaning JLR = 0 in Fig. 1. For a single ultra-small quan-
tum dot tunnel-coupled to two metallic leads, one has JLR =√

JLLJRR �= 0, and in this case a simple canonical transfor-
mation yields a pure one-channel model. Even for coupled
quantum dot systems [17] or single-molecule junctions [18]
in the spin- 1

2 Kondo regime, JLR is always finite and generates
a crossover to a FL state on the lowest energy scales [19].
However, replacing one lead with a quantum “box” (a large
dot or grain) with finite capacitance suppresses interchannel
charge transfer [20], such that JLR = 0. This was demon-
strated experimentally in Refs. [13,14] and the 2CK critical
point was realized.

An alternative version of the 2CK model exploits a charge
degeneracy in a large quantum dot instead of a spin degen-
eracy [21,22]: this setup is called the charge two-channel
Kondo (C2CK) effect and is the focus of this work. In 2015,
Iftikhar et al. [15] realized the C2CK effect experimentally
in a quantum dot device, enabling a spectacular experimental
verification of theoretical predictions [21–23]. Indeed, this
device was also able to probe the more exotic charge three-
channel Kondo effect [16].

In this paper, we provide a comprehensive discussion of the
transport properties of the C2CK system, and provide theoret-
ical predictions for future transport measurements. The paper
is organized as follows. In Sec. II we start with a discussion of
the two-channel Kondo model. We introduce it in its original
spin version and also discuss aspects of the Emery-Kivelson
mapping needed for the most technical parts of the paper. We
then introduce the C2CK model and provide a simple dictio-
nary to go back and forth between the spin and charge versions
of the model. We end with a discussion of the limitations
of the Emery-Kivelson solution and extensions. In Sec. III,
we first discuss the technicalities of the nonequilibrium cal-
culation for charge transport. We also introduce the general
framework of linear response theory, which is required for
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FIG. 1. Schematic of the most general anisotropic 2CK model.
The coupling constants are of the form Jαβ ≡ (Jαβ

x Jαβ
y Jαβ

z )T , also
allowing for impurity-mediated exchange cotunneling between the
leads via JLR.

the discussion of heat transport. In Sec. IV, we discuss exact
charge transport properties of the Emery-Kivelson theory both
for time-dependent and steady state situations, making ex-
plicit connection to the physical C2CK system at each stage.
The dc solution discussed in this section is equivalent to the
known solution of the spin 2CK model [23–26], but adapted
to the C2CK setup. On the other hand, in the ac case we use
the framework from Ref. [27] (again adapted to the C2CK
setup) to find an integral expression for the ac conductance,
which we take a step further by evaluating it to find a closed-
form expression. We go on to discuss the charge conductance
within linear response using the Kubo formula. Although a
voltage bias can be treated exactly within the Emery-Kivelson
mapping, we explain why the full nonequilibrium calculation
cannot be performed for heat transport. However, we can
calculate heat transport properties within linear response. This
is done in Sec. V, leading to a novel result for the heat conduc-
tance. We discuss the possibility to use heat transport to verify
the Majorana character of the critical theory as well as the
Wiedemann-Franz law at the NFL point in Sec. VI, elaborat-
ing on results we published recently in Ref. [28]. In Sec. VII,
we discuss the limits of validity of the Emery-Kivelson solu-
tion on a quantitative level and the possible corrections to this
solution (the expressions for these corrections have previously
been presented in Refs. [29–31], but we provide a concise
derivation for the reader’s convenience). However, we empha-
size already at this stage that our results for the NFL fixed
point properties, and the subsequent crossovers to a FL state,
are exact and not specific to the Emery-Kivelson approach
used to obtain them. We conclude in Sec. VIII. Technical
details are provided in extensive appendices.

II. THE ANISOTROPIC TWO-CHANNEL KONDO MODEL

We start by introducing the most general form of the
anisotropic 2CK model, shown in Fig. 1. The model consists
of two leads and a local part. For generality we also include a
term describing an impurity magnetic field. The Hamiltonian
then takes the form Ĥ = Ĥleads + Ĥloc + Ĥmag. We model the
leads as effectively one-dimensional channels with Fermi ve-
locity vF and a constant density of states. In the absence of
any bias between the leads, we therefore have

Ĥleads =
∑

α

Ĥα = ih̄vF

∑
α

∑
σ

∫ ∞

−∞
dx ψ†

ασ (x)∂xψασ (x),

(1)

where ψασ (x) are the fermionic operators for lead α = L (left)
or R (right), with spin σ =↑ or ↓. Meanwhile, the local part
of the anisotropic 2CK model is described by the Hamiltonian
[24]

Ĥloc =
∑
α,β

∑
λ

Jαβ

λ sλ
αβτ λ, (2)

with

sαβ ≡ 1

2

∑
σ,σ ′

ψ†
ασ (0)σσσ ′ψβσ ′ (0). (3)

Here α, β label the leads, Jαβ

λ are the respective exchange
coupling constants, sαβ is the local electron spin density of
the leads evaluated at the origin (x = 0), σ is the vector of
Pauli matrices, and λ = x, y, z. The operator for the impurity
spin-1/2 degree of freedom, located at the origin, is denoted τ .
Finally, we take the constant magnetic field B coupling to the
impurity spin to be in the z direction, giving Ĥmag = −Bτ z.
The full Hamiltonian of the anisotropic 2CK model at zero
bias is thus given by

Ĥ = ih̄vF

∑
α

∑
σ

∫ ∞

−∞
dx ψ†

ασ (x)∂xψασ (x)

+
∑
α,β

∑
λ

Jαβ

λ sλ
αβτ λ − Bτ z. (4)

A. Two-channel physics

The addition of a second channel introduces behavior that
is not present in the ordinary single channel Kondo model. Of
particular interest is the situation with two independent baths
(JLR = 0), symmetric couplings (JLL = JRR) and no magnetic
field (B = 0). At this special point, both leads compete to
form a Kondo singlet with the impurity at low temperatures;
however the LR symmetry of the system frustrates complete
screening. A signature of this is the finite residual impurity
entropy Simp at temperature T = 0 (i.e., the entropy of the
full system minus the entropy of the free leads). For this
2CK point, Simp = 1

2 ln 2 as the temperature goes to zero,
characteristic of a Majorana degree of freedom [32]. At this
special point in parameter space unconventional NFL be-
havior emerges, most notably in the temperature dependence
of thermodynamic quantities. In particular, the heat capacity
∼T ln T and the magnetic susceptibility ∼ ln T [32–34]. Re-
laxing the above conditions and breaking these symmetries
relieves the frustration and leads to a more conventional FL
state, with vanishing residual entropy, linear temperature scal-
ing of heat capacity, and constant low-temperature magnetic
susceptibility. The symmetric model is therefore an NFL crit-
ical point separating different FL phases.

If the baths are independent (JLR = 0), there is no charge
transport between L and R leads, by construction (the total
charge in L and R leads is separately conserved). However
heat transport, due to a temperature difference between L and
R leads, is in general finite due to spin-flip scattering (there
is only global spin conservation, since the spin of L and R
leads is not separately conserved). The model supports sev-
eral regimes [23,35] illustrated in Fig. 2, which have distinct
thermal transport signatures.
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FIG. 2. Distinct temperature regimes of the 2CK model with JLR = 0. (Left) Isolated local moment, with weak coupling and little heat
transport. (Middle) NFL critical point, characterized by frustration and unconventional heat transport signatures. (Right) FL regime resulting
in a transmission node. Illustrated is the particular case of small LR coupling asymmetry such that one lead forms a Kondo singlet with the
impurity, thereby decoupling the other lead and suppressing thermal transport (“Kondo blockade”). By contrast, note that electrical conductance
is exactly zero at any temperature if JLR = 0.

At high temperatures, the effective (renormalized) cou-
pling between the impurity and the leads is weak. As a result,
the impurity forms a nearly free local moment, and heat trans-
port between the leads through the impurity is perturbatively
small. When the temperature is decreased below TK how-
ever, the Kondo effect sets in and the renormalized coupling
between the impurity and the leads increases to a nonpertur-
bative intermediate value. In this regime, the leads compete to
screen the impurity spin. If the couplings are symmetric, i.e.,
JLL = JRR, this results in frustration, as discussed above. The
system then approaches the NFL critical point as T 
 TK , and
both leads remain coupled to the impurity. However, if there
is a small detuning present (e.g., a magnetic field B �= 0, or
an asymmetry in the couplings JLL − JRR �= 0), an additional
energy scale kBT ∗ emerges, below which the frustration is
relieved. As T 
 T ∗, the system instead flows towards the
single channel FL ground state. This FL ground state does
not support transport between the leads through the impurity.
For example, a finite magnetic field locks the impurity into
a single spin state blocking spin scattering, and asymmetry
in the coupling between the impurity and the leads results in
the decoupling of the less strongly coupled lead (the “Kondo
blockade” scenario of Ref. [18]). Of particular interest is the
crossover from the intermediate NFL region (where the tem-
perature is still sufficiently large that the detuning perturbation
can be neglected) to the FL regime (which pertains on the
lowest temperature scales, where the renormalized detuning is
large and dominates). Note however, that this “FL crossover”
only shows universal behavior when there is a clear separation
of scales, T ∗ 
 TK .

In the spin-isotropic model (setting Jαα
x = Jαα

y = Jαα
z ≡ Jα

and JLR = 0), the above is summarized by the renormalization
group (RG) flow illustrated in Fig. 3 [11,36]. If the system
has exact LR symmetry, this is preserved under RG: the sys-
tem flows along the blue solid lines (the diagonal) in Fig. 3
towards the intermediate coupling NFL fixed point, starting
either from weak or strong coupling. However, if there is a
small LR asymmetry, then the system first flows towards the
NFL fixed point, but then flows away because the detuning
grows under RG, and eventually a strong-coupling FL fixed
point is reached (dashed lines). The coupling asymmetry J	 ≡
JL − JR is therefore an RG relevant perturbation. Similarly,
magnetic field B and exchange cotunneling JLR are relevant.
The smaller the detuning perturbation, the smaller T ∗, so the
closer the system flows along the solid lines. For T ∗ 
 TK , the
FL scale is quadratic in the perturbation strength, T ∗ ∼ J2

	 (or
∼B2) [34]. In the limit T ∗ 
 T 
 TK , the system starts out

very close to the NFL fixed point and follows the universal FL
crossover line (solid red lines).

With the isotropic RG flow in mind, it should be noted that
the flow diagram of the spin-anisotropic 2CK model contains
additional axes corresponding to the spin anisotropies, and the
full SU(2) spin symmetry is broken. Setting Jαβ

x = Jαβ
y ≡ Jαβ

⊥
but allowing Jαβ

⊥ �= Jαβ
z reduces the spin symmetry to U(1),

but a Kondo effect can still arise (no Kondo effect is possible
if the symmetry is lowered further by allowing Jαβ

x �= Jαβ
y ).

Therefore we consider the model with general Jαβ

⊥ and Jαβ
z .

We also now set JLR
z = JRL

z = 0. With this choice, Eq. (2) can
be written as

Ĥloc =
∑
α,β

Jαβ

⊥
2

(s+
αβτ− + s−

αβτ+) + (
JLL

z sz
LL + JRR

z sz
RR

)
τ z,

(5)

where τ± = τ x ± iτ y and s±
αβ = sx

αβ ± isy
αβ are the raising and

lowering operators corresponding respectively to the impurity

FL 

FL 

NFL 

FIG. 3. Schematic RG flow of the spin-isotropic 2CK model,
in absence of exchange cotunneling between the leads. The solid
inward-pointing arrows (blue) correspond to the LR symmetric case,
i.e., the flow towards the NFL fixed point; the solid outward-pointing
arrows (red) describe the flow away from this point, towards the
FL regime, due to infinitesimal detuning perturbation J	 = JL − JR

(this is a universal crossover between NFL and FL fixed points). The
dashed lines (green) correspond to the behavior at finite J	.

205137-3



VAN DALUM, MITCHELL, AND FRITZ PHYSICAL REVIEW B 102, 205137 (2020)

and lead spins. The first term of Eq. (5) can thus be interpreted
as spin-flip interactions, while the second term describes Ising
type interactions. Returning to our discussion of the RG flow
(again setting JLR = 0), the flow diagram of this anisotropic
model has two additional axes, representing the anisotropies
	Jαα

z ≡ Jαα
z − Jαα

⊥ for α = L or R. However, unlike the per-
turbations J	 or B, the anisotropies 	Jαα

z are RG irrelevant
parameters [37]. As a result, the system will always end up
flowing towards an isotropic fixed point upon scaling. This in
turn means that Ising type interactions Jαα

z are generated by
the RG flow as the energy scale of the system T/TK goes to
zero. In terms of Fig. 3, systems with different Jαα

z start their
flow out of the plane, but end up at a fixed point in the plane.
Importantly, if J	 is very small, the system will flow first to
the isotropic NFL fixed point, and then remain in the isotropic
plane along the entire NFL to FL crossover, independently of
the spin anisotropy at the start of the flow. The FL crossover is
therefore universal and pertains for any anisotropy in the bare
model.

Indeed, there is a stronger sense in which the FL crossover
is universal. The nature of the detuning leading to the FL
crossover scale T ∗ does not affect the FL crossover behavior
itself. The same crossover, as a function of the rescaled T/T ∗,
is generated independently of the symmetry-breaking pertur-
bation causing it [19] (only the crossover scale T ∗ depends on
the precise perturbations).

We exploit the emergent spin isotropy and the univer-
sality of the FL crossover in the following. Specifically,
we utilize an exactly solvable point of the model, corre-
sponding to a specific value of the bare spin anisotropy, to
access the NFL fixed point properties. Then we can study
the universal FL crossover due to a small symmetry-breaking
perturbation (we choose a finite impurity magnetic field here
while maintaining LR symmetry, as this case is the sim-
plest to treat). Both the NFL fixed point properties and
the FL crossover obtained in this way are valid for a bare
model with different anisotropy and/or different perturba-
tions (or even a combination of different perturbations). In
particular, our results hold for the C2CK model, as shown
below.

B. Exactly solvable point of the model

We make use of the fact that Eq. (4) describes an ef-
fective one-dimensional system to bosonize the model. As
per Eq. (5), we take Jαβ

x = Jαβ
y ≡ Jαβ

⊥ and JLR
z = JRL

z = 0.
We now additionally constrain JLL

z = JRR
z ≡ Jz. Importantly,

it was shown by Emery and Kivelson [12] that this 2CK
model can be mapped onto a noninteracting resonant level
model at a special point in parameter space, namely, when
Jz = 2πhvF , where vF is the Fermi velocity of the leads. This
procedure was generalized to a nonequilibrium situation, with
a time-dependent bias voltage between the leads, by Schiller
and Hershfield [24]. We make extensive use of these mappings
in the following, and hence recapitulate the derivation below.

In short, the mapping presented in Refs. [12,24] is done
through a series of steps, starting with the bosonization of
the fermionic fields, ψασ (x) ∝ e−i�ασ (x). Then, a change of
basis (canonical transformation) is performed by taking new
linear combinations of the old bosonic fields �L↑(x), �L↓(x),

�R↑(x), and �R↓(x); the new fields are referred to as the
charge, spin, flavor and spin-flavor modes, defined as

�c(x) ≡ 1
2 (�L↑(x) + �L↓(x) + �R↑(x) + �R↓(x)), (6)

�s(x) ≡ 1
2 (�L↑(x) − �L↓(x) + �R↑(x) − �R↓(x)), (7)

� f (x) ≡ 1
2 (�L↑(x) + �L↓(x) − �R↑(x) − �R↓(x)), (8)

�s f (x) ≡ 1
2 (�L↑(x) − �L↓(x) − �R↑(x) + �R↓(x)). (9)

After rewriting the Hamiltonian in terms of these new bosonic
fields and performing a unitary transformation, the model is
refermionized to obtain

Ĥ = ih̄vF

∑
ν

∫ ∞

−∞
dx ψ†

ν (x)∂xψν (x)

+ J+

2
√

2πa0
(ψ†

s f (0) + ψs f (0))(d† − d )

+ JLR
⊥

2
√

2πa0
(ψ†

f (0) − ψ f (0))(d† + d )

+ J−

2
√

2πa0
(ψ†

s f (0) − ψs f (0))(d† + d )

+ (B − (Jz − 2π h̄vF ) : ψ†
s (0)ψs(0) :)

(
d†d − 1

2

)
.

(10)

In the above expression, ν = c, s, f , s f , the constant a0 is an
ultraviolet cutoff originating from the lattice spacing encoun-
tered in the bosonization procedure, d = iτ+ is a fermionic
operator corresponding to the impurity spin, and the coupling
constants J± are defined as

J± ≡ 1
2 (JLL

⊥ ± JRR
⊥ ). (11)

Equation (10) has two important features. Firstly, it immedi-
ately follows that the model is noninteracting at the point

Jz = 2π h̄vF , (12)

where the last term of Eq. (10), the interaction term, vanishes.
This exactly solvable point is a variation of the so-called
Toulouse point of the one-channel Kondo model [38], and we
will refer to this particular two-channel Toulouse point as the
Emery-Kivelson (EK) point. At the EK point, the model is
free and equivalent to a resonant level model. Secondly, we
see that the leads are coupled to Majorana fermions on the
impurity,

a ≡ 1√
2

(d† + d ), b ≡ 1

i
√

2
(d† − d ), (13)

and so the model is a Majorana resonant level model at the
EK point.

From Eq. (10) at the EK point, we immediately see that
for B = 0 and J+ = 0, the b Majorana is strictly decoupled
from the rest of the system. However, J+ = 0 requires that
JLL
⊥ and JRR

⊥ have different signs (i.e., one of the couplings is
ferromagnetic). This is not the physical situation of interest,
since Kondo couplings in real systems are generically antifer-
romagnetic. On the other hand B = 0, J− = 0, and JLR

⊥ = 0
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FIG. 4. Schematic of the C2CK device, where VL,R govern the
transmission coefficients tL,R, and the gate voltage Vg determines the
charge on the dot. The dashed gray box denotes a metallic “deco-
herer” that ensures the left and right sides of the dot are essentially
disconnected, i.e., there is no coherent transport between them. Due
to the large applied magnetic field, the electrons are spin-polarized
and effectively spinless. Instead, we label itinerant electrons living
on a lead as σ =↑, and electrons located on the large dot as σ =↓,
such that the electron position on the lead or dot acts as a pseudospin.
The two degenerate macroscopic charge states of the dot similarly
act as a pseudospin, with |N + 1〉 ≡ |↑〉 and |N〉 ≡ |↓〉. The left and
right leads are maintained at a general “potential” ± 1

2 	φ, where 	φ

can be either a bias voltage or a temperature gradient.

results in the a Majorana decoupling. Physically, this corre-
sponds to the situation with LR-symmetric couplings (which
are antiferromagnetic) and no exchange cotunneling between
the L and R leads, as desired. The implication of the free
impurity Majorana is that we have a T = 0 residual entropy
of Simp = 1

2 ln 2. This is precisely the condition for the NFL
critical point. Finite B, J−, or JLR

⊥ destabilizes the NFL fixed
point by mixing in the other Majorana and ultimately quench-
ing the residual entropy to give Simp = 0. These are therefore
relevant perturbations. Note that finite JLL

z − JRR
z is generated

under RG by J−, while finite JLR
z is generated under RG by

JLR
⊥ , even though these are initially zero at the EK point.

We therefore now study Eq. (10) at the point J− = 0 and
JLR
⊥ = 0, but retain the magnetic field term proportional to B

as a means of studying the FL crossover. The model then takes
the simplified form

Ĥ =
∑

ν

∑
k

εkψ
†
ν,kψν,k + g⊥(ψ†

s f (0) + ψs f (0))(d† − d )

+ B

2
(d†d − dd†), (14)

where εk = h̄vF k and g⊥ ≡ J⊥/2
√

2πa0. As we shall see
in the next section the Hamiltonian, Eq. (14), is relevant to
describe the C2CK system.

C. The charge two-channel Kondo model

Having covered the general anisotropic 2CK model and its
exactly solvable point, we will now consider the C2CK de-
vice proposed in Refs. [21,22] and experimentally realized in
Refs. [15,16]. Before we discuss the corresponding effective
model, we describe the components of the C2CK device as
shown in Fig. 4. It consists of a large metallic island (acting as
a quantum dot with a continuous spectrum) connected to two
separate metallic leads through quantum point contacts with
tunable transmission coefficients tL and tR [21,22]. In a strong
perpendicular magnetic field, two effects are utilized: (i) the

leads and the dot are in the quantum Hall regime, providing
unidirectional edge channels; and (ii) spin degeneracy is bro-
ken both in the dot and the leads, producing spin-polarized
fermions. Therefore we now omit the real spin index. The
number of electrons on the quantum dot is controlled by a
gate voltage Vg. This gate voltage imposes an electrostatic
energy ∼(Q + eN ′)2, where N ′ is a dimensionless parame-
ter proportional to Vg, e is the (positive) elementary charge,
and Q is the (negative) electric charge on the quantum dot.
If Vg is tuned such that N ′ is half-integer, we have a two-
fold degeneracy with either N = N ′ − 1

2 or N + 1 = N ′ + 1
2

electrons on the dot. Given that the charging energy1 EC is
sufficiently large (i.e., EC � kBT ) the dot states are effectively
restricted to |N〉, |N + 1〉. The last step towards achieving a
two-channel situation is to “disconnect” the two sides of the
dot and thereby the two leads. This is achieved by adding a
large metallic “decoherer” on top of the dot, which serves to
scatter electrons, causing a long dwell time on the dot, and
inhibiting coherent transport from the left to the right side of
the dot. We therefore have essentially independent electronic
systems, involving both dot and lead states, around the left
and right quantum point contacts. However, the dynamics are
correlated by the common dot charging energy.

In order to formulate an effective model for the C2CK
device, we translate all components to the spin language that
was also used for the general anisotropic 2CK model. First, we
identify the macroscopic dot charge states |N〉, |N + 1〉 as dot
pseudospin states | ↓〉, | ↑〉. Additionally, we label the spinless
itinerant electrons residing on the leads as “spin up” and those
on the dot as “spin down” (see Fig. 4). We also distinguish
between itinerant states on the left and on the right side of the
dot, which is made possible by virtue of the decoherer. Charge
transport between leads through the quantum dot proceeds by
an electron tunneling from, say, the left lead onto the dot, and
then another electron tunneling from the dot onto the right
lead. In spin language, this process corresponds to a spin cur-
rent: tunneling at the left quantum point contact corresponds
to a pseudospin flip of the left conduction electrons and of
the dot pseudospin, while subsequent tunneling at the right
quantum point contact flips the dot pseudospin back at the
same time as flipping the pseudospin of the right conduction
electrons. Overall, the dot pseudospin is “reset,” allowing the
process to be repeated. These are the only allowed transport
processes at low temperatures. Charge transport through the
quantum dot is therefore equivalent to a sequence of spin-flip
processes, which are Kondo-enhanced.

The local part of the effective model describing the C2CK
device is therefore given in pseudospin language by the first
term of Eq. (5), where the coupling constants Jαα

⊥ depend on
the transmission coefficients tα , and JLR

⊥ = 0. Terms propor-
tional to Jz are absent in the C2CK setup, and so the model has
intrinsic spin anisotropy (although from the above discussion
we know this to be irrelevant). The dot spin operators τ±
are included to enforce the constraints on the dot particle

1The charging energy is the energy cost of having N − 1 or N + 2
rather than N or N + 1 electrons on the dot. This is equal to EC =
((3e/2)2 − (e/2)2)/2C = e2/C, where C is the capacitance of the
dot.
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TABLE I. Summary of the relation between the anisotropic 2CK
model and the C2CK device, further elaborated on in the main text.
Note especially that the Ising type interactions Jz are absent in the
C2CK device.

Spin Charge

Dot states |↑〉, |↓〉 |N + 1〉, |N〉
Itinerant states ψασ ψα↑ (leads), ψα↓ (dot)
Spin-flip interactions Jαα

⊥ tα
Ising type interactions Jz –
Magnetic field B 	Vg

number, and as such can be thought of in terms of projectors,
τ+ = |N + 1〉〈N | and τ− = |N〉〈N + 1|.

The effect of a magnetic field B on the dot pseudospin
can be described by introducing a small detuning 	Vg in the
gate voltage (giving an energetic preference to one of the dot
change states over the other), and is therefore proportional
to τ z.

We conclude that the full Hamiltonian describing the
C2CK system is given by the anisotopic 2CK model Eq. (4),
but with specific values of the parameters: JLL

⊥ ∼ tL, JRR
⊥ ∼

tR, B ∼ 	Vg, JLR
⊥ = JRL

⊥ = 0, and Jαβ
z = 0. The connection

between the two models is summarized in Table I. This equiv-
alence forms the basis for all calculations in this paper.

A few remarks are in order. (i) One should note that the
EK point and the effective C2CK model are both special
points of the anisotropic 2CK model, with the value for Jz

being the only difference between these two special points.
Nevertheless, the distinction between the two is important:
the anisotropic 2CK model is only noninteracting for a very
specific finite value of Jz; the lack of Ising-type interactions
in the C2CK model make it irreducibly strongly correlated.
(ii) The redefinition of the spin label for the itinerant states
requires careful consideration when applying a bias between
the leads. In particular, for the spin 2CK model, both the
spin up and the spin down states live in the leads and a
bias affects both spin species; for the C2CK device, only the
spin up states live in the leads, while the spin down states
are located on the dot. In order to exploit the equivalence
between the anisotropic 2CK model and the C2CK device, an
applied bias in the C2CK device effectively involves only the
(pseudo)spin-up electrons. Consequently, special care must be
taken to translate the definition of the current operators into
the pseudospin language.

D. Low temperature limit of the C2CK model

The C2CK model and the exactly-solvable EK point
are very similar, both being special cases of the general
anisotropic 2CK model, and in fact only differing in their val-
ues of Jz. Furthermore, as discussed in Sec. II A, both models
flow to the same NFL fixed point since Jz is RG irrelevant.
Indeed, the physics for all T 
 TK is the same in both models.
In particular, for small detuning perturbations, the same FL
crossover results.

To obtain universal results for the C2CK system in
the regime T 
 TK , we can therefore perform calculations
for the anisotropic 2CK model at the EK point, and then
send T/TK → 0. To access the universal FL crossover, we

additionally require T ∗/TK → 0. In practice, we achieve both
by letting TK → ∞. Note however, that the crossover from
the local-moment (free pseudospin) fixed point to the NFL
fixed point of the C2CK system cannot be captured within the
EK point calculation. Instead, correct results for the C2CK
model for T � TK can be accessed by expanding the EK point
solution about Jz = 2π h̄vF [39]. Here, such perturbations are
a function of T/TK , and only strictly vanish as T/TK → 0.

The above considerations allow us to use the Hamiltonian
from Eq. (14) as the starting point for all of the transport
calculations that follow.

III. TRANSPORT: PRELIMINARIES

Here we summarize the preliminaries necessary to calcu-
late transport properties in the C2CK model, using Eq. (14).
We first discuss general conserved charges that are coupled
to a bias by a simple potential term, and introduce the nec-
essary current operators. Then the Emery-Kivelson mapping
is performed to obtain the effective current operators in the
equivalent noninteracting theory. Finally, we discuss the spe-
cial case of a temperature gradient, which cannot directly
enter the effective Hamiltonian, and requires a different treat-
ment within linear response theory.

A. Potentials and current operators

We consider quantum transport through the dot due to a
potential gradient between the two leads. Therefore we shall
examine how a general potential difference between the leads
enters on the level of the Hamiltonian, and the form of the
corresponding current operators. First we use the common
example of a bias voltage and corresponding charge current.

We apply the bias voltage V symmetrically such that the
left lead feels a uniform potential of V/2, while the right lead
feels −V/2. Given that σ = ↑ refers to the electrons in the
leads, the additional term in the Hamiltonian due to a bias
voltage is given by

ĤV = −eV

2

∫ ∞

−∞
dx[ψ†

L↑(x)ψL↑(x) − ψ
†
R↑(x)ψR↑(x)], (15)

which can simply be written as

ĤV = q̂V, q̂ ≡ 1

2
(q̂L − q̂R),

q̂α = −e
∫ ∞

−∞
dx ψ

†
α↑(x)ψα↑(x) ≡ −eN̂α. (16)

Here, q̂α is an operator for the total charge on lead α, while N̂α

is the corresponding number operator. This can be generalized
to a general, time-dependent “charge” operator Q̂α (t ) for lead
α, coupled to a general time-dependent “potential” drop be-
tween the leads 	φ(t ). The minimal coupling contribution to
the Hamiltonian then reads

Ĥφ (t ) = Q̂(t )	φ(t ), where Q̂(t ) ≡ 1
2 (Q̂L(t ) − Q̂R(t )).

(17)

Next, we define the general current operator ÎQ(t ), corre-
sponding to the general charge Q̂(t ). Applying the continuity
equation and imposing total charge conservation, the current
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leaving lead α is given by ÎQα
= − dQ̂α

dt . A natural way to
define the current flowing through the dot region is as the
average of the current leaving the left lead and the current
entering the right lead. This gives

ÎQ ≡ 1

2

(
−dQ̂L

dt
+ dQ̂R

dt

)
= −dQ̂

dt
= i

h̄
[Q̂, Ĥ ], (18)

with Ĥ being the full Hamiltonian (Eq. (14) with the addition
of Ĥφ). For charge transport, we thus have Îc = e

2
d
dt (N̂L −

N̂R), while for energy transport the current is given by ÎE =
− 1

2
d
dt (ĤL − ĤR), where Ĥα is the part of the Hamiltonian

corresponding to lead α. Now, from the first law of thermody-
namics at constant volume, dE = dQ + μ dN (dQ referring
to heat), it follows that the heat current operator is given by
Îh = ÎE − μÎN , where μ is the chemical potential in the leads.

B. Emery-Kivelson mapping of the current operators

As discussed in Sec. II D, the strategy employed in this
paper is to utilize the exactly solvable EK point to calculate
observables. It is therefore necessary to apply the Emery-
Kivelson mapping [12] (as briefly outlined in Sec. II B)
to the current operators. First we perform the mapping on
the generalized “charge” operators Q̂c = − e

2 (N̂L − N̂R) and
Q̂E = 1

2 (ĤL − ĤR). The current operators then follow from
the commutators of these operators with the full (mapped)
Hamiltonian using Eq. (14).2 More details on the bosonization
and refermionization [40–42] used in the mapping procedure
can be found in Appendix A.

The first part of the mapping procedure is the introduction
of a bosonic field �ασ (x) for each of the fermionic fields
ψασ (x),

ψασ (x) = 1√
2πa0

eiφασ e−i�ασ (x), (19)

where eiφασ are Klein factors to ensure the correct anticommu-
tation relations between the fermionic fields. Following the
usual bosonization prescription, the various components of
the charge operators transform according to∫ ∞

−∞
dx ψ†

ασ (x)ψασ (x) = 1

2π

∫ ∞

−∞
dx ∂x�ασ (x), (20)∫ ∞

−∞
dx ψ†

ασ (x)∂xψασ (x) = − i

4π

∫ ∞

−∞
dx(∂x�ασ (x))2, (21)

where normal ordering of the fermionic fields is implied.
Substituting these expression into the definitions of the charge
operators, and writing in terms of the ν = c, s, f , s f fields
from Eqs. (6)–(9), we find

Q̂c = − e

4π

∫ ∞

−∞
dx(∂x� f (x) + ∂x�s f (x)), (22)

Q̂E = h̄vF

8π

∫ ∞

−∞
dx(∂x�c(x) + ∂x�s(x))

× (∂x� f (x) + ∂x�s f (x)). (23)

2It is also possible to calculate the commutators first and only then
going through the mapping procedure, but that turns out to be much
more cumbersome.

The next step of the Emery-Kivelson mapping procedure is
the unitary transformation Ô → Û ÔÛ †, with Û = eiχsτ

z
and

χs ≡ �s(0) − φs. Using the commutation relation

[�μ(x), ∂x�ν (x′)] = 2π i δμ,ν δ(x − x′), (24)

together with d = iτ+ (such that τ z = −(d†d − 1/2)), it is
straightforward to show that

Q̂E → h̄vF

8π

∫ ∞

−∞
dx(∂x�c(x) + ∂x�s(x))

× (∂x� f (x) + ∂x�s f (x))

+ h̄vF

4

(
d†d − 1

2

)
(∂x� f (x) + ∂x�s f (x))|x=0, (25)

under this unitary transformation, while Q̂c remains un-
changed. The final step of the mapping procedure consists of
refermionization. Using relations similar to those involved in
the initial bosonization step and noting that∫ ∞

−∞
dx : ψ†

μ(x)ψμ(x)ψ†
ν (x)ψν (x) :

= 1

4π2

∫ ∞

−∞
dx(∂x�μ(x))(∂x�ν (x)) (26)

for μ �= ν (as shown in Appendix A), the charge operators can
be written as

Q̂c = − e

2

∫ ∞

−∞
dx(ψ†

f (x)ψ f (x) + ψ
†
s f (x)ψs f (x)), (27)

Q̂E = π h̄vF

2

∫ ∞

−∞
dx : (ψ†

c (x)ψc(x) + ψ†
s (x)ψs(x))

× (ψ†
f (x)ψ f (x) + ψ

†
s f (x)ψs f (x)) :

+ π h̄vF

2
(: ψ

†
f (0)ψ f (0) : + : ψ

†
s f (0)ψs f (0) :)

×
(

d†d − 1

2

)
. (28)

We now determine the current operators by Fourier trans-
forming the charge operators to momentum space and evalu-
ating the commutators with the Hamiltonian from Eq. (14).
Starting with the current operator corresponding to electric
charge:

Îc = − ie

2h̄

∑
k

[ψ†
f ,kψ f ,k + ψ

†
s f ,kψs f ,k, Ĥ ]

= − ieg⊥
2h̄

√
L

∑
k

(ψ†
s f ,k − ψs f ,k )(d† − d ), (29)

where L is a length scale originating from Fourier transform-
ing the ψν fields (i.e., the lattice constant times the total
number of lattice sites on a given lead). Although more cum-
bersome, the energy current can be obtained in the same way:

ÎE = iπvF g⊥
2L3/2

∑
k,k′,k′′

(ψ†
c,k′ψc,k′′ + ψ

†
s,k′ψs,k′′ )

× (ψ†
s f ,k − ψs f ,k )(d† − d )

205137-7



VAN DALUM, MITCHELL, AND FRITZ PHYSICAL REVIEW B 102, 205137 (2020)

+ iπvF g⊥
4L3/2

∑
k,k′,k′′

(2 ψ
†
f ,k′ψ f ,k′′ + δk′,k′′ )

× (ψ†
s f ,k + ψs f ,k )(d† + d )

+ iπvF

4L

∑
k,k′

(εk′ − εk )(ψ†
f ,kψ f ,k′ + ψ

†
s f ,kψs f ,k′ )

× (d†d − dd†). (30)

Strikingly, the energy current operator (and therefore the
heat current operator) is much more complicated than the
charge current operator. This originates from the fact that
heat transport itself is a more complicated concept: while
electric transport only involves charge-carrying excitations,
heat transport involves all modes supported by the system.
As a result, the mapping of a strongly interacting system to
an effective noninteracting model comes at the price of a
significantly more complicated heat current operator. In terms
of the Emery-Kivelson mapping procedure, this fundamental
difference between charge and heat transport emerges during
the unitary transformation. In particular, the operator corre-
sponding to electric charge does not pick up additional terms
due to the fact that the spin modes �s do not carry charge and
therefore commute with Q̂c. On the other hand, the spin modes
do carry energy, resulting in several additional terms entering
into Q̂E upon performing the unitary transformation. The sec-
ond and third terms of Eq. (30) originate from this step.

With the general charge Q coupled to a bias according to
Eq. (17), the observable time- and temperature-dependent cur-
rent can now be calculated by taking the expectation value of
the corresponding current operator ÎQ with respect to the full
Hamiltonian. In the case of charge transport, the full Hamil-
tonian (including the minimal coupling term) is quadratic and
can be treated exactly using the Keldysh formalism. This is
done in Sec. IV.

C. Linear response theory

With the full nonequilibrium current 〈ÎQ〉 at hand, one
can take the zero-bias limit 	φ → 0 to find the conductance
d〈ÎQ〉/d	φ in linear response. However, the strategy outlined
in the previous section requires that the bias term enters
directly in the Hamiltonian, and can be transformed in the
effective model through the Emery-Kivelson mapping. The
expectation value of the transformed current operator can then
be evaluated directly in the transformed model. This all works
perfectly in the case of a voltage bias, Eq. (15) [27].

However, a temperature gradient cannot be dealt with
in this way, and heat transport is much more subtle. One
cannot directly calculate the expectation value of the phys-
ical heat current operator in the Emery-Kivelson model for
two reasons. First, the temperature gradient cannot enter the
Hamiltonian in the same way as the bias voltage, since tem-
perature is a boundary condition. The usual solution for this
problem is to instead give the leads a different temperature in
their Fermi-Dirac distributions. This brings us to the second
problem: as will become clear in Sec. IV, direct calculation of
the current depends on the flavor and spin-flavor modes being
in thermal equilibrium. This means that they both must obey
the Fermi-Dirac distribution with a well-defined temperature.

However, the flavor and spin-flavor modes are composite
modes, with contributions living on both leads [see Eqs. (8)
and (9)]. Therefore there is no well-defined thermal equilib-
rium for these modes if left and right leads are themselves at
different temperatures. We conclude that the full nonequilib-
rium calculation of thermal transport is impossible within the
Emery-Kivelson framework at the exactly-solvable EK point.
To calculate thermal transport, we need to circumvent these
problems and use a different approach.

In linear response, an alternative approach is to calculate
the linear susceptibilities directly from perturbation theory
in the bias. For charge transport this method reproduces the
zero-bias limit results of the full nonequilibrium calculation.
However, as we will see below, it also allows us to overcome
the problems associated with calculating thermal transport. In
particular, when working within linear response theory, the
linear susceptibility is obtained from the equilibrium solution
in absence of the bias [43]. In this case, a well-defined temper-
ature can be assigned to the composite flavor and spin-flavor
modes, which are in thermal equilibrium.

As a starting point, we again consider a general “charge” Q̂
coupled to a general “potential” 	φ, previously considered in
Eq. (17). For real time t , the expectation value of the current
corresponding to Q̂ is given by

〈ÎQ〉(t ) =
∫ ∞

−∞
dt ′χ (t, t ′)	φ(t ′) + O(	φ2). (31)

If the system is time-independent (in steady state, such that the
susceptibility obeys χ (t, t ′) = χ (t − t ′)), the Fourier trans-
form of this equation follows simply from the convolution
theorem as

〈ÎQ〉(ω) = χ (ω)	φ(ω) + O(	φ2). (32)

Furthermore defining 〈. . .〉0 to be the expectation value in
absence of a potential gradient (i.e., the static equilibrium
case), the susceptibility can be obtained from

χ (ω) = i

h̄ω
(CR(ω) − CR(0)), (33)

with CR(ω) being the Fourier transform of the retarded current
autocorrelator,

CR(ω) =
∫ ∞

−∞
d	t CR(	t )eiω	t

=
∫ ∞

−∞
d	t (−iθ (	t )〈[ÎQ(	t ), ÎQ(0)]〉0)eiω	t . (34)

The above is known as the Kubo formula [44,45]; a short
derivation of this formula can be found in Appendix B. It
provides a way to calculate the linear susceptibility of some
current IQ to a potential drop 	φ between the leads, purely in
terms of “bare” equilibrium quantities. In order to evaluate
the right-hand side of Eq. (33), we will first calculate the
imaginary time correlation function, defined as

Cτ (τ1 − τ2) ≡ −〈Tτ ÎQ(τ1)ÎQ(τ2)〉0, (35)

where Tτ is the time ordering operator and τ = it . From here,
it is most convenient to switch to bosonic Matsubara frequen-
cies �n ≡ 2πn

h̄β
since the current operators only contain even

205137-8



ELECTRIC AND HEAT TRANSPORT IN A CHARGE … PHYSICAL REVIEW B 102, 205137 (2020)

powers of fermionic operators,

Cτ (i�n) =
∫ h̄β

0
dτ Cτ (τ )ei�nτ . (36)

The susceptibility in terms of real frequency ω is now found
by performing analytic continuation on the correlation func-
tion, writing Cτ (i�n>0) → C(ω + i0+) ≡ CR(ω) [46], where
we note that the positive Matsubara frequencies are suffi-
cient.3 Finally, note that the dc limit is obtained by taking
ω → 0, that is χdc = limω→0 χ (ω).

However, to calculate thermal transport, we still have the
problem of how to incorporate the temperature gradient as a
source term in the Hamiltonian. The solution to this problem
was first proposed by Luttinger in 1964 [47]. The idea is that
temperature is not the only field that couples to the energy
density: a gravitational field couples to the energy density
as well. The advantage of a gravitational field is that it can
enter the Hamiltonian in the general way outlined in Eq. (17).
In the absence of a chemical potential μ, the heat current is
phenomenologically given by

Ih = χT
	T

T
+ χψ	ψ, (37)

where 	T and 	ψ denote the drop in temperature and
gravitational field between the leads, respectively. Luttinger
showed that the corresponding linear susceptibilities must be
equal to each other, i.e., χT = χψ . Therefore one can calculate
the susceptibility due to a gravitational field χψ in absence
of a temperature gradient, and then use this result to find
the current due to a temperature gradient in absence of a
gravitational field. To summarize, we can find the heat current
due to a temperature gradient by first calculating χψ [which is
in turn done by considering a contribution to the Hamiltonian
of the form of Eq. (17)], then setting χT = χψ and calculating
Ih = χT 	T/T . While the full heat current is no longer exact
(neglecting the O((	T/T )2) terms), the linear susceptibility
χT can be obtained exactly.

Finally, we consider the linear response currents in the
presence of both a bias voltage and a temperature gradient.
The equations for the charge and heat currents can be written
as (Ic

Ih

)
=

(
χ11 χ12

χ21 χ22

)( V
	T/T

)
, (38)

where χ11 ∼ 〈ÎcÎc〉0 and χ22 ∼ 〈ÎE ÎE 〉0 are respectively the
isolated charge and heat susceptibilities, while χ12 ∼ 〈ÎcÎE 〉0

and χ21 ∼ 〈ÎE Îc〉0 represent thermopower [47]. In this more
general situation, the heat current is consequently given
by Ih = χ21V + χ22	T/T . Defining the heat conductance κ

through Ih ≡ κ	T , the heat conductance can assume two
different forms: (i) in absence of a bias voltage, the heat
conductance satisfies T κ|V =0 = χ22; (ii) in absence of an
electric current, the heat conductance is given by T κ|Ic=0 =

3The poles and branch cuts of the analytically continued function
C(z ∈ C) are all located on the real axis, such that C(z) can be a
different analytic function for Im[z] > 0 and Im[z] < 0. Since we
are interested in points with Im[z = ω + i0+] > 0, we only have to
consider the points on the positive imaginary axis, i.e., i�n>0.

χ22 − χ12χ21/χ11. In the latter case, a bias voltage of V =
−(χ12/χ11)	T/T has been applied to cancel the ther-
mopower that emerges as a result of the nonzero-temperature
gradient. In general, it is therefore necessary to specify which
quantity (i.e., either V or Ic) is set to zero when evaluating the
heat conductance.

D. Propagators

As we have seen in the previous sections, finding the actual
observable currents requires calculating expectation values
of either the current operators themselves, or current-current
correlation functions. This in turn requires finding the propa-
gators of the model. For notational convenience, from now on
we will use the similarities with a regular resonant level model
to identify “spin-flavor” as “left,” and “flavor” as “right”
(within this convention, the left and right propagators below
are labeled as L and R). This distinction is not necessary for
the case of channel symmetry (as the flavor modes are then
decoupled from the rest of the system), but we retain it here
for completeness. We emphasize that the left/right labels used
here are unrelated to the original left and right leads entering
in the definition of the original model. Following the usual
functional integral formalism to construct the action of the
model, we then obtain the following expression for the full
Green function of the system:

G ≡
( L Gld Glr

Gdl D Gdr

Grl Grd R

)
=

⎛
⎜⎝

L−1
0 −g⊥/h̄ 0

−g†
⊥/h̄ D−1

0 0

0 0 R−1
0

⎞
⎟⎠

−1

,

(39)

independent of the basis of the components. Here, L, R, and
D are the full Green functions corresponding to the spin-flavor
modes, the flavor modes, and the dot, respectively, while L0,
R0, and D0 are the corresponding “bare” Green functions in
the absence of the dot-lead hybridization.4 Here g⊥ governs
the coupling between the spin-flavor modes and the dot. Block
inversion of the right-hand side of Eq. (39) gives

D = (
D−1

0 − �d
)−1

, �d ≡ 1

h̄2 g†
⊥ · L0 · g⊥, (40)

Gld = 1

h̄
L0 · g⊥ · D, (41)

L = L0 + 1

h̄2 L0 · g⊥ · D · g†
⊥ · L0, (42)

where �d can be identified as the self-energy of the dot. All
full propagators can thus be calculated from the full Green
function on the dot, together with bare quantities. This essen-
tially reduces the problem of finding the currents to obtaining
a single Green function.

In order to determine the necessary Green functions,
it is important to incorporate the fact that all tunneling
happens via the Majorana modes a ≡ (d† + d )/

√
2 and

4The word “bare” can either mean a system in absence of a bias,
	φ = 0, or alternatively a system without dot-lead hybridization,
g⊥ = 0. We make clear the precise meaning when it is not clear from
context.
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b ≡ (d† − d )/i
√

2. This Majorana character can be properly
incorporated by switching to the Nambu spinor basis, for
example working with d† ≡ (d† d ). Doing so, we find the
following action:

S = h̄

2

∫ ∞

−∞
dt ψ̄ · G−1 · ψ, (43)

where ψ, ψ̄ are vectors containing all of the Grassmann fields
(the factor 1/2 accounts for the doubling on going to the
Nambu basis). In momentum space, all L components of the
hybridization matrix (labeled by index k) can be deduced from
Eq. (14), and are given by

g⊥,k = g⊥√
L

(−1 1
−1 1

)
≡ g⊥√

L
g, (44)

independent of k. Similarly, the momentum space compo-
nents of all Green functions are also 2 × 2 matrices. Using
the observation that the bare Hamiltonian (i.e., in absence of
dot-lead tunneling) is symmetric in ν = f , s f , together with
the fact that it does not contain superconducting pairing terms
such as dd or d†d†, the components of the bare propagators
are found to be of the form

L0,kk′ = R0,kk′ = δk,k′L0,k = δk,k′
(L0,k,1 0

0 L0,k,2

)

D0 =
(D0,1 0

0 D0,2

)
. (45)

In momentum space, the Green functions given by Eqs. (41)
and (42) become

Gld,k = g⊥
h̄
√

L
L0,k · g · D, (46)

Lkk′ = δk,k′L0,k + g2
⊥

h̄2L
L0,k · g · D · g† · L0,k′ , (47)

with the dot self-energy

�d = g2
⊥

h̄2 g† ·
(

1

L

∑
k

L0,k

)
· g ≡ g2

⊥
h̄2 g† · L′

0 · g. (48)

It should be noted that all of the above fields and Green
functions have an implied time dependence.

In the case of linear response theory, the required expec-
tation values involve only equilibrium propagators, and we
may use Matsubara techniques. In the absence of a bias and in
terms of fermionic Matsubara frequencies ωn, the necessary
Green functions are given by

L0,k (iωn) = h̄

(
(ih̄ωn − εk )−1 0

0 (ih̄ωn + εk )−1

)
, (49)

D(iωn) ≡ Gdd (iωn) =
∫ ∞

−∞
dε

ρ(ε)

ih̄ωn − ε
,

ρ(ε) ≡ − 1

π
Im[DR(ε)], (50)

where ρ can be interpreted as a density of states [46], and the
retarded dot Green function is given by

DR(ε) = h̄

ε(ε + i�) − B2

(
ε + B + i

2� i
2�

i
2� ε − B + i

2�

)
.

(51)

Here, the parameter � has been introduced for notational
convenience and for later reference; it is defined according
to

� ≡ 2g2
⊥

dk

dεk
= 2g2

⊥
h̄vF

= J2
⊥

4πa0 h̄vF
. (52)

A full derivation of the dot propagator from Eq. (51) can be
found in Appendix C.

IV. EXACT RESULTS FOR CHARGE TRANSPORT

We now discuss the exact solution of the 2CK model at
the EK point, in the presence of a generalized time-dependent
bias voltage that drives the system out of equilibrium. The
methods discussed here are an application (and in some cases
a generalization) of the methods introduced by Jauho et al. in
Ref. [48], and by Schiller and Hershfield in Refs. [24,27].

Applying the mapping procedure from Sec. III B to the
voltage bias term from Eq. (15), and adding the result to
Eq. (14), we obtain the full model in Emery-Kivelson form
at the EK point,

Ĥ =
∑

ν= f ,s f

∑
k

(
εk − eV (t )

2

)
ψ

†
ν,kψν,k

+ g⊥√
L

∑
k

(ψ†
s f ,k + ψs f ,k )(d† − d )

+ B

2
(d†d − dd†). (53)

Here, the ν = c, s modes have been omitted (integrated out)
because they do not couple to the potential or the impurity,
and therefore do not affect transport properties. To solve this
model, we now take the wide-band limit, εk = h̄vF k for all
momenta k ranging from −∞ to ∞. The continuum limit then
corresponds to

1

L

∑
k

→
∫ ∞

−∞

dk

2π
= 1

vF

∫ ∞

−∞

dεk

2π h̄
. (54)

As the Hamiltonian contains an explicit time dependence,
standard equilibrium techniques cannot be used, and we in-
stead use Keldysh techniques [49] to calculate the necessary
correlators. More information about the Keldysh structure
employed in this section can be found in Appendix D.

According to the Keldysh prescription, each Green func-
tion gains an additional matrix structure,

G =
(

GR GK

0 GA

)
, (55)

where GR/A are the retarded and advanced Green functions,
while GK are the so-called Keldysh components of the Green
functions. The desired two-point functions are proportional to
the Keldysh Green functions and can in general be obtained
from

〈ψμψ†
ν 〉 = i

2
GK

μν. (56)

Returning to the current operator from Eq. (29), we can
now write the expectation value of the charge current
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as

Ic(t ) ≡〈Îc〉(t ) = − eg⊥
4h̄

√
L

∑
k

(
GK

ld,k,11 + GK
ld,k,22

− GK
ld,k,12 − GK

ld,k,21

)
(t, t ). (57)

Here, the first two indices of the Green functions, ld , denote
the block of the full Green function G being considered.
The final two indices refer to the Nambu spinor component.
Together with Eq. (46), we find the relevant Green function
to be5

1√
L

∑
k

Gld,k (t, t ) = g⊥
h̄

(L′
0 · g · D)(t, t ), (58)

with the dot self-energy being given by Eq. (48). It should
be noted that in the steady state dc limit [V (t ) = const],
the system is completely time-independent, such that Green
functions assume the form G(t, t ′) = G(t − t ′). As a result,
the current is also time-independent.

The difficulty in finding propagators in any nonequi-
librium problem is related to finding the corresponding
nonequilibrium density matrix. In thermal equilibrium, the
density matrix is given by ρ̂0 = exp[−β(Ĥ − μN̂ )], while
out of equilibrium one has to solve the quantum Boltzmann
equation. The latter is usually not possible in an exact manner.
We will circumvent this problem by assuming that the bare
flavor and spin-flavor modes are in thermal equilibrium, with
the bias voltage only acting on the tunnel junctions between
the leads and the dot. As we have seen in the previous section,
the only full Green function that we need for the calculation
of the currents is the one on the dot. While this interacting dot
is still very much out of equilibrium, we can now make use
of Eqs. (40) and (48) to see that the nonequilibrium behavior
can be expressed in terms of bare Green functions, thereby

5Here, matrix multiplication of the form (A · B)(t, t ′) is shorthand
notation for

∫ ∞
−∞ dt ′′A(t, t ′′) · B(t ′′, t ′).

avoiding any direct calculation of the nonequilibrium density
matrix.

The required Keldysh Green functions in Eq. (57) are com-
ponents of the Green function matrix in Eq. (58). To extract
them, we utilize an identity following from Eq. (55),

(A · B)K = AR · BK + AK · BA. (59)

In order to evaluate such expressions, we employ standard
methods for the retarded and advanced Green functions, while
the Keldysh components are obtained using the general rela-
tion

GK = GR · F − F · GA, (60)

where the Hermitian matrix F can in principle be found by
solving the quantum Boltzmann equation. In thermal equilib-
rium, the fluctuation-dissipation theorem (FDT) holds [49],

F(ε) = (1 − 2nF (ε))I ≡ f (ε)I, (61)

where nF (ε) is the Fermi-Dirac distribution, and I is the
identity matrix. We emphasize that the above expression for
the matrix F is only valid in thermal equilibrium and cannot
be used in general nonequilibrium conditions. However, as
discussed above, the flavor and spin-flavor modes both act as
baths in the thermodynamic limit, such that the bare Green
functions corresponding to these modes can be assumed to sat-
isfy the FDT. For these modes themselves, the time-dependent
bias voltage can simply be interpreted as a time-dependent
shift in the chemical potential [48].

To proceed, we must now calculate the retarded, advanced
and Keldysh Green functions of both the flavor modes and the
spin-flavor modes, as well as the retarded and advanced com-
ponents on the dot. For all of the bare retarded and advanced
Green functions, we use the following relation:

(δ(t − t ′)(i∂t ′ − εk (t ′)/h̄ ± i0+))−1

= ∓iθ (±(t − t ′))e− i
h̄

∫ t
t ′ dt ′′ εk (t ′′ ). (62)

We consider first the Green function (L′
0)

R/A
,

(L′
0)R/A(t, t ′)

∣∣∣
V =0

= 1

vF

∫ ∞

−∞

dεk

2π h̄

(
(δ(t − t ′)(i∂t ′ − εk/h̄ ± i0+))−1 0

0 (δ(t − t ′)(i∂t ′ + εk/h̄ ± i0+))−1

)

= ∓ i

vF
θ (±(t − t ′))

∫ ∞

−∞

dεk

2π h̄

(
e− iεk

h̄ (t−t ′ ) 0

0 e
iεk
h̄ (t−t ′ )

)

= ∓ i

2vF
δ(t − t ′)I2, (63)

where I2 is the 2 × 2 identity matrix. Turning on the bias voltage does not change this result, since

(L′
0)R/A(t, t ′) = ∓ i

2vF
δ(t − t ′)

(
e

ie
2h̄

∫ t
t ′ dt ′′ V (t ′′ ) 0

0 e− ie
2h̄

∫ t
t ′ dt ′′ V (t ′′ )

)
= ∓ i

2vF
δ(t − t ′)I2. (64)

For the calculation of the Keldysh components, we turn to Eqs. (60) and (61). Dropping the subscript k from the integration
variable, we find

(L′
0)K(t, t ′) = − i

vF

∫ ∞

−∞

dε

2π h̄

(
f (ε) e− iε

h̄ (t−t ′ )+ ie
2h̄

∫ t
t ′ dt ′′ V (t ′′ ) 0

0 f (−ε) e
iε
h̄ (t−t ′ )− ie

2h̄

∫ t
t ′ dt ′′ V (t ′′ )

)

= − i

vF

∫ ∞

−∞

dε

2π h̄
f (ε)e− iε

h̄ (t−t ′ )
(

e
ie
2h̄

∫ t
t ′ dt ′′ V (t ′′ ) 0

0 e− ie
2h̄

∫ t
t ′ dt ′′ V (t ′′ )

)
. (65)
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We can now use the above results and properties to evaluate
the charge current. To do this, we introduce Majorana Green
functions on the dot, corresponding to the Majorana fermions
a and b. These are given by

Daa = 1
2 (D11 + D12 + D21 + D22), (66)

Dbb = 1
2 (D11 − D12 − D21 + D22), (67)

Dab = 1
2i (D11 − D12 + D21 − D22), (68)

Dba = 1
2i (−D11 − D12 + D21 + D22), (69)

where Di j are the original components of the 2 × 2 matrix D.
In terms of these Majorana propagators, Eq. (58) becomes

1√
L

∑
k

Gld,k

= g⊥
h̄

(L′
0,1(D21 − D11) L′

0,1(D22 − D12)

L′
0,2(D21 − D11) L′

0,2(D22 − D12)

)

= g⊥
h̄

(L′
0,1(−Dbb + iDba) L′

0,1(Dbb + iDba)

L′
0,2(−Dbb + iDba) L′

0,2(Dbb + iDba)

)
. (70)

An expression for the charge current now follows by inserting
these results into Eq. (57),

Ic(t ) = eg2
⊥

2h̄2 ((L′
0,1 − L′

0,2)Dbb)K(t, t )

= eg2
⊥

2h̄2

∫ ∞

−∞
dt ′((L′

0,1)K(t, t ′) − (L′
0,2)K(t, t ′))DA

bb(t ′, t )

= ieg2
⊥

2h̄2vF

∫ ∞

−∞

dε

2π h̄
f (ε)

∫ ∞

−∞
dt ′ e− iε

h̄ (t−t ′ )(e− ie
2h̄

∫ t
t ′ dt ′′ V (t ′′ )

− e
ie
2h̄

∫ t
t ′ dt ′′ V (t ′′ ) )DA

bb(t ′, t ), (71)

where we used that (L′
0)

R ∝ I2 to find that the term propor-
tional to DK

bb vanishes. Motivated by the work on a regular
resonant level model from Ref. [48], a different (and in many
cases more convenient) way of writing the charge current is
obtained by noting that Îc is a Hermitian operator, together
with the observation that (L′

0,2)
K

(t, t ′) = ((L′
0,1)

K
(t, t ′))∗. The

latter is a consequence of the fact that f (ε) is an odd function
in ε. As a result, the second line of Eq. (71) reveals that the
Majorana dot Green function DA

bb(t, t ′) must be completely
imaginary. This implies

Ic(t ) = eg2
⊥

h̄2

∫ ∞

−∞
dt ′ Im

[
− i

vF

∫ ∞

−∞

dε

2π h̄

× f (ε)e− iε
h̄ (t−t ′ )+ ie

2h̄

∫ t
t ′ dt ′′ V (t ′′ )iDA

bb(t ′, t )

]

= e�

2h̄
Im

[∫ ∞

−∞

dε

2π h̄
f (ε)A(ε, t )

]
, (72)

with

A(ε, t ) ≡
∫ ∞

−∞
dt ′ e− iε

h̄ (t−t ′ )+ ie
2h̄

∫ t
t ′ dt ′′ V (t ′′ )DA

bb(t ′, t ). (73)

This equation is the most general expression for the charge
current, which depends only on the time-dependent form of
the bias voltage V (t ), and the Majorana Green function on
the dot, DA

bb(t ′, t ). As such, the problem of finding the charge
current for any time-dependent bias voltage reduces to the
problem to finding the function A(ε, t ).

Since the bare dot Green function D0 has not yet been
specified, the results are still valid even for more general
on-site dot behavior. However, we will restrict ourselves to
the model at hand, where the bare on-site dot behavior is
fully determined by the magnetic field B. As is shown in
Appendix C, the full Majorana dot Green function D is given
by

DR/A
bb (t, t ′) = ∓iθ (±(t − t ′))e∓ �

2h̄ (t−t ′ )

×
[

cosh

(
1

2h̄

√
�2 − 4B2(t − t ′)

)

∓ �√
�2 − 4B2

sinh

(
1

2h̄

√
�2 − 4B2(t − t ′)

)]
,

(74)

while its Fourier transform is simply

DR/A
bb (ε) = h̄ε

ε(ε ± i�) − B2
. (75)

Having derived a general framework to solve this out-of-
equilibrium problem, we will now apply the framework to
several example bias voltages that are relevant to experiments.

A. The dc solution

Let us first consider the dc solution with V (t ) = V . In this
case, the function A(ε, t ) reduces to DA

bb(ε − eV/2), as shown
in Appendix C. Using Eq. (71), we find

Ic(t ) = ie�

4h̄

∫ ∞

−∞

dε

2π h̄

[
f

(
ε − eV

2

)
− f

(
ε + eV

2

)]
DA

bb(ε).

(76)

The combination f (ε − eV/2) − f (ε + eV/2) is even in ε, so
the odd part of DA

bb(ε) does not contribute to the overall inte-
gral. Furthermore, the explicit expression in Eq. (75) implies
that the even part of DA

bb(ε) is simply the imaginary part (this is
physically sensible since the expectation of the current should
in the end be pure real). Therefore we find

Ic(t ) = e�

2

∫ ∞

−∞

dε

2π h̄

[
nF

(
ε − eV

2

)
− nF

(
ε + eV

2

)]

×
(

− Im

[
ε

ε(ε + i�) − B2

])
, (77)

where we have used f (ε − eV/2) − f (ε + eV/2) = 2(nF (ε +
eV/2) − nF (ε − eV/2)), together with Im[DA

bb(ε)] =
−Im[DR

bb(ε)]. Note that the latter object is simply π times
the spectral function corresponding to the b Majorana
fermion and that the expression is indeed independent of t .

205137-12



ELECTRIC AND HEAT TRANSPORT IN A CHARGE … PHYSICAL REVIEW B 102, 205137 (2020)

Moreover, Eq. (77) is consistent with the known results for
the anisotropic spin 2CK model6 from Ref. [24].

We now go further and evaluate the integral in Eq. (77)
to find a closed-form expression for the full nonequilibrium
charge current for this system in the dc limit. We do this
by making use of the Matsubara representation of the Fermi-
Dirac distribution,

nF (ε) = 1

β

∞∑
n=−∞

eiωn0+

ih̄ωn − ε
, ωn ≡ π (2n + 1)

h̄β
, (78)

where ωn are the fermionic Matsubara frequencies. The chem-
ical potential μ is absent from this expression, due to our
implicit choice to measure all energies with respect to it.
Plugging this back into Eq. (77) and splitting the sum into
two parts, we find

Ic = e�

2π h̄β

∞∑
n=0

Re

[∫ ∞

−∞
dε

�ε2

ε4 + (�2 − 2B2)ε2 + B4

×
(

eiωn0+

ih̄ωn − (ε − eV/2)
− eiωn0+

ih̄ωn − (ε + eV/2)

)]
, (79)

where we used the observation that the sum over n from −∞
to −1 is simply the complex conjugate of the sum from 0 to
∞. We evaluate the remaining integral using contour integra-
tion. Closing the contour in the negative imaginary plane and
assuming 4B2 < �2, the only enclosed poles are located at

−iε± ≡ −i�

√√√√1

2
−

( B

�

)2

±
√

1

4
−

( B

�

)2

. (80)

The corresponding residue is given by

Res

(
�ε2

ε4 + (�2 − 2B2)ε2 + B4
,−iε±

)
= ± iε±

2�

√
1 − 4

(
B
�

)2
.

(81)
Using the residue theorem, we now find

Ic = e

2h̄β

1√
1 − 4

(
B
�

)2

∑
α=±1

αεα

∞∑
n=0

Re

[
1

ih̄ωn + (iεα + eV/2)

− 1

ih̄ωn + (iεα − eV/2)

]
, (82)

where we discarded the factor eiωn0+
. This is allowed because

this factor only becomes important in the large n limit, while
the remainder of the summand scales with n−2. Now to finish

6The expressions for the dc charge current in the spin and charge
2CK models are however not identical. This is because, in the case of
the spin 2CK model, the bias voltage couples to both spin up and spin
down electrons in the leads, whereas in the charge 2CK model, the
voltage only couples to the effective spin up lead electrons. Impor-
tantly, the spin 2CK model does not support any charge transport for
J− = 0 and JLR

⊥ = 0, while the charge 2CK has nonzero and in fact
strongly Kondo-enhanced conductance at this point. All subsequent
references to “known” results refer to the spin 2CK model, and it
should be understood that differences arise on going to the charge
2CK case.

the derivation, we make use of the digamma function, defined
in terms of the gamma function as �(z) = d ln �(z)/dz =
[�(z∗)]∗, and note the following identity

�(a) − �(b) = (a − b)
∞∑

n=0

1

(n + a)(n + b)
, (83)

which is a very useful property for all calculations at nonzero-
temperatures that are to follow. More information about this
digamma function, including a derivation of the latter identity,
can be found in Appendix E. It then follows that

∞∑
n=0

Re

[
1

ih̄ωn + (iεα ± eV/2)

]

=
(

β

2π

)2 ∞∑
n=0

±eV/2(
n + 1

2 + εα∓ieV/2
2πkBT

)(
n + 1

2 + εα±ieV/2
2πkBT

)
= iβ

4π

[
�

(
1

2
+ εα ∓ ieV/2

2πkBT

)
− �

(
1

2
+ εα ± ieV/2

2πkBT

)]

= β

2π
Im

[
�

(
1

2
+ εα ± ieV/2

2πkBT

)]
. (84)

This gives the final expression for the finite-temperature and
nonequilibrium dc current at the EK point of the 2CK model,
which is exact:

Ic = e

2π h̄

1√
1 − 4

(
B
�

)2

(
ε+Im

[
�

(
1

2
+ ε+ + ieV/2

2πkBT

)]

− ε−Im

[
�

(
1

2
+ ε− + ieV/2

2πkBT

)])
. (85)

The differential conductance, G, can then be obtained. For
our purposes, it is defined as

G ≡
〈

dIc(t )

dV (t )

〉
t

, (86)

where 〈. . .〉t denotes the time average. In the dc case, this gives

Gdc = e2

4π h̄

1√
1 − 4

(
B
�

)2

(
ε+

2πkBT
Re

[
ψ (1)

(
1

2
+ε+ + ieV/2

2πkBT

)]

− ε−
2πkBT

Re

[
ψ (1)

(
1

2
+ ε− + ieV/2

2πkBT

)])

V →0= e2

4π h̄

1√
1 − 4

(
B
�

)2

(
ε+

2πkBT
ψ (1)

(
1

2
+ ε+

2πkBT

)

− ε−
2πkBT

ψ (1)

(
1

2
+ ε−

2πkBT

))
, (87)

with ψ (1)(z) being the trigamma function, i.e., the deriva-
tive of �(z). Figure 5 shows examples of the dc current
and conductance as functions of temperature. At zero field
(left panel), the Kondo effect leads to enhanced current flow
through the dot at finite bias, on the temperature scale of TK .
This corresponds to the nonequilibrium crossover from the
local moment fixed point to the NFL fixed point, and is seen
from Fig. 5 to arise for kBTK ∼ �. For finite magnetic field
B �= 0 (right panel), the NFL fixed point is destabilized and
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FIG. 5. Dc electric transport of the C2CK model at the EK point. (Left) dc current as a function of temperature for eV/� = 1 and B2/�2 =
0. (Right) dc differential conductance in the limit V ← 0, for B2/�2 = 10−8. The vertical line corresponds to the FL crossover temperature,
T ∗.

a FL crossover is generated. This crossover shows up in the
zero-bias conductance on the temperature scale of T ∗ (gray
vertical line), which can be read off as kBT ∗ ∼ B2/�.

With B = 0, we have ε+ = � and ε− = 0 from Eq. (80).
If additionally V = 0, then Eq. (87) shows that there is
a single characteristic scale in the problem, ε+. We iden-
tify this with the Kondo scale, defining kBTK ≡ �/2π .
Within the effective Majorana resonant level description,
the Kondo scale is therefore simply proportional to the
effective dot-lead hybridization.7 The zero bias conduc-
tance in this limit is a universal function of the single
rescaled parameter x = T/TK , which follows from Eq. (87)
as Gdc(x) = (e2/2h) 1

x ψ (1)( 1
2 + 1

x ). Note that this expression
for the conductance has a well-defined limit as x ← 0, cor-
responding to low temperatures compared with TK , and gives
GNFL

dc = e2/2h at the NFL fixed point.
As explained in Sec. II D, the above results only capture the

physics of the real C2CK quantum dot device in the limit T 

TK (or equivalently x ← 0), since then both the anisotropic
2CK model at the EK point and the C2CK model both have
flowed under RG to the same isotropic 2CK fixed point. Thus,
we conclude that GNFL

dc = e2/2h applies for T 
 TK at the
critical point of the real C2CK system.

Turning now to finite B and the resulting FL crossover,
Eq. (80) gives ε+ = � and ε− = B2/� in the limit B2 
 �2.
From Eq. (87), we may still identify the Kondo scale as
kBTK = �/2π , but now we have a second scale in the prob-
lem, kBT ∗ = B2/(2π�), such that T ∗ 
 TK . Taking the limit
T/TK ← 0 while keeping T/T ∗ finite yields an expression
for the crossover on the temperature scale of T ∗. This is
the FL crossover, and is a universal function of the single
parameter y = T/T ∗, provided there is good scale separation
T ∗ 
 TK . Importantly, since T 
 TK along this entire FL
crossover, it again describes the physical C2CK system of
interest (Sec. II D). These considerations lead us to the main
result of this section: the exact dc charge conductance of the

7Note that this expression for TK is a peculiarity of the noninteract-
ing EK point: the Kondo scale is exponentially small in the dot-lead
exchange coupling in the isotropic 2CK model and indeed the true
C2CK system.

C2CK model along the FL crossover [23–26],

Gdc = e2

2h

(
1 − T ∗

T
Re

[
ψ (1)

(
1

2
+ T ∗

T
+ ieV

4πkBT

)])
. (88)

This result holds in the full nonequilibrium situation at finite
voltage bias, provided eV 
 kBTK as well as T 
 TK . Indeed,
this result has been confirmed directly in the C2CK experi-
ment of Ref. [16] in the linear response regime by scanning the
dot gate voltage across the Coulomb peak. The gate detuning
away from the dot charge degeneracy point in this system
corresponds in pseudospin language to the magnetic field B,
and is responsible for generating the FL crossover.

Finally we comment on the FL crossover generated
by other symmetry-breaking perturbations, such as channel
asymmetry, rather than by magnetic field as considered explic-
itly above. In fact, Eq. (88) is universal in the stronger sense
that the same conductance behavior is obtained along the FL
crossover as a function of T/T ∗, independent of the pertur-
bations generating the scale T ∗. Although we do not repeat
the calculation here, we have explicitly confirmed Eq. (88) in
the case of channel asymmetry, where we find kBT ∗ = (JLL

⊥ −
JRR
⊥ )2/32π2a0 h̄vF . In practice in the experimental context, the

precise strength of perturbations (or indeed the combination
of perturbations) will not be known; instead, T ∗ can simply
be related to the conductance half width at half maximum.

B. The ac solution

We now proceed to the time-dependent case of an ac bias
voltage, V (t ) = V0 + 	V cos(ω0t ). We employ a method sim-
ilar to that of Floquet theory. In this case, Eq. (73) yields

A(ε, t ) =
∫ ∞

−∞
dt ′ e− i(ε−eV0/2)

h̄ (t−t ′ )+ ie	V
2h̄

∫ t
t ′ dt ′′ cos(ω0t ′′ )DA

bb(t ′, t ).

(89)

The trick to evaluate this expression is to note that all terms
of DA

bb(t ′, t ) are of the form cθ (t − t ′)e−z(t−t ′ ), with Re[z] >

0 (see Appendix C). To find an analytic expression for the
function A(ε, t ), we use the following identity [48] involving
Bessel functions of the first kind Jn(α) (see also Appendix F),

∞∑
n=−∞

e−inωt Jn(α) = e−iα sin(ωt ). (90)
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This allows us to write all terms in A(ε, t ) in terms of Bessel functions, using

e−(z+i(ε−eV0/2)/h̄)t+ ie	V
2h̄ω0

sin(ω0t )
∫ t

−∞
dt ′ e(z+i(ε−eV0/2)/h̄)t ′− ie	V

2h̄ω0
sin(ω0t ′ )

= e−(z+i(ε−eV0/2)/h̄)t+ ie	V
2h̄ω0

sin(ω0t )
∞∑

n=−∞
Jn

(
e	V

2h̄ω0

)∫ t

−∞
dt ′ e(z+i(ε−eV0/2−nh̄ω0 )/h̄)t ′

=
∞∑

n=−∞
Jn

(
e	V

2h̄ω0

)
ei( e	V

2h̄ω0
sin(ω0t )−nω0t )

z + i(ε − eV0/2 − nh̄ω0)/h̄
. (91)

In the dc limit 	V = 0, Eq. (91) reduces to

1

z + i(ε − eV0/2)/h̄
≡

∞∑
n=−∞

Jn

(
e	V

2h̄ω0

)
ei( e	V

2h̄ω0
sin(ω0t )−nω0t )

z + i(ε − eV0/2)/h̄
. (92)

Comparing Eqs. (91) and (92), and noting that Adc(ε) = DA
bb(ε − eV0/2) from Eq. (89), we find

A(ε, t ) =
∞∑

n=−∞
Jn

(
e	V

2h̄ω0

)
ei( e	V

2h̄ω0
sin(ω0t )−nω0t )DA

bb

(
ε − eV0

2
− nh̄ω0

)
. (93)

Returning to Eq. (72) and applying this result, we obtain

Ic(t ) = e�

2h̄
Im

[
ei e	V

2h̄ω0
sin(ω0t )

∞∑
n=−∞

e−inω0t Jn

(
e	V

2h̄ω0

)∫ ∞

−∞

dε

2π h̄
f

(
ε + eV0

2
+ nh̄ω0

)
DA

bb(ε)

]
. (94)

Another trick we can use is noting that we can replace f (ε + eV0/2 + nh̄ω0) by f (ε + eV0/2 + nh̄ω0) − f (ε). The reason we
can do this is because this additional term is odd in ε, while not containing any n dependence. Lacking any n-dependence, all
the prefactors in front of the integral of this additional term are equal to 1, so this term is proportional to the integral over f (ε)
(an odd function) times the imaginary part of DA

bb(ε). As we discussed before, the latter is even, so the integral vanishes and this
additional term is therefore equal to zero. Applying this trick, we obtain

Ic(t ) = e� Im

[
ei e	V

2h̄ω0
sin(ω0t )

∞∑
n=−∞

e−inω0t Jn

( e	V

2h̄ω0

) ∫ ∞

−∞

dε

2π h̄

[
nF (ε) − nF

(
ε − eV0

2
− nh̄ω0

)]
ε

ε(ε + i�) − B2

]
, (95)

agreeing with the ac results for the anisotropic spin 2CK from Ref. [27].
The sum over the Bessel functions in the expression prevents further simplification and a direct closed-form solution. However

we may extract further analytic insight from Eq. (95) by writing Ic(t ) in terms of its Fourier components. We use the convention

Ic(t ) =
∞∑

n=−∞
Ineinω0t ⇐⇒ In = 1

T

∫ T/2

−T/2
dt Ic(t )e−inω0t , (96)

where T is the period of the oscillating current, and ω0 is the corresponding frequency (which is the same as our previous ω0 due
to the periodicity of the original Hamiltonian). Now we Fourier transform the time dependencies of the current, using Eq. (90):

1

T

∫ T/2

−T/2
dt e−i(n±n′ )ω0t± ie	V

2h̄ω0
sin(ω0t ) = 1

T

∞∑
m=−∞

∫ T/2

−T/2
dt ei(±m−n∓n′ )ω0t Jm

( e	V

2h̄ω0

)
=

∞∑
m=−∞

δ±m,n±n′Jm

( e	V

2h̄ω0

)
= Jn′±n

( e	V

2h̄ω0

)
.

(97)
Additionally, we use Im[ f (t )z] = ( f (t )z − ( f (t )z)∗)/2i to find that the Fourier transform of a term of this form is simply
( fnz − ( f ∗)nz∗)/2i, where ( f ∗)n is the Fourier transform of the complex conjugate of f (t ). The Fourier components of the
current are therefore given by

In = − ie�

2

∞∑
n′=−∞

Jn′

(
e	V

2h̄ω0

)∫ ∞

−∞

dε

2π h̄

[
nF (ε) − nF

(
ε − eV0

2
− n′h̄ω0

)]

×
(

Jn′+n

(
e	V

2h̄ω0

)
ε

ε(ε + i�) − B2
− Jn′−n

(
e	V

2h̄ω0

)
ε

ε(ε − i�) − B2

)

= ie�

2

∞∑
n′=−∞

Jn′

(
e	V

2h̄ω0

)
Jn′+n

(
e	V

2h̄ω0

)∫ ∞

−∞

dε

2π h̄

(
2i�ε2nF (ε)

ε4 + (�2 − 2B2)ε2 + B4

+ ε nF (ε − eV0/2 − n′h̄ω0)

ε(ε + i�) − B2
− ε nF (ε − eV0/2 − (n′ + n)h̄ω0)

ε(ε − i�) − B2

)
. (98)
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FIG. 6. Ac electric transport of the 2CK model at the EK point. (Left) Example of the ac current (solid) versus its adiabatic limit Ic,dc(V (t ))
(dashed) as a function of time for TK → ∞, V0 = 0, T/(2πT ∗) = h̄ω0/(2πkBT ∗) = 0.1, and e	V/(2πkBT ∗) = 2. (Right) ac differential
conductance in the limit V → 0, with T ∗/TK = 10−8.

It is now possible to fully evaluate the remaining integrals.
However, the resulting expressions are rather cumbersome
and do not contain great physical significance (see also
Sec. II D). We therefore omit that calculation here, but direct
the interested reader to Appendix G for the full evaluation of
the current at B = 0. As an illustration of the current dynamics
in this system, a plot of the current at a point along the FL
crossover line is in shown in the left panel of Fig. 6.

We now focus on the differential conductance, defined in
Eq. (86). Although Eq. (98) is general and exact, for simplicity
and concreteness we now consider the small 	V behavior
around V0 = 0 (i.e., the linear response regime due to an
ac bias voltage, in the zero-bias limit). First, we expand the
current in powers of 	V . To do this, we employ the following
expansions obtained in Appendix F:

J0(α) = 1 + O(α2),

Jn �=0(α) = (sgn(n))|n|

|n|!
(

α

2

)|n|
+ O(α|n|+2). (99)

Inserting these into Eq. (98), it immediately follows that

In ∝
(

e	V

2h̄ω0

)|n|
+ O

((
e	V

2h̄ω0

)|n|+2)
. (100)

Returning to the full time-dependent current, we thus find

Ic(t ) = I0 + I1eiω0t + I∗
1 e−iω0t + O

((
e	V

2h̄ω0

)2)

= I0 + 2 Re[I1] cos(ω0t ) − 2 Im[I1] sin(ω0t )

+ O
((

e	V

2h̄ω0

)2)
, (101)

where we used the reality condition for the current Ic(t ) to
write I−1 = I∗

1 . From here, we can calculate the linear re-
sponse differential conductance:

Gac =
〈∂Ic(t )

∂t

/∂V (t )

∂t

〉
t
= 2 Re[I1]

	V
+ 2 Im[I1]

	V �������0〈cos(ω0t )

sin(ω0t )

〉
t
.

(102)

Next, we expand I1, using

Jn(α)Jn+1(α) =
(
δn,0 + α

2
(δn,1 − δn,−1) + O(α2)

)
×

(
δn,−1 + α

2
(δn,0 − δn,−2) + O(α2)

)
= α

2
(δn,0 − δn,−1) + O(α2). (103)

Combining all of the above and simplifying the result, we
obtain the following linear response differential conductance
due to a pure ac bias voltage:

Gac = e2�

4h̄ω0
Im

[∫ ∞

−∞

dε

2π h̄

(
ε nF (ε − h̄ω0)

ε(ε − i�) − B2

+ ε nF (ε + h̄ω0)

ε(ε + i�) − B2
− 2Re

[ ε nF (ε)

ε(ε + i�) − B2

])]

= e2�

4h̄ω0

∫ ∞

−∞

dε

2π h̄
(nF (ε − h̄ω0) − nF (ε + h̄ω0))

× �ε2

ε4 + (�2 − 2B2)ε2 + B4
. (104)

The latter integral is of a very similar form to Eq. (77) for
the dc current. Applying the same techniques as before, we
straightforwardly obtain an exact expression for the ac differ-
ential conductance,

Gac = e2

4π h̄2ω0

1√
1 − 4

(
B
�

)2

(
ε+Im

[
�

(1

2
+ ε+ + ih̄ω0

2πkBT

)]

−ε−Im
[
�

(1

2
+ ε− + ih̄ω0

2πkBT

)])
. (105)

Note that the dc limit ω0 → 0 of this expression indeed re-
produces Eq. (87). Moreover, as is shown in the right panel of
Fig. 6, the conductance depends on the frequency in a similar
way to how it depends on temperature. A driving voltage
therefore has a similar effect as thermal fluctuations in terms
of setting the scale for the onset of Kondo correlations.
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Finally, we again take the limit TK → ∞, and use the same
identification of temperature scales as in the previous section.
Using the series expansion �(z) = ln(z) + O(1/z), we obtain
the following exact expression for the linear response ac con-
ductance along the FL crossover:

Gac = e2

2h

(
1 − 2πkBT ∗

h̄ω0
Im

[
�

(1

2
+ T ∗

T
+ ih̄ω0

2πkBT

)])
.

(106)

As before, provided kBT , eV and h̄ω0 are all 
 kBTK , the
above expressions give the exact FL crossover behavior in
the physical C2CK model; they are essentially an exact
closed-form evaluation of the known integral expressions
from Ref. [27] (see again footnote 6).

The framework developed in this section can be straight-
forwardly generalized to provide exact solutions for charge
transport in other time-dependent situations. Although we
focused here on the steady state, the same methodology can
be applied to calculate transient behavior, including the relax-
ation to a new equilibrium steady state after, e.g., a quantum

quench. For a sudden quench in the dc voltage, relaxation is
found to occur on a timescale ∼h̄/�.

C. Linear response charge transport from the Kubo formula

In the previous sections, we saw how electric transport
in the C2CK model can be treated exactly using Keldysh
techniques. Here we employ instead the Kubo formula for the
linear susceptibility, Eq. (33) of Sec. III C. Note that in this
case, all necessary expectation values are taken in the absence
of a potential gradient and will be evaluated at the noninter-
acting EK point. As a result, Wick’s theorem can be applied
to write all 2n-point functions in terms of propagators. In
the following, we exploit this to calculate the linear response
susceptibility corresponding to the charge current along the
FL crossover.

For four-point functions of Grassmann variables, Wick’s
theorem reads

〈abcd〉0 = 〈ab〉0〈cd〉0 + 〈ad〉0〈bc〉0 − 〈ac〉0〈bd〉0, (107)

where 〈. . .〉0 again refers to the expectation value in absence
of a bias. Referring back to Eqs. (29) and (35), one can now
immediately express the required four-point function as

Cτ
c (τ > 0) = e2g2

⊥
4h̄2L

∑
k,k′

(〈(ψ†
s f ,k (τ ) − ψs f ,k (τ ))(d†(τ ) − d (τ ))〉0〈(ψ†

s f ,k′ (0) − ψs f ,k′ (0))(d†(0) − d (0))〉0

+ 〈(ψ†
s f ,k (τ ) − ψs f ,k (τ ))(d†(0) − d (0))〉0〈(d†(τ ) − d (τ ))(ψ†

s f ,k′ (0) − ψs f ,k′ (0))〉0

− 〈(ψ†
s f ,k (τ ) − ψs f ,k (τ ))(ψ†

s f ,k′ (0) − ψs f ,k′ (0))〉0〈(d†(τ ) − d (τ ))(d†(0) − d (0))〉0). (108)

Here, the first term is equal to −〈Îc(τ )〉0〈Îc(0)〉0 = 0, which vanishes because no current flows in the absence of a potential.
It corresponds to bubble diagrams that cancel by expanding the partition function, see Appendix B. All remaining propagators
from the above expression are of the form

〈(α†(τ ) − α(τ ))(β†(τ ′) − β(τ ′))〉0 = 〈α†(τ )β†(τ ′)〉0 + 〈α(τ )β(τ ′)〉0 − 〈α(τ )β†(τ ′)〉0 − 〈α†(τ )β(τ ′)〉0

= −Gαβ,21(τ − τ ′) − Gαβ,12(τ − τ ′) + Gαβ,11(τ − τ ′) + Gαβ,22(τ − τ ′)

≡
′∑

μν

Gαβ,μν (τ − τ ′), (109)

where μ, ν denote the components in the Nambu basis, while the prime signifies a signed sum over the components. Inserting
this into Eq. (108), noting that the bubble diagrams vanish, and writing the Green functions in terms of Matsubara frequencies,
we obtain

Cτ
c (τ > 0) = − e2g2

⊥
4h̄2L

∑
k,k′

′∑
μν

′∑
ρσ

(Gld,k,μν (τ )Gld,k′,ρσ (−τ ) + Gll,kk′,μν (τ )Gdd,ρσ (τ ))

= − e2g2
⊥

4h̄2L

∑
k,k′

′∑
μν

′∑
ρσ

1

(h̄β )2

∞∑
n,n′=−∞

(Gld,k,μν (iωn)Gld,k′,ρσ (iωn′ )e−i(ωn−ωn′ )τ

+ Gll,kk′,μν (iωn)Gdd,ρσ (iωn′ )e−i(ωn+ωn′ )τ ). (110)

Transforming the entire expression to Matsubara frequencies, this becomes

Cτ
c (i�n) = − e2g2

⊥
4h̄2L

1

h̄β

∑
k,k′

′∑
μν

′∑
ρσ

∞∑
n′=−∞

(Gld,k,μν (iωn′ )Gld,k′,ρσ (iωn′−n) + Gll,kk′,μν (iωn′ )Gdd,ρσ (−iωn′−n)), (111)

where it should be noted that ωn′−n = ωn′ − �n. For analytic continuation to real frequencies, Cτ
c (i�n>0) → CR

c (ω), the positive
Matsubara frequencies are sufficient, and so we will restrict ourselves to n > 0 from now on. Next, we use the expressions for
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the Green functions derived in Sec. III D. Performing the matrix multiplications, the required Green functions are given by

′∑
μν

Gdd,μν (iωn) = 2Dbb(iωn),
′∑

μν

Gld,k,μν (iωn) = 4g⊥√
L

εk

(h̄ωn)2 + ε2
k

Dbb(iωn),

′∑
μν

Gll,kk′,μν (iωn) = −2ih̄ δk,k′
h̄ωn

(h̄ωn)2 + ε2
k

+ 8g2
⊥

L

εk

(h̄ωn)2 + ε2
k

εk′

(h̄ωn)2 + ε2
k′

Dbb(iωn). (112)

Taking the continuum limit for the sums over k, k′ and using the fact that all terms that are odd in either εk or εk′ vanish upon
integration, the four-point function simplifies to

Cτ
c (i�n>0) = ie2�

2

1

h̄β

∞∑
n′=−∞

∫ ∞

−∞

dεk

2π h̄

h̄ωn′

(h̄ωn′ )2 + ε2
k

Dbb(−iωn′−n). (113)

We note that the above autocorrelator can be interpreted as a one-loop bubble diagram, with one half of the loop corresponding
to a Majorana component of L0,k (iωn′ ), and the other half to Dbb(−iωn′−n).

Let us now consider the remaining sum and integral. Evaluating the integral8 over εk ,

Cτ
c (i�n>0) = ie2�

4h̄2β

∞∑
n′=−∞

sgn(ωn′ )Dbb(−iωn′−n) = ie2�

4h̄2β

∞∑
n′=0

(Dbb(−iωn′−n) − Dbb(iωn′+n)), (114)

where we used the definition of the fermionic Matsubara frequencies to rewrite the sum over the negative frequencies as a sum
over positive ones. To make further progress we require an explicit expression for the bb component of the dot Green function.
According to Eqs. (50) and (75), this component is given by

Dbb(iωn) = h̄�

π

∫ ∞

−∞
dε

ε2

ε4 + (�2 − 2B2)ε2 + B4

1

ih̄ωn − ε
. (115)

We evaluate this integral using contour integration. If ωn > 0, we choose a semicircle in the negative imaginary plane to close
the contour. Doing so, and assuming that 4B2 < �2, we see that the contour integral is essentially the same as in Sec. IV A, with
the poles being located at ε = −iε±. Meanwhile, if ωn < 0, we choose to close the contour in the positive imaginary plane, and
the poles are located at ε = iε±. The corresponding residue also picks up an additional minus sign, that is again canceled by
taking into account the change in integration direction. Using our results from Sec. IV A, we find

Dbb(iωn) = − ih̄

�

1√
1 − 4

(
B
�

)2

(
ε+

h̄ωn + sgn(ωn)ε+
− ε−

h̄ωn + sgn(ωn)ε−

)
. (116)

Inserting this result into Eq. (114), we obtain

Cτ
c (i�n>0) = − e2

4h̄β

1√
1 − 4

(
B
�

)2

∑
α=±1

αεα

∞∑
n′=0

(
1

h̄ωn′−n + sgn(ωn′−n)εα

+ 1

h̄ωn′+n + εα

)

= − e2

4h̄β

1√
1 − 4

(
B
�

)2

∑
α=±1

α
βεα

2π

∞∑
n′=0

(
1

n′ − n + 1
2 + sgn

(
n′ − n + 1

2

)
βεα

2π

+ 1

n′ + n + 1
2 + βεα

2π

)

= − e2

2h̄β

1√
1 − 4

(
B
�

)2

∑
α=±1

α
βεα

2π

( ∞∑
n′=0

1

n′ + 1
2 + βεα

2π

−
n−1∑
n′=0

1

n′ + 1
2 + βεα

2π

)
. (117)

The first sum of the final equality diverges, being proportional to ln(�), where � is the energy bandwidth. This term is a constant
independent of the external Matsubara frequency �n, such that it does not contribute to the linear susceptibility after performing

8This result for the integral assumes that ωn′ remains finite, which is no longer true when considering the full sum. The actual expression
involves arctan(�/h̄ωn′ ), where � is the energy bandwidth (which is usually taken to infinity whenever possible), effectively introducing a
cutoff N in the sum over n′. Although the naive introduction of a hard cutoff N does lead to errors in the expression for the current autocorrelator
Cτ

c (i�n>0), the desired dc limit of the linear susceptibility is still exact due to the fact that the erroneous region h̄ωn′ ∼ � does not contribute
to the linear order term in n. The latter follows from the fact that the autocorrelator only contains the combination Dbb(−iωn′−n) − Dbb(iωn′+n):
for terms in the region h̄ωn′ ∼ � → ∞ (i.e., n′ � n), this combination is both analytic and even in n, see Eq. (116). The errors introduced by
writing arctan(�/h̄ωn′ ) → sgn(ωn′ ) π/2 therefore only depend on even powers of n.
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analytic continuation. Working out the second sum (see Appendix E for more details):

Cτ
c (i�n>0) = const + e2

2h̄β

1√
1 − 4

(
B
�

)2

∑
α=±1

α
βεα

2π
�

(
1

2
+ βεα

2π
+ n

)
. (118)

Finally, we perform the analytic continuation to real frequencies to find

CR
c (ω) = const + e2

2h̄β

1√
1 − 4

(
B
�

)2

∑
α=±1

α
βεα

2π
�

(
1

2
+ βεα

2π
− i

β h̄ω

2π

)
. (119)

Returning to Eq. (33) and taking the limit ω → 0, we find the dc susceptibility of the charge current:

χc,dc = e2

2h

1√
1 − 4

(
B
�

)2

(
βε+
2π

ψ (1)

(
1

2
+ βε+

2π

)
− βε−

2π
ψ (1)

(
1

2
+ βε−

2π

))
. (120)

This result is identical to Eq. (87), confirming that the Kubo formula indeed gives the same results as Keldysh formalism in the
zero-bias limit.

Now taking the limits B2 
 �2 (such that we can identify ε+ � � as the Kondo temperature 2πkBTK and ε− � B2/� as the
FL crossover temperature 2πkBT ∗) and T 
 TK , we again recover the known charge conductance G of the C2CK model, but
now evaluated directly in linear response V → 0,

G = χc,dc = e2

2h

(
1 − T ∗

T
ψ (1)

(
1

2
+ T ∗

T

))
. (121)

The first equality follows from the definition of G from
Eq. (86) combined with the linear response current Ic =
χc,dcV . The above is the expected behavior of the linear dc
charge conductance along the FL crossover in the C2CK
system.

V. EXACT RESULTS FOR HEAT TRANSPORT

We now turn to heat transport. As explained in Sec. III C,
the methods employed in the previous section for the full
nonequilibrium charge transport calculations at the EK point
of the 2CK model cannot be used to find the heat conductance
due to a temperature gradient between the leads. Therefore, in
this section, we restrict our attention to linear response theory.
The method of calculation here proceeds in a similar fashion
to that described in Sec. IV C for the charge transport using
the Kubo formula.

Setting μ = 0 now for simplicity (i.e., measuring all ener-
gies with respect to the chemical potential of the leads), the
heat current operator is equal to the energy current operator
from Eq. (30). The heat current operator is considerably more
complicated than the charge current operator. We begin by
decomposing it into five terms which we will treat separately.
Specifically, Îh = ∑5

i=1 Îi, with

Î1 = − πvF g⊥√
2L3/2

∑
k,k′,k′′

(ψ†
c,k′ψc,k′′ + ψ

†
s,k′ψs,k′′ )(ψ†

s f ,k − ψs f ,k )b,

(122)

Î2 = iπvF g⊥√
2L3/2

∑
k,k′,k′′

ψ
†
f ,k′ψ f ,k′′ (ψ†

s f ,k + ψs f ,k )a, (123)

Î3 = iπvF g⊥
(2L)3/2

∑
k,k′,k′′

δk′,k′′ (ψ†
s f ,k + ψs f ,k )a

= i�g⊥
23/2h̄

√
L

∑
k

(ψ†
s f ,k + ψs f ,k )a, (124)

Î4 = πvF

2L

∑
k,k′

(εk′ − εk )ψ†
f ,kψ f ,k′ab, (125)

Î5 = πvF

2L

∑
k,k′

(εk′ − εk )ψ†
s f ,kψs f ,k′ab. (126)

Here, a and b again refer to the dot Majorana operators,
and � is the energy cutoff that is introduced when writing∫ ∞
−∞ dεk → ∫ �

−�
dεk . Additionally, it is useful to decompose

the current autocorrelator in a similar way:

Cτ
h (τ > 0) = −

5∑
i, j=1

〈Îi(τ )Î j (0)〉0 ≡
5∑

i, j=1

Ci j (τ ). (127)

The main task of this section is thus the identification and
subsequent evaluation of all nonzero components of Ci j (τ ),
most of which are complicated eight-point functions. The
complexity of this task makes it more difficult to calculate
the heat conductance along the FL crossover exactly. Instead,
we will restrict ourselves to the NFL fixed point properties for
all calculations involving heat transport. In the following, we
therefore consider explicitly the channel-symmetric case with
B = 0, such that the FL scale T ∗ = 0.

We start by identifying the vanishing components of
Ci j (τ ). The first useful observation is that the ν = c, s, f
modes are all decoupled from the rest of the system in the
absence of a potential gradient. As shown in Appendix H,
the bubble diagrams of the form

∑
k,k′ 〈ψ†

ν,k (τ )ψν,k′ (τ )〉0 (i.e.,
the excitation densities) with ν �= s f are therefore all equal
to zero. Using Wick’s theorem, this already eliminates 12
of the 25 components, namely C1i with i �= 1, C23, C25, and
their conjugates. Moreover, the flavor modes only contribute
to the kinetic energy, such that fields with different momenta
are uncorrelated. Therefore the correlator 〈ψ†

f ,k (τ )ψ f ,k′ (τ )〉0
is proportional to δk,k′ , and the product of this correlator with
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(εk′ − εk ) also vanishes. This eliminates the components C34

and C45 as well as their conjugates. Finally, in absence of
a magnetic field the combination (C35 + C53) vanishes as a
consequence of the fact that they contain bubble diagrams.
This is somewhat subtle, as explained in Appendix H.

This leaves the diagonal components Cii and the combi-
nation (C24 + C42). In fact, the only term that contributes to
the heat conductance is C11. The other terms are finite but at

least quadratic in frequency, and therefore do not survive the
ω → 0 dc limit of Eq. (33). Extensive details of these explicit
calculations are given in Appendix I. Here we focus on the
single surviving component that gives a finite contribution to
the linear response heat transport.

Exploiting the fact that the charge and spin modes are
decoupled from the spin-flavor modes and the dot, the C11(τ )
component can be written as

C11(τ ) = (πvF g⊥)2

4L3

∑
k, k′, k′′
q, q′, q′′

〈(ψ†
c,k′ (τ )ψc,k′′ (τ ) + ψ

†
s,k′ (τ )ψs,k′′ (τ ))(ψ†

c,q′ (0)ψc,q′′ (0) + ψ
†
s,q′ (0)ψs,q′′ (0))〉0

× 〈(ψ†
s f ,k (τ ) − ψs f ,k (τ ))(d†(τ ) − d (τ ))(ψ†

s f ,q(0) − ψs f ,q(0))(d†(0) − d (0))〉0. (128)

To simplify the first line, we refer to the previous observation that the excitation densities corresponding to both the charge modes
and the spin modes are equal to zero. As a result, the cross terms do not contribute. Meanwhile, the second line is identical to
the charge autocorrelator (up to a constant prefactor) that was evaluated in Sec. IV C. Simplifying the first line and applying the
result from Eq. (110) to the second line, we find

C11(τ ) = − (πvF g⊥)2

4L3

∑
k, k′, k′′
q, q′, q′′

(Gcc,k′q′′,22(τ )Gcc,k′′q′,11(τ ) + Gss,k′q′′,22(τ )Gss,k′′q′,11(τ ))

×
′∑

μν

′∑
ρσ

(Gld,k,μν (τ )Gld,q,ρσ (−τ ) + Gll,kq,μν (τ )Gdd,ρσ (τ )). (129)

From Eq. (112), it follows that the first term of the second line is odd in both k and q, and therefore vanishes upon summation
over these momenta. Transformed to Matsubara frequencies, the above thus becomes

C11(i�n) = − (πvF g⊥)2

4L3

1

(h̄β )3

∑
k, k′, k′′
q, q′, q′′

′∑
μν

′∑
ρσ

∑
n′,n′′,n′′′

Gll,kq,μν (−i(ωn′ + ωn′′ + ωn′′′ − �n))Gdd,ρσ (iωn′′′ )

× (Gcc,k′q′′,22(iωn′ )Gcc,k′′q′,11(iωn′′ ) + Gss,k′q′′,22(iωn′ )Gss,k′′q′,11(iωn′′ )), (130)

where the sums over n′, n′′, n′′′ all run over Z. Since the charge and spin modes are completely decoupled, the corresponding
Green functions satisfy Gcc,kk′ (iωn) = Gss,kk′ (iωn) = δk,k′L0,k (iωn), see Eq. (49). Plugging in the expressions from Eq. (112),
omitting the terms that are odd in any of the momenta and relabelling the remaining momenta:

C11(i�n) = −2(πvF g⊥)2

(Lh̄β )3

∑
k,k′,k′′

∑
n′,n′′,n′′′

h̄

ih̄ωn′ + εk

h̄

ih̄ωn′′ − εk′

ih̄2(ωn′ + ωn′′ + ωn′′′ − �n)

h̄2(ωn′ + ωn′′ + ωn′′′ − �n)2 + ε2
k′′

Dbb(iωn′′′ )

= 2(πvF g⊥)2

(Lβ )3

∑
k,k′,k′′

∑
n′,n′′,n′′′

1

ih̄ωn′ − εk

1

ih̄ωn′′ − εk′

1

ih̄(ωn′ + ωn′′ + ωn′′′ − �n) − εk′′
Dbb(iωn′′′ ). (131)

Having found an explicit formula for the three-loop diagram C11(i�n), we continue by evaluating two of the Matsubara sums.
Using the Matsubara representation of the Fermi-Dirac distribution from Eq. (78), a simple partial fraction decomposition leads
to the following identity:

1

β

∞∑
n=−∞

1

ih̄ωn − ε

1

ih̄ωn − ε′ = nF (ε) − nF (ε′)
ε − ε′ . (132)

Furthermore, it is straightforward to show that nF (ε − ih̄�n) = nF (ε) and nF (ε − ih̄ωn) = −nB(ε) for bosonic and fermionic
Matsubara frequencies, respectively (nB(ε) is the Bose-Einstein distribution). Applying Eq. (132) twice and taking the continuum
limit for all momentum sums, we obtain

C11(i�n) = �

8π h̄2β

∫ ∞

−∞
dεk

∫ ∞

−∞
dεk′

∫ ∞

−∞
dεk′′

∞∑
n′=−∞

(nF (εk′ ) − nF (εk′′ ))(nF (εk ) + nB(εk′′ − εk′ ))

ih̄ωn′−n − (εk′′ − εk − εk′ )
Dbb(iωn′ ). (133)
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Also switching to new variables ε ≡ (εk + εk′ − εk′′ )/2, ε′ ≡ (εk − εk′ − εk′′ )/2, ε′′ ≡ εk + εk′ + εk′′ :

C11(i�n) = �

8π h̄2β

∫ ∞

−∞
dε

∫ ∞

−∞
dε′

∫ ∞

−∞
dε′′

∞∑
n′=−∞

× (nF (ε − ε′) − nF (−ε + ε′′/2))(nF (ε′ + ε′′/2) + nB(−2ε + ε′ + ε′′/2))

ih̄ωn′−n + 2ε
Dbb(iωn′ )

= �

4π h̄2β

∫ ∞

−∞
dε

∫ ∞

−∞
dε′

∞∑
n′=−∞

(ε + ε′) cosh(βε)

sinh(βε) + sinh(βε′)
1

ih̄ωn′−n + 2ε
Dbb(iωn′ )

= �

4π h̄2β

∫ ∞

−∞
dε

∞∑
n′=−∞

(
π2

2β2
+ 2ε2

)
1

ih̄ωn′−n + 2ε
Dbb(iωn′ )

→ − �

4π h̄β

∫ �′

−�′
dε

∞∑
n′=−∞

(
π2

2β2
+ 2ε2

)
h̄ωn′−n

(h̄ωn′−n)2 + (2ε)2

1

h̄ωn′ + sgn(ωn′ )�
, (134)

where �′ = 3�/2 is the cutoff of the redefined variable ε, and we used Eq. (116) with B = 0 for the dot Green function.
Moreover, we write out the Matsubara frequencies explicitly, perform the final integral, and take the limit �′ → ∞ (see again
footnote 8) to find

C11(i�n) = − �

16π h̄β2

∞∑
n′=−∞

π2sgn
(
n′ − n + 1

2

)(
1
2 − 2

(
n′ − n + 1

2

)2) + 4β�′(n′ − n + 1
2

)
n′ + 1

2 + sgn
(
n′ + 1

2

)
β�

2π

. (135)

We would like to calculate the linear susceptibility by expanding this current-current correlation function in n and extracting
the linear part. However, the above expression is not analytic due to the sign functions, and so we split the sum into different
parts, each of which is analytic. Again restricting ourselves to n > 0, the three different parts are: (i) n′ < 0, with both sign
functions equal to −1; (ii) 0 � n′ < n, where one of the sign functions is −1 while the other is +1; (iii) n′ � n, with both sign
functions equal to +1. Writing n′ → −n′ − 1 in the first part, using

∑∞
n′=n = ∑∞

n′=0 −∑n−1
n′=0 in the third part, and subsequently

combining the parts that sum over n′ ∈ {0, . . . , n − 1}, we obtain the following analytic form:

C11(i�n>0) = − �

16π h̄β2

(
− 2π2

n−1∑
n′=0

1
2 − 2

(
n′ − n + 1

2

)2

n′ + 1
2 + β�

2π

+
∞∑

n′=0

π2
(

1
2 − 2

(
n′ + n + 1

2

)2) + 4β�′(n′ + n + 1
2

)
n′ + 1

2 + β�

2π

+
∞∑

n′=0

π2
(

1
2 − 2

(
n′ − n + 1

2

)2) + 4β�′(n′ − n + 1
2

)
n′ + 1

2 + β�

2π

)
. (136)

Similar to the charge transport case, the second and third terms of the above expression each diverge, being proportional to
�2. However, combining the terms gives a result that is either constant or quadratic in n. For the purpose of finding the linear
susceptibility, the above autocorrelator therefore simplifies to

C11(i�n>0) = const + π�

8h̄β2

n−1∑
n′=0

1
2 − 2

(
n′ − n + 1

2

)2

n′ + 1
2 + β�

2π

+ O(�2
n). (137)

Finally evaluating the remaining sum, expanding the result to linear order in n (see Appendix I), and performing analytic
continuation to real frequencies, we find

CR
11(ω) = const − i�

16h̄β

[
β�

π
+

(
1

2
− β2�2

2π2

)
ψ (1)

(
1

2
+ β�

2π

)]
h̄ω + O(ω2). (138)

Furthermore, we may identify β� as TK/T → ∞ (at the
NFL fixed point) and utilize the expansion of the trigamma
function,

1

x
ψ (1)

(
1

2
+ 1

x

)
= 1 − x2

12
+ O(x4). (139)

This gives our final result for the heat current autocorrelator at
the NFL fixed point,

CR
11(ω) = const − iπω

12β2
+ O(ω2). (140)

To summarize, only the component C11 has a linear term in
frequency at the NFL fixed point, such that the full NFL heat
current autocorrelator can be written as

CR
h (ω) = const + CR

11(ω) + O(ω2). (141)

As such, from Eq. (33), we finally obtain the following exact
result for the NFL heat susceptibility,

χh,dc = π2k2
BT 2

6h
. (142)
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FIG. 7. Linear response charge conductance G and heat conductance κ as a function of dimensionless temperature T/T ∗, both in the limit
TK → ∞. The full FL crossover region is not known exactly in the case of the heat conductance, although fixed point properties were obtained
exactly.

Returning to the discussion from the final paragraph of
Sec. III C, we briefly consider the off-diagonal terms from
Eq. (38), which involve propagators of the form 〈Îc(τ )ÎE (0)〉0
and 〈ÎE (τ )Îc(0)〉0. Referring back to Eqs. (29) and (122)–
(126), we immediately see that any terms involving Î1, Î2, or Î4

are proportional to vanishing bubble diagrams (Appendix H).
Moreover, the charge current operator does not contain the a
Majorana fermion, such that the products of Îc with either Î3 or
Î5 contain exactly one a operator. At the NFL fixed point, the
a Majorana fermion is completely decoupled from all other
modes, and all terms involving Î3 and Î5 are therefore equal
to zero as well. We thus conclude that the off-diagonal terms
from Eq. (38) are equal to zero at the NFL fixed point, and as
such the temperature gradient does not induce thermopower.
Consequently, the two choices V = 0 and Ic = 0 coincide,
such that the heat conductance κ is unambiguously given by

κ = χh,dc

T
= π2k2

BT

6h
(143)

at the NFL fixed point of the C2CK model. This novel result
is the main result of this work.

Finally, we comment on the heat conductance at the FL
fixed point due to a symmetry-breaking perturbation (either
channel asymmetry or magnetic field). In this case, for T 

T ∗, one of the two leads flows under RG to strong coupling,
while the other asymptotically decouples. One can then argue
that the conductances between the leads must vanish at the FL
fixed point. We saw this by explicit calculation in the case of
the charge conductance in Sec. IV C. The full FL crossover in
the heat conductance, even within linear response, is a more
challenging calculation which we do not attempt here.

VI. WIEDEMANN-FRANZ LAW AND CFT
CENTRAL CHARGE

In this section, we unpack some of the implications of our
results for the charge conductance in Sec. IV C and the heat
conductance in Sec. V.

In Fig. 7, we compare the behavior of the linear re-
sponse charge and heat conductances along the FL crossover
(assuming good scale separation T ∗ 
 TK ). The full FL
crossover for the charge conductance (left panel) is given

exactly by Eq. (121). For the heat conductance (right panel),
the NFL fixed point behavior is given exactly by Eq. (143),
while κ/T = 0 at the FL fixed point due to the asymp-
totic decoupling of the leads for T 
 T ∗. The intermediate
crossover behavior of the heat conductance is presently
unknown.

Note that the Kondo crossover from the local moment
fixed point to the NFL fixed point on the scale of TK in
the physical C2CK system cannot be described within this
framework, since calculations are performed at the EK point
(see Sec. II D). However, in Sec. VII, we access the incipient
behavior near the NFL fixed point using perturbation theory
around the EK solution, which gives corrections to our results
in powers of T/TK . These formally vanish at the NFL fixed
point itself, and are negligible along the FL crossover given
good scale separation T ∗ 
 TK .

We now focus on the NFL fixed point linear susceptibil-
ities, Eqs. (121) and (143). In particular, we note that our
results imply a nontrivial result for the dot central charge
within the underlying conformal field theory (CFT) at the NFL
fixed point. This follows from the fact that the heat current
through a junction in a one-dimensional (1D) system is given
by [50]

Ih = cπ2

6h
k2

B

(
T 2

l − T 2
r

)
, (144)

where c is the CFT central charge of the degrees of freedom
involved in the transport processes. Using the results from the
previous sections, we can calculate this heat current for our
system. In the FL regime there is no transport at all, such that
c trivially goes to zero. However, in the NFL region we find
the following heat current for small 	T/T :

Ih = κ	T = π2

6h
k2

BT 	T = π2

12h
k2

B	(T 2)

= π2

12h
k2

B

(
T 2

l − T 2
r

)
. (145)

Our results thus imply a central charge of c = 1/2, char-
acteristic of the 1D Majorana fermions appearing in the
tunneling term of the Hamiltonian, Eq. (14). As the heat
current is an observable quantity, this provides a way to
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experimentally verify the Majorana character of the dot in the
NFL region.

Finally, let us consider the Lorenz ratio, defined as the
ratio of the heat conductance to the charge conductance,9

L ≡ κ/T G. The Wiedemann-Franz law states that this ratio
reduces to a constant value L0 = π2k2

B/3e2 in the case of
“normal” metals (mostly referring to Fermi liquids). For our
setup, it immediately follows from Eqs. (121) and (143) that
the Wiedemann-Franz law is actually satisfied at the NFL
fixed point, i.e., LNFL = L0. It should be noted that both the
charge and the heat conductance actually have an additional
factor 1/2 compared to most simple quantum dot setups, but
these unconventional factors cancel in LNFL, leaving the ratio
unchanged. In particular, note that this is the exact result at the
NFL fixed point of the physical C2CK model. This is because
both κ and G are finite at the NFL fixed point, to which
the C2CK model flows for T ∗ 
 T 
 TK . Corrections to the
EK solution presented here may be obtained perturbatively
around the EK point (this is done explicitly in Sec. VII), with
the additional terms controlled in powers of T/TK . There-
fore these corrections formally vanish at the NFL fixed point
being considered here, and do not need to be considered in
the calculation of LNFL. Our result LNFL = L0 is therefore
exact.10

Counter-intuitively, the Wiedemann-Franz law is expected
to be violated in the FL regime of the C2CK model –
exactly opposite to naive expectation. This can be understood
quantitatively by first expanding the conductances in terms of
T/T ∗. Doing so, the Lorenz ratio acquires the form L = (κ0 +
κ2(T/T ∗)2 + . . .)/T (G0 + G2(T/T ∗)2 + . . .), where κ0,2 and
G0,2 are the first nonzero Taylor coefficients of the conduc-
tances.11 Since κ0 = G0 = 0 at the FL fixed point, the Lorenz
ratio has a well-controlled limit as T → 0 of L → κ2/T G2.
As such, the Wiedemann-Franz law cannot be expected to
hold despite the FL nature of the fixed point. Moreover, from
a physical point of view the Lorenz ratio is expected to be
enhanced, which can be understood by realizing that the FL
ground state corresponds to a transmission node of the sys-
tem [52]. Generally, the heat current (and by extension the
entropy current) is less sensitive to transmission nodes than
the charge current. This is due to the fact that the entropy
current is inherently incoherent, while the charge current is

9The Lorenz ratio specifically involves the heat conductance in
absence of an electric current [51]; in terms of the conventions from
Sec. III C, the heat conductance should thus be read as T κ = χ22 −
χ12χ21/χ11. Although inconsequential at the NFL fixed point, in the
general case, it is therefore necessary to account for thermopower.

10Certain other ratios of interest, such as the Wilson ratio which
involves the ratio of the magnetic susceptibility to the specific heat,
depend on quantities that are known to vanish at the NFL point.
In such cases, one must compute the corrections around the EK
point already to obtain the fixed point properties. By contrast, we
emphasize again that this is not required for the calculation of the
NFL Lorenz ratio, since both charge and heat conductances remain
finite at the NFL fixed point.

11The linear coefficient G1 can explicitly be shown to vanish by
expanding Eq. (121), while κ1 is expected to vanish in accordance
with Fermi liquid theory.

not. Coherent currents are more easily blocked, and so the
ratio of entropy (or heat) conductance to charge conduc-
tance is expected to be enhanced when approaching such a
transmission node.

In conclusion, we have shown that the C2CK device at the
NFL critical fixed point for T ∗ 
 T 
 TK is characterized
by a CFT central charge c = 1/2, corresponding to a single
Majorana fermion. But despite the unconventional Majorana
degree of freedom on the dot that mediates quantum trans-
port, the Wiedemann-Franz law is satisfied. Surprisingly, the
Wiedemann-Franz law is expected to be violated instead at
the FL fixed point for T 
 T ∗, due to the transmission node
in that limit. This elaborates on the results we presented in
Ref. [28].

VII. PERTURBATIONS AWAY FROM THE EK POINT

As discussed in Sec. II D, perturbation theory can be used
to find the corrections to the NFL results in terms of a finite
T/TK . In this section, we will explicitly calculate the correc-
tions to the linear response charge conductance away from the
EK point to lowest order in λ ≡ 2π h̄vF − Jz and T/TK . Our
starting point is the interaction term from Eq. (10),

ĤI = λ : ψ†
s (0)ψs(0) :

(
d†d − 1

2

)

= iλ

L
ba

∑
k,k′

: ψ
†
s,kψs,k′ :, (146)

which we treat as a perturbation to the noninteracting Hamil-
tonian from Eq. (14) [39]. To calculate the change in the linear
susceptibility due to this interaction term, we must find the
corrections to Eq. (113), which should be understood as

Cτ
c (i�n>0) = − e2�

8π h̄3β

∞∑
n′=−∞

∫ ∞

−∞
dεk

× Tr[L0,k (iωn′ )]Dbb(−iωn′−n). (147)

Since the interaction term does not involve spin-flavor modes,
the bare propagators corresponding to those modes remain
unchanged. Our first objective is thus to find the corrections
to the bb component of the dot Green function in presence of
a nonzero λ. In doing so, we will set the magnetic field B to

TABLE II. Definitions of the different components of the Feyn-
man diagrams. The arrow in the fourth diagram indicates the
propagation direction of ψs,k .

Expression Diagram Vertex

Dfull
bb (iωn)

ωn

Dbb(iωn)
ωn

Daa(iωn)
ωn

1
L

k

Gs,k(iωn)
ωn

205137-23



VAN DALUM, MITCHELL, AND FRITZ PHYSICAL REVIEW B 102, 205137 (2020)

zero (i.e., setting T ∗ = 0), restricting ourselves purely to the
NFL regime and removing any effects from the FL regime in
the process.

We approximate the full bb component of the dot Green
function Dfull

bb (iωn) in presence of interactions by employing

standard Feynman diagrammatic techniques. Utilizing the fact
that the interaction Hamiltonian from Eq. (146) provides a
four-point vertex involving two ψs,k legs, an a leg and a b
leg, the Feynman rules lead to the following diagrammatic
expression for Dfull

bb (iωn):

ωn

=
ωn

+
ωn ωn−l+m

ωl

ωm

ωn

+ . . . .

(148)

Here, each vertex comes with a prefactor iλ/h̄2β and a sum over Matsubara frequencies; the definitions of the other components
can be found in Table II. Explicitly, we find that the lowest order of the self-energy is given by

�(iωn) = − λ2

L2h̄2

1

(h̄β )2

∑
n′,n′′

∑
k,k′

Daa(−i(ωn′ − ωn′′ − ωn))Gs,k (iωn′ )Gs,k′ (iωn′′ ), (149)

where Gs,k (iωn) is shorthand notation for Gss,kk,11(iωn). A more detailed derivation of this expression can be found in
Appendix J.

Using the fact that the a and ψs,k modes are completely isolated from the rest of the system if B = 0 and λ = 0, and taking
the continuum limit of the k, k′ sums, we have

�(iωn) = − λ2

h̄v2
F

1

(h̄β )2

∫ ∞

−∞

dεk

2π

∫ ∞

−∞

dεk′

2π

∑
n′,n′′

1

ih̄(ωn − ωn′ + ωn′′ )

1

ih̄ωn′ − εk

1

ih̄ωn′′ − εk′
. (150)

Furthermore applying Eq. (132) twice, together with the substitutions ε ≡ (εk + εk′ )/2, ε′ ≡ εk − εk′ , the self-energy becomes

�(iωn) = λ2

h̄3v2
F

∫ ∞

−∞

dεk

2π

∫ ∞

−∞

dεk′

2π

(nF (0) − nF (εk′ ))(nF (εk ) + nB(εk′ ))

ih̄ωn − (εk − εk′ )

εk′→−εk′= λ2

4h̄3v2
F

∫ ∞

−∞

dεk

2π

∫ ∞

−∞

dεk′

2π

cosh (β(εk + εk′ )/2)

cosh (βεk/2) cosh (βεk′/2)

1

ih̄ωn − (εk + εk′ )

= λ2

2h̄3v2
F

∫ ∞

−∞

dε

2π

∫ ∞

−∞

dε′

2π

cosh (βε)

cosh (βε) + cosh (βε′/2)

1

ih̄ωn − 2ε
= λ2

π h̄3v2
F

∫ ∞

−∞

dε

2π

ε

tanh (βε)(ih̄ωn − 2ε)
. (151)

In order to deal with the remaining UV divergence, we again introduce the energy cutoff �. Noting that the real part of the
integrand is odd in ε, we obtain

�(iωn) = − iωnλ
2

2π2h̄2v2
F

∫ �

−�

dε
ε

tanh (βε)

1

(h̄ωn)2 + (2ε)2
, (152)

which diverges logarithmically as � → ∞.
We now return to the correlation function from Eq. (147), replacing Dbb(iωn) with Dfull

bb (iωn) and evaluating the momentum
integral. The methods of dealing with the momentum integrals are the same as in Sec. IV C, and the current-current correlator
becomes

Cτ
c (i�n>0) = ie2�

4h̄2β

∞∑
n′=0

(
Dfull

bb (−iωn′−n) − Dfull
bb (iωn′+n)

)

= Cτ
c (i�n>0)|λ=0 − ie2�

4h̄2β

∞∑
n′=0

((Dbb(iωn′−n))2�(iωn′−n) + (Dbb(iωn′+n))2�(iωn′+n)) + O(λ4), (153)

where we used the fact that both Dbb(iωn) and �(iωn) are odd functions of ωn. Reading off Dbb(iωn) from Eq. (116) (taking the
B → 0 limit) and splitting the sum in the same way as in Eq. (117), the lowest-order correction to the current-current correlator
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can be written as

	Cτ
c (i�n>0) = ie2�

2β

( ∞∑
n′=0

�(iωn′ )

(h̄ωn′ + �)2 −
n−1∑
n′=0

�(iωn′ )

(h̄ωn′ + �)2

)

= const − e2�λ2

4π2h̄3v2
F β

∫ �

−�

dε

n−1∑
n′=0

ε

tanh(βε)

1

(h̄ωn′ + �)2

h̄ωn′

(h̄ωn′ )2 + (2ε)2
. (154)

The remaining sum can be evaluated by performing a partial fraction decomposition and applying the digamma identities from
Appendix E. Subsequently expanding the result to linear order in �n and to lowest order in 1/β�, we find

	Cτ
c (i�n>0) = const − e2β�λ2

32π4h̄3v2
F

∫ β�

−β�

d (βε)
βε

tanh(βε)

×
[(

ψ (1)
(1

2
− iβε

π

)
+ ψ (1)

(1

2
+ iβε

π

)) h̄�n

(β�)2
+ O

(
�2

n, (1/β�)3
)]

. (155)

Finally evaluating the remaining integral in the wide-band
limit � → ∞ and performing analytic continuation to real
frequencies, we recover the lowest-order correction to the
linear dc charge susceptibility:

	χc,dc = −π3e2λ2

16h3v2
F

1

β�
+ O((1/β�)2). (156)

Identifying 2π/β� as T/TK as before, the charge conductance
in the vicinity of the NFL fixed point follows as

G = e2

2h

[
1 −

( πλ

4hvF

)2 T

TK
+ . . .

]
. (157)

Here, + . . . represents all higher order terms in products
of λ and T/TK . This result has previously appeared in
Refs. [29–31]; the above serves as a concise derivation of
these perturbations.

A few remarks are now in order. (i) The linear order correc-
tion (in T/TK ) is found to remain finite as � → ∞. However,
if the cutoff is taken all the way to infinity, the higher order
terms take over, as they are proportional to ln(�). This means
that the lowest-order correction to the dc conductance is only
linear in T/TK if the cutoff is finite. Fortunately, this is always
the case in real systems. (ii) The leading order correction to
the NFL conductance precisely at the EK point is quadratic in
T/TK , as can be read off from Eq. (120) by using Eq. (139).
This stands in contrast to the temperature dependence away
from the EK point, which from Eq. (157) is seen to be linear.
We thus find that the lowest-order correction to the NFL
conductance is linear in T/TK at a general point in parameter
space (including the C2CK model). This linear behavior of
the C2CK NFL conductance agrees with the known experi-
mental and numerical results [15,23]. (iii) We found that the
corrections to the conductance vanish as T/TK goes to zero,
independent of λ. This is a manifestation of the irrelevance
of the anisotropy 	Jz ≡ Jz − J⊥: no matter the starting point
(which is dictated by the parameter λ), the RG flow ensures
that 	Jz effectively goes to zero with the energy scale (in
this case T/TK ), such that the EK point results become exact
regardless of λ. We emphasize that perturbing away from the
EK point emphatically does not affect the NFL fixed point
conductance itself, only the approach to this point. (iv) From

the calculations performed in this section for the linear dc
charge conductance, it is clear that the corresponding calcu-
lation for heat conductance would be extremely challenging
(involving as it does five-loop diagrams), and is beyond the
scope of this work. However, again we stress that the NFL
fixed point properties themselves are not affected by these
corrections, which are RG irrelevant.

VIII. CONCLUSION

In this paper, we studied theoretically the quantum
transport properties of a model describing recent charge two-
channel Kondo quantum dot experiments [15,16]. We used
the Keldysh nonequilibrium technique and linear response to
find exact analytic results for both charge and heat transport.
Specifically, we employed the Emery-Kivelson effective the-
ory, which is only valid at a special point in parameter space,
but which we show yields asymptotically the true NFL fixed
point behavior of the physical C2CK system, as well as its
low-temperature FL crossover. In Sec. IV, we focused on the
exact charge current due to a generally time-dependent bias
voltage, within a general Keldysh framework. This allowed
us to generalize existing exact expressions in the literature
for the dc and ac expressions for the electrical current and
conductance in the spin 2CK model to the case of the charge-
Kondo quantum dot setup. The results successfully capture
the FL crossover region, although energies of the order of
the Kondo temperature scale are excluded due to the usage
of the EK point. The framework used for these calculations
is very general, and also paves the way for other time de-
pendencies in the bias voltage that might be experimentally
accessible. We also demonstrate the use of the Kubo for-
mula for a direct calculation of the linear response charge
conductance.

In Sec. V, we utilized linear response methods to study
heat transport due to a temperature gradient between leads. We
point out that the heat current operator is considerably more
complicated than the charge current operator. Despite dealing
with an effective free field theory at the EK point, three-loop
diagrams must be calculated. We therefore restrict attention
to the behavior of the C2CK model at NFL and FL fixed
points, and obtain exact analytic results. We show that a heat
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transport measurement would give direct access to the central
charge of the critical theory, thereby revealing the Majorana
character of the effective model. We can furthermore show
that, surprisingly, the Wiedemann-Franz law is satisfied at the
NFL critical point, while the Lorenz ratio is expected to be
enhanced as the system crosses over to the FL region. All of
these T 
 TK results are quantities that are accessible exper-
imentally, providing a way to bring theory and experiments
together in the highly nontrivial context of strongly correlated
quantum many-body nanoelectronics devices.

ACKNOWLEDGMENTS

We thank A.-P. Jauho for a very useful discussion con-
cerning resonant tunneling devices. G.D. is thankful to B.F.
McKeever for providing valuable support during the early
stages of this research. This work is part of the D-ITP consor-
tium, a program of the Netherlands Organisation for Scientific
Research (NWO) that is funded by the Dutch Ministry of Ed-
ucation, Culture and Science (OCW). A.K.M. acknowledges
funding from the Irish Research Council Laureate Awards
2017/2018 through Grant No. IRCLA/2017/169.

APPENDIX A: BOSONIZATION

In this Appendix, we derive the bosonization formulas used
in Sec. III B, following Refs. [41,42]. The first realization
necessary to derive these relations is that the dispersion rela-
tion has been linearized around the Fermi level, such that the
one-dimensional fermionic fields are only allowed to move
with constant velocity vF in either direction. Introducing co-
ordinates z = i(x + vFt ) = vF τ + ix and z̄ = −i(x − vFt ) =
vF τ − ix, the fields can be divided into left-movers ψ (x, t ) =
ψ (z) and right-movers ψ̄ (x, t ) = ψ̄ (z̄). Since all fermionic
fields in the anisotropic 2CK model are left-movers, we will
now only consider fields of the form ψ (z), noting that ∂x =
i(∂z − ∂z̄ ) = i∂z when acting on these fields.

The bosonization ansatz is that one can introduce a bosonic
left-moving field �(z) that is related to its fermionic counter-
part through the relations

ψ (z) = Aη e−iλ�(z), ψ†(z) = Aη eiλ�(z), (A1)

where A and λ are real positive constants, and η is a Klein
factor that is introduced to ensure the anticommutation of
different types of fermions (i.e., {ηi, η j} = 2δi, j for fermion
species i and j). The operator exponentials in the above ex-
pressions are understood as normal ordered. In order to work
with normal ordered operator exponentials of this form, we
take notice of a useful formula:

: eiα�(z) :: eiβ�(z′ ) : = : eiα�(z)+iβ�(z′ ) : e−αβ〈�(z)�(z′ )〉, (A2)

which is a direct consequence of the Campbell-Baker-
Hausdorff formula (see, e.g., Ref. [41]). Furthermore, the
fermionic and bosonic two-point functions can be calculated

by performing mode expansions of the fields,12 leading to

〈ψ†(z)ψ (z′)〉 = 1

2π

1

z − z′ , 〈�(z)�(z′)〉 = ln
( a0

z − z′
)

(A3)

for τ > τ ′; a0 is a small regularization parameter that must
be included in the mode expansion of the bosonic fields,
and is often taken to be of the order of the lattice spacing
of the lattice on which the calculation was performed [53].
Combining all of the above equations and writing the Klein
factor as an exponential, the desired bosonization identity is
found to be

ψ (z) = 1√
2πa0

eiφe−i�(z), (A4)

which is the identity used in the Emery-Kivelson mapping
procedure.

In the remainder of this section, we will use the above to
derive Eqs. (20), (21), and (26) from the main text. To do
so, we make use of Wick’s theorem, stating that a normal
ordered product is equal to the corresponding time ordered
product minus all possible contractions. For equal-time prod-
ucts, the use of time ordering and two-point functions requires
point-splitting, which we implement by evaluating all creation
operators at an imaginary time ε/vF later than the annihilation
operators. First considering a density term:

: ψ†(z + ε)ψ (z) :

= Tτψ
†(z + ε)ψ (z) − 〈ψ†(z + ε)ψ (z)〉

= 1

2πa0
: ei�(z+ε)−i�(z) : e〈�(z+ε)�(z)〉 − 1

2πε

= 1

2πε
(: ei∂z�(z) ε+O(ε2 ) : − 1)

= i

2π
∂z�(z) + O(ε). (A5)

Taking the limit ε → 0 and using i∂z = ∂x, this immediately
leads to Eq. (20). Evaluation of kinetic terms is more subtle,
and we find them by considering an overall derivative instead:

: ψ†(z + ε)∂zψ (z) :

= ∂z : ψ†(z′)ψ (z) : |z′→z+ε

= ∂z

[
1

2π

1

z′ − z
(: ei�(z′ )−i�(z) : − 1)

]∣∣∣∣
z′→z+ε

= ∂z

[
1

2π

1

z′ − z

(
i(�(z′) − �(z))

− 1

2
(�(z′) − �(z))2 + . . .

)]∣∣∣∣
z′→z+ε

= i

4π
∂2

z �(z) + 1

4π
(∂z�(z))2 + O(ε). (A6)

12The same mode expansions can also be used to derive the correct
(anti)commutation relations for the fields, including the one from
Eq. (24).
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The final line of this equation is obtained by first evaluating
the derivative, then replacing z′ → z + ε and expanding the

result in ε. Integrating over x and again taking the limit ε → 0,
we find

∫ ∞

−∞
dx : ψ†(x)∂xψ (x) : = − i

4π

∫ ∞

−∞
dx(∂x�(x))2 + 1

4π
∂x�(x)

∣∣∣∞
−∞

= − i

4π

∫ ∞

−∞
dx(∂x�(x))2 + 1

2
: ψ†(x)ψ (x) :

∣∣∣∞
−∞

. (A7)

The boundary term on the right-hand side is equal to the difference in density at both ends of the infinite one-dimensional
system and therefore equal to zero, such that the above is the same as Eq. (21). Finally, the bosonization of interaction terms is
a straightforward extension of the bosonization of density terms. Distinguishing between two different fermion species α and β

such that ψα (z) and ψ
†
β (z′) anticommute, and �α (z) and �β (z′) commute:

: ψ†
α (z + ε)ψα (z)ψ†

β (z + ε)ψβ (z) := Tτψ
†
α (z + ε)ψα (z)ψ†

β (z + ε)ψβ (z) − : ψ†
α (z + ε)ψα (z) : 〈ψ†

β (z + ε)ψβ (z)〉
− : ψ

†
β (z + ε)ψβ (z) : 〈ψ†

α (z + ε)ψα (z)〉 − 〈ψ†
α (z + ε)ψα (z)〉〈ψ†

β (z + ε)ψβ (z)〉

= 1

(2πε)2
(: ei�α (z+ε)−i�α (z) :: ei�β (z+ε)−i�β (z) : − : ei�α (z+ε)−i�α (z) : − : ei�β (z+ε)−i�β (z) : + 1)

= 1

(2πε)2
(: ei�α (z+ε)−i�α (z) : − 1)(: ei�β (z+ε)−i�β (z) : − 1)

= − 1

4π2
(∂z�α (z))(∂z�β (z)) + O(ε). (A8)

Similar to the previous bosonization formulas, this straightforwardly leads to Eq. (26).

APPENDIX B: KUBO FORMULA

The Kubo formula from Eq. (33) can be obtained by using functional integral formalism in imaginary time τ . The contribution
of the potential drop to the Euclidean action is Sφ = ∫ h̄β

0 dτ Ĥφ (τ ), from where it follows that

〈ÎQ〉(τ ) = 1

Z

∫
Dψ ÎQ(τ ) e− S0

h̄ − Sφ

h̄

=
∫
Dψ ÎQ(τ )

(
1 − 1

h̄

∫ h̄β

0 dτ ′Q̂(τ ′)	φ(τ ′) + O(	φ2)
)
e− S0

h̄∫
Dψ

(
1 − 1

h̄

∫ h̄β

0 dτ ′Q̂(τ ′)	φ(τ ′) + O(	φ2)
)
e− S0

h̄

=
∫
Dψ ÎQ(τ )

(
1 − 1

h̄

∫ h̄β

0 dτ ′Q̂(τ ′)	φ(τ ′) + O(	φ2)
)
e− S0

h̄

Z0
(
1 − 1

h̄

∫ h̄β

0 dτ ′〈Q̂(τ ′)〉0	φ(τ ′) + O(	φ2)
)

= 〈ÎQ(τ )〉0 − 1

h̄

∫ h̄β

0
dτ ′(〈Tτ ÎQ(τ )Q̂(τ ′)〉0 − 〈ÎQ(τ )〉0〈Q̂(τ ′)〉0)	φ(τ ′) + O(	φ2)

=
∫ h̄β

0
dτ ′χ (τ, τ ′)	φ(τ ′) + O(	φ2), χ (τ, τ ′) ≡ −1

h̄
〈Tτ ÎQ(τ )Q̂(τ ′)〉0, (B1)

with Dψ referring to all Grassmann fields ψασ and ψ̄ασ , and those contained in the dot spin operator τ . Here, 〈. . .〉 denotes
the full expectation value, while 〈. . .〉0 refers to the expectation value in absence of a potential gradient; the first term vanishes
because there is no transport if the potential gradient is zero, and the bubble diagrams ∼〈ÎQ(τ )〉0〈Q̂(τ ′)〉0 vanish for the same
reason. Moreover, the time ordering operator Tτ originates from the slicing procedure used in the derivation of the functional
integral formalism. It is now important to note that the susceptibility is an imaginary time Green function,

χ (τ, τ ′) = 1

h̄
Cτ

IQ(τ − τ ′), (B2)

where we used the fact that the bare Hamiltonian (i.e., in absence of 	φ) is time-independent to justify the statement that
any bare two-point function 〈Â(τ )B̂(τ ′)〉0 can be written as a function only depending on the time difference (τ − τ ′). Fourier
transforming Eq. (B1) to Matsubara frequencies, analytically continuing to real frequencies and Fourier transforming back to
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time, Eq. (B1) becomes

〈ÎQ〉(t ) =
∫ ∞

−∞
dt ′χ (t, t ′)	φ(t ′) + O(	φ2), (B3)

with

χ (t, t ′) = 1

h̄
CR

IQ(t − t ′) = − i

h̄
θ (t − t ′)〈[ÎQ(t ), Q̂(t ′)]〉0. (B4)

This gives us an expression for the linear response susceptibility of the current of charge Q due to a potential drop 	φ, in terms
of a “bare” expectation value.

The above susceptibility can also be written as a current-current correlation function. To do so, we introduce another potential
A such that 	φ(t ) = −∂t A(t ). Integrating Eq. (B3) by parts and using the definition of the current from Eq. (18), we find

〈ÎQ〉(t ) =
∫ ∞

−∞
dt ′

(
i

h̄
θ (t − t ′)〈[ÎQ(t ), ÎQ(t ′)]〉0 + i

h̄
δ(t − t ′)〈[ÎQ(t ), Q̂(t )]〉0

)
A(t ′) + O(	φ2)

=
∫ ∞

−∞
dt ′

(
− 1

h̄
CR(t − t ′) + i

h̄
δ(t − t ′)〈[ÎQ(t ), Q̂(t )]〉0

)
A(t ′) + O(	φ2), (B5)

Note that the boundary terms from integrating by parts vanish due to the procedure of adiabatically switching the potential on and
off in the distant past and future (also used in the Keldysh formalism from Sec. IV), such that A(t → −∞) = A(t → ∞) = 0.
Furthermore realizing that the Fourier transform of the equation 	φ(t ) = −∂t A(t ) is simply 	φ(ω) = iωA(ω), we obtain

〈ÎQ〉(ω) =
(

− 1

h̄
CR(ω) + i

h̄
〈[ÎQ(t ), Q̂(t )]〉0

)
A(ω) + O(	φ2) = i

h̄ω
(CR(ω) − i〈[ÎQ(t ), Q̂(t )]〉0)	φ(ω) + O(	φ2), (B6)

where it should be noted that the boundary term i〈[ÎQ(t ), Q̂(t )]〉0 is a (real) constant, again due to the fact that the bare system
is time-independent. Starting from Eq. (34) and using the fact that the current operator is defined as minus the time derivative of
the charge operator, we can relate this constant to the zero frequency current autocorrelator:

CR(ω = 0) = −i
∫ 0

−∞
d	t 〈[ÎQ(t ), ÎQ(t + 	t )]〉0 = i〈[ÎQ(t ), Q̂(t )]〉0 − i〈[ÎQ(t ), Q̂(−∞)]〉0, (B7)

the final term being zero. With this, we finally arrive at

χ (ω) = i

h̄ω
(CR(ω) − CR(0)), (B8)

which is the expression used in the main text.
In the dc case, the potential drop is given by 	φ(ω) = 2π	φ δ(ω). As a result, the dc susceptibility is equal to the ω → 0

limit of χ (ω), as can be seen by inverse Fourier transforming Eq. (B6). In this limit, the above result can be further simplified
by noting that Re[CR(ω)] = Re[CR(−ω)] and Im[CR(ω)] = −Im[CR(−ω)] [54]. The real part of (CR(ω) − CR(0)) is therefore
at least quadratic in ω, such that the dc susceptibility becomes

χdc = lim
ω→0

1

h̄ω
(−Im[CR(ω)]). (B9)

This is the form of the Kubo formula often found in literature.

APPENDIX C: MAJORANA GREEN FUNCTIONS ON THE DOT

In the following Appendix, we calculate the necessary components of the dot Green function D(t, t ′). Referring back to the
self-energy from Eq. (48) and the Hamiltonian from Eq. (53), and using structures from Eqs. (44) and (45), we find

D =
(

D−1
0 − g2

⊥
h̄2 g† · L′

0 · g
)−1

=
(

D−1
0

∣∣
B=0 − B

h̄
δ(t − t ′)

(1 0
0 −1

)
− g2

⊥
h̄2 (L′

0,1 + L′
0,2)

( 1 −1
−1 1

))−1

. (C1)

Let us now look at the retarded and advanced components of this Green function, using Eq. (64):

DR/A(t, t ′)=
(

δ(t − t ′)

(
i∂t ′ − B

h̄ ± ig2
⊥

h̄2vF
∓ ig2

⊥
h̄2vF

∓ ig2
⊥

h̄2vF
i∂t ′ + B

h̄ ± ig2
⊥

h̄2vF

))−1

=
(

δ(t − t ′)
(

i∂t ′ ± 1
h̄

(∓B + i
2�

) ∓ i�
2h̄

∓ i�
2h̄ i∂t ′ ± 1

h̄

(±B + i
2�

)))−1

,

(C2)

where the convergence factor i0+ has been omitted due to the presence of a nonzero imaginary part. As seen in the main text, it
is convenient to consider the Fourier transform of the dot Green function as well. In particular, we work out the following object,
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which also appears in the expressions for the currents:

DR/A(ε) =
∫ ∞

−∞
d	t e

iε
h̄ 	t DR/A(	t ) =

∫ ∞

−∞
dt ′ e− iε

h̄ (t−t ′ )DR/A(t ′, t ), (C3)

using that DR/A(t, t ′) = DR/A(t − t ′), and where for the second equality we wrote 	t ≡ t ′ − t , with t a constant. This is allowed
due to the fact that the time dependence of the Hamiltonian has no influence on any of the necessary components (see Eq. (64))
and can therefore be treated as fully time-independent. First calculating the Fourier transform of the inverse of DR/A(t, t ′):

(
DR/A

)−1
(ε) =

∫ ∞

−∞
dt ′ δ(t ′ − t )

(
i∂t ± 1

h̄

(∓B + i
2�

) ∓ i�
2h̄

∓ i�
2h̄ i∂t ± 1

h̄

(±B + i
2�

))e− iε
h̄ (t−t ′ ) = 1

h̄

(
ε − B ± i

2� ∓ i
2�

∓ i
2� ε + B ± i

2�

)
.

(C4)

Inverting this matrix, we obtain

DR/A(ε) = h̄

ε(ε ± i�) − B2

(
ε + B ± i

2� ± i
2�

± i
2� ε − B ± i

2�

)
. (C5)

Referring back to Eqs. (66)–(69), it also immediately follows that the Fourier transformed Majorana Green functions are given
by

DR/A
aa (ε) = h̄(ε ± i�)

ε(ε ± i�) − B2
, (C6)

DR/A
bb (ε) = h̄ε

ε(ε ± i�) − B2
, (C7)

DR/A
ab (ε) = −ih̄B

ε(ε ± i�) − B2
= −DR/A

ba (ε). (C8)

Although for the examples in the main text it suffices to know the Fourier transform of the dot Green function, it is often
necessary to have an expression for DR/A(t, t ′) itself. This expression is found by evaluating the following integral:

DR/A(t, t ′) =
∫ ∞

−∞

dε

2π h̄
e− iε

h̄ (t−t ′ ) h̄

ε(ε ± i�) − B2

(
ε + B ± i

2� ± i
2�

± i
2� ε − B ± i

2�

)
. (C9)

Let us now turn to contour integration to evaluate this integral. The poles of the integrand are located at ε±,n = ∓i�/2 +
(−1)n

√
B2 − �2/4 = ∓i(�/2 ∓ (−1)n

√
�2/4 − B2) (where n = 0, 1), and so in the case of the retarded (advanced) compo-

nents, they are both located in the negative (positive) imaginary plane for any real B. Properly closing the contour, we thus find
that DR(A)(t, t ′) is zero if t < t ′ (t > t ′), and nonzero otherwise. This confirms that it is indeed a retarded (advanced) function.
Meanwhile, the denominator in the integrand can be written as (−1)ni

√
�2 − 4B2(ε − ε±,n) to linear order around the poles.

Applying the residue theorem:

DR/A(t, t ′) = ∓iθ (±(t − t ′))
∑

n

Res

(
e− iε

h̄ (t−t ′ )

ε(ε ± i�) − B2

(
ε + B ± i

2� ± i
2�

± i
2� ε − B ± i

2�

)
, ε±,n

)

= ∓iθ (±(t − t ′))
−i√

�2 − 4B2

[
e− iε±,0

h̄ (t−t ′ )
(

ε±,0 + B ± i
2� ± i

2�

± i
2� ε±,0 − B ± i

2�

)

− e− iε±,1
h̄ (t−t ′ )

(
ε±,1 + B ± i

2� ± i
2�

± i
2� ε±,1 − B ± i

2�

)]
, (C10)

where the overall sign in front emerges from the integration direction. Writing out the components of the above matrix, we find

DR/A
11 (t, t ′) = ∓iθ (±(t − t ′))e∓ �

2h̄ (t−t ′ )
[

cosh

(
1

2h̄

√
�2 − 4B2(t − t ′)

)

− 2iB√
�2 − 4B2

sinh

(
1

2h̄

√
�2 − 4B2(t − t ′)

)]
, (C11)

DR/A
12 (t, t ′) = −iθ (±(t − t ′))

�√
�2 − 4B2

e∓ �
2h̄ (t−t ′ ) sinh

(
1

2h̄

√
�2 − 4B2(t − t ′)

)
, (C12)

and

DR/A
21 (t, t ′) = DR/A

12 (t, t ′), DR/A
22 (t, t ′) = DR/A

11 (t, t ′)|B→−B. (C13)
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Meanwhile, the Majorana Green functions are given by

DR/A
aa (t, t ′) = ∓iθ (±(t − t ′))e∓ �

2h̄ (t−t ′ )
[

cosh

(
1

2h̄

√
�2 − 4B2(t − t ′)

)

± �√
�2 − 4B2

sinh

(
1

2h̄

√
�2 − 4B2(t − t ′)

)]
, (C14)

DR/A
bb (t, t ′) = ∓iθ (±(t − t ′))e∓ �

2h̄ (t−t ′ )
[

cosh

(
1

2h̄

√
�2 − 4B2(t − t ′)

)

∓ �√
�2 − 4B2

sinh

(
1

2h̄

√
�2 − 4B2(t − t ′)

)]
, (C15)

DR/A
ab (t, t ′) = ±iθ (±(t − t ′))e∓ �

2h̄ (t−t ′ ) 2B√
�2 − 4B2

sinh

(
1

2h̄

√
�2 − 4B2(t − t ′)

)
, (C16)

and DR/A
ba (t, t ′) = −DR/A

ab (t, t ′). For future reference, note in particular that DR/A
ba (t, t ′) is proportional to the magnetic field B.

This remains true upon analytically continuing to imaginary time τ , such that the time-ordered expectation value 〈Tτ b(τ )a(τ ′)〉
goes to zero with the magnetic field.

APPENDIX D: THE KELDYSH STRUCTURE

In the case of fermions, the Keldysh formalism for
nonequilibrium problems [49] starts with the action as a func-
tion of Grassmann fields ψ and ψ̄ , involving integration over
the closed time contour C (which consists of a forward branch
from −∞ to +∞, and a backward branch from +∞ to −∞).
The fields are then doubled: one field for the forward branch,
and one for the backward branch. Following the Keldysh
prescription of doubling and rotating the fields (such that we
have two new fields ψ1 and ψ2 for each field ψ), the action
becomes

S = h̄
∫ ∞

−∞
dt ψ̄ · G−1 ⊗ γ cl · ψ, (D1)

with

ψ ≡ (ψ1 ψ2)T , γ cl ≡
(1 0

0 1

)
. (D2)

In this Keldysh rotated (1,2) basis, the full Green function G
assumes a triangular structure:

G =
(

GR GK

0 GA

)
, (D3)

where GR/A are the retarded and advanced Green functions,
and GK is the Keldysh component of the Green functions. In
general, expectation values relate to these components in the
following way:

〈ψαψ
†
β〉 = 1

2
〈ψα,1ψ̄β,2〉 = i

2
GK

αβ, (D4)

where the labels α, β refer to the different fields that might be
present in the system.

As discussed in the main text, the Keldysh Green function
of a system in thermal equilibrium can be found by using the
FDT. However, the dot region is not in equilibrium, so the
Keldysh component on the dot has to be found in a different
way. In order to find this component, we apply block inversion
to the triangular Keldysh structure:

(G−1)R/A = (GR/A)−1, (G−1)K = −(GR)−1 · GK · (GA)−1,

(D5)

such that

DK = −DR · ((D−1
0

)K − �K
d

) · DA. (D6)

Combining Eqs. (60), (61), and (D5) with the general proper-
ties of the (bare) retarded and advanced Green functions, we
see that the term (

D−1
0

)K = 2i0+F (D7)

is just a regulator. Therefore

DK = DR · �K
d · DA, (D8)

eliminating the need to find the out-of-equilibrium matrix F
on the dot.

Another thing to note is that the FDT from Eq. (61) should
in general be applied to Wigner transformed Green functions.
To see why the FDT manifests itself in the way that it does
in Sec. IV, consider a simple time-independent and homo-
geneous model. In this case, the Wigner transform reduces
simply to the usual Fourier transform. Applying the FDT:

GK
0,k (ω) = f (ω)

(
GR

0,k (ω) − GA
0,k (ω)

)
= f (ω)

( h̄

ω − εk + i0+ − h̄

ω − εk − i0+
)

= −2ih̄ f (ω)
0+

(ω − εk )2 + (0+)2

= −2π ih̄ f (ω)δ(ω − εk ). (D9)

Fourier transforming the frequency back to time:

GK
0,k (t, t ′) =

∫ ∞

−∞

dω

2π h̄
GK

0,k (ω)e− iω
h̄ (t−t ′ )

= −i f (εk )e− iεk
h̄ (t−t ′ ). (D10)

To obtain the additional time dependence due to the bias
voltage as seen in Eq. (65), we subsequently return to the
assumption that the bias voltage only acts on the junction
without influencing the flavor and spin-flavor modes them-
selves (i.e., keeping them in thermal equilibrium), such that it
can be incorporated by simply replacing εk by εk − eV (t )/2.
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APPENDIX E: PROPERTIES OF THE DIGAMMA FUNCTION

The digamma function is defined as

�(z) ≡ d ln �(z)

dz
= 1

�(z)

d�(z)

dz
, (E1)

where �(z) is the gamma function. Differentiating the relation �(z + 1) = z�(z) (where Re(z) > 0) with respect to z, it
immediately follows that the digamma function satisfies a somewhat similar relation, namely, �(z + 1) = �(z) + 1/z. Consider
now the following sum, with Re(a) > 0 and Re(b) > 0:

(a − b)
∞∑

n=0

1

(n + a)(n + b)
=

∞∑
n=0

( 1

n + b
− 1

n + a

)
=

∞∑
n=0

∫ 1

0
dx(xn+b−1 − xn+a−1) =

∫ 1

0
dx

xb−1 − xa−1

1 − x
. (E2)

In order to evaluate this integral, we introduce a more general version of this integral,

I (ε) ≡
∫ 1

0
dx(xb−1 − xa−1)(1 − x)ε−1 = B(b, ε) − B(a, ε), (E3)

with ε > 0, and B(x, y) being the beta function, satisfying the well-known relation �(x)�(y) = B(x, y)�(x + y). The above sum
can now be evaluated:

(a − b)
∞∑

n=0

1

(n + a)(n + b)
= lim

ε→0+
I (ε) = lim

ε→0+
(B(b, ε) − B(a, ε))

= lim
ε→0+

�(ε)

(
�(b)

�(b + ε)
− �(a)

�(a + ε)

)

= lim
ε→0+

�(ε + 1)

(
�(b) − �(b + ε)

ε

1

�(b + ε)
− �(a) − �(a + ε)

ε

1

�(a + ε)

)

= �(a) − �(b). (E4)

In addition, we can recursively apply the relation �(a + 1) = �(a) + 1/a to find another sum:

�(a + n) = �(a + n − 1) + 1

a + n − 1

= �(a + n − 2) + 1

a + n − 2
+ 1

a + n − 1
...

= �(a) +
n−1∑
n′=0

1

n′ + a
, (E5)

where n ∈ N>0 and Re(a) > 0. Using this, we can evaluate the following sum as well:

n−1∑
n′=0

1

n′ + a

1

n′ − b − n + 1
= − 1

a + b + n − 1

(
n−1∑
n′=0

1

n′ + a
−

n−1∑
n′=0

1

n′ − b − n + 1

)

= − 1

a + b + n − 1

(
n−1∑
n′=0

1

n′ + a
+

n−1∑
n′=0

1

n′ + b

)

= 1

a + b + n − 1
(�(a) − �(a + n) + �(b) − �(b + n)), (E6)

where the second term of the second line involves a redefinition according to n′ → −n′ + n − 1. Finally, we use Eq. (E5) to
evaluate one final sum:

n−1∑
n′=0

1

(n′ + a)2
= lim

δ→0

n−1∑
n′=0

1

(n′ + a)(n′ + a + δ)

= lim
δ→0

−1

δ

n−1∑
n′=0

( 1

n′ + a + δ
− 1

n′ + a

)
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= lim
δ→0

−1

δ
(�(a + n + δ) − �(a + δ) − �(a + n) + �(a))

= ψ (1)(a) − ψ (1)(a + n), (E7)

where ψ (1)(z) is the trigamma function (i.e., the derivative of the digamma function).
Let us also briefly consider two specific expansions of the trigamma function. Using the known values of the gamma function

and its derivatives at z = 1/2, the first one is simple:

x ψ (1)

(
1

2
+ x

)
= x ψ (1)

(
1

2

)
+ O(x2) = π2x

2
+ O(x2). (E8)

The second one is more complicated and requires the asymptotic series

�(x) ∼ ln(x) − 1

2x
− 1

12x2
+ O((1/x)4), (E9)

valid for real variable x � 1, which can be derived from the Stirling series. Taking the derivative of this asymptotic series and
plugging in the argument we are interested in

1

x
ψ (1)

(
1

2
+ 1

x

)
= 1

x

(
x

1 + x/2
+ x2

2(1 + x/2)2
+ x3

6(1 + x/2)3

)
+ O(x4). (E10)

Also applying the binomial series,

(1 + x)n =
∞∑

k=0

n!

(n − k)! k!
xk, (E11)

it is straightforward to show that Eq. (E10) reduces to

1

x
ψ (1)

(
1

2
+ 1

x

)
= 1 − x2

12
+ O(x4). (E12)

APPENDIX F: PROPERTIES OF BESSEL FUNCTIONS OF THE FIRST KIND

For integers n, the Bessel functions of the first kind are defined as

Jn(α) ≡
∞∑

m=0

(−1)m

m!(m + n)!

(α

2

)2m+n
. (F1)

Using this expression, the following sum can be evaluated:

∞∑
n=−∞

e−inωt Jn(α) =
∞∑

n=−∞
e−inωt

∞∑
m=0

(−1)m

m!(m + n)!

(α

2

)2m+n

=
∞∑

m=0

1

m!

(
−α

2

)m ∞∑
n=−∞

1

(m + n)!

(α

2

)m+n
e−inωt

=
∞∑

m=0

1

m!

(
−α

2
eiωt

)m ∞∑
n=−∞

1

(m + n)!

(α

2
e−iωt

)m+n

=
∞∑

m=0

1

m!

(
−α

2
eiωt

)m ∞∑
n′=0

1

n′!

(α

2
e−iωt

)n′

= e− α
2 (eiωt −e−iωt )

= e−iα sin(ωt ), (F2)

where in the fourth line we used the fact that the terms corresponding to m + n < 0 vanish (due to the fact that 1/n! = 0 if n is a
negative integer), and defining a new dummy index n′ by using the observation that the second infinite sum must be independent
of m. From the definition of the Bessel functions, it also follows that they can be expanded as

J0(α) = 1 + O(α2), Jn �=0(α) = (sgn(n))|n|

|n|!
(α

2

)|n|
+ O(α|n|+2). (F3)
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As such, the expansion of a general Jn(α) is given by

Jn(α) = δn,0 + α

2
(δn,1 − δn,−1) + O(α2). (F4)

APPENDIX G: AC CHARGE CURRENT FOR B = 0

In this Appendix, we will evaluate the remaining integral from Eq. (98), for B = 0. We have two integrals to evaluate:

�

∫ ∞

−∞
dε

nF (ε)

ε2 + �2
,

∫ ∞

−∞
dε

(
nF (ε − ε0)

ε + i�
− nF (ε − ε0 − nh̄ω0)

ε − i�

)
, (G1)

where ε0 ≡ eV0/2 + n′h̄ω0. To perform these integrals, we again use the Matsubara representation of the Fermi-Dirac distribu-
tion, Eq. (78). Let us look at the first integral, employing the same techniques as for the dc case:

�

∫ ∞

−∞
dε

nF (ε)

ε2 + �2
= 2

β

∞∑
j=0

Re

[∫ ∞

−∞
dε

�

ε2 + �2

eiω j 0+

ih̄ω j − ε

]

= 2π

β

∞∑
j=0

Re

[
eiω j 0+

ih̄ω j + i�

]
. (G2)

The second integral can be evaluated in a similar fashion:∫ ∞

−∞
dε

( nF (ε)

ε + ε0 + i�
− nF (ε)

ε + ε0 + nh̄ω0 − i�

)

= nh̄ω0 − 2i�

β

∫ ∞

−∞
dε

∞∑
j=0

1

(ε + ε0 + i�)(ε + ε0 + nh̄ω0 − i�)

(
eiω j 0+

ih̄ω j − ε
+ e−iω j 0+

−ih̄ω j − ε

)

= −2π

β

∞∑
j=0

(
1

h̄ω j + � − iε0
− 1

h̄ω j + � + i(ε0 + nh̄ω0)

)
− 2π

β

∞∑
j=0

(
eiω j 0+ − 1

h̄ω j + � − iε0
− e−iω j 0+ − 1

h̄ω j + � + i(ε0 + nh̄ω0)

)
,

(G3)

where we wrote e±iω j 0+ → 1 + (e±iω j 0+ − 1) for reasons that will become clear in a moment. For the second sum of the final line,
we can use the fact that it vanishes unless j → ∞ to replace the summand with its j → ∞ value. Doing so, we can recognize
this second term to be equal to −2i times the integral from Eq. (G2). Looking at Eq. (98), we see that the two cancel each other,
and so we only need to evaluate the first term of Eq. (G3):

−2π

β

∞∑
j=0

(
1

h̄ω j + � − iε0
− 1

h̄ω j + � + i(ε0 + nh̄ω0)

)
= − iβ

2π

∞∑
j=0

2ε0 + nh̄ω0(
j + 1

2 + β(�−iε0 )
2π

)(
j + 1

2 + β(�+i(ε0+nh̄ω0 ))
2π

)
= �

(
1

2
+ � − iε0

2πkBT

)
− �

(
1

2
+ � + i(ε0 + nh̄ω0)

2πkBT

)
. (G4)

Plugging this back into the expression for In, we obtain

In = ie�

4π h̄

∞∑
n′=−∞

Jn′

(
e	V

2h̄ω0

)
Jn′+n

(
e	V

2h̄ω0

)(
�

(
1

2
+ � − i(eV0/2 + n′h̄ω0)

2πkBT

)
− �

(
1

2
+ � + i(eV0/2 + (n′ + n)h̄ω0)

2πkBT

))
.

(G5)

Note that in the limit 	V → 0, the Bessel functions reduce to Jn(0) = δn,0. As a result, only I0 remains nonzero, and ω0

completely vanishes from the expressions, such that we indeed recover the correct dc limit.

APPENDIX H: VANISHING BUBBLE DIAGRAMS

In the first part of Sec. V, we utilized the fact that several bubble diagrams appearing in the calculation of the heat current
autocorrelator vanish. In the following Appendix, we demonstrate this important property explicitly. First, let us consider
the bubble diagram

∑
k,k′ 〈ψ†

k (τ )ψk′ (τ )〉0, where ψk is a fermionic field operator that only appears in the kinetic term of
the Hamiltonian. In terms of Matsubara frequencies and disregarding the now redundant Nambu basis, the Green function
corresponding to this field is given by

Gkk′ (iωn) = δk,k′
h̄

ih̄ωn − εk
. (H1)
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In order to make sense of the bubble diagram, it is necessary to implement point-splitting. The only physical way (i.e., without
breaking causality) to achieve this is to first annihilate a fundamental particle, then create one in the new state. For a fundamental
field c, the point-splitting procedure we adopt is therefore c†(τ )c(τ ) → c†(τ+)c(τ ), with τ+ ≡ τ + 0+. At this point, it is crucial
to remember that the field ψk is not fundamental, but instead describes excitations about the ground state.13 For fermions, this
is the state in which all states up to the Fermi energy are filled, and all states above the Fermi energy are empty. Given that the
momentum k is measured with respect to the Fermi momentum kF , the excitation field ψk is thus defined as14

ψk (τ ) ≡
{

ck (τ ), k > 0,

c†
k (τ ), k � 0,

(H2)

where ck is the field describing the fundamental particles. Using this, we find that the causal point-splitting procedure of the
excitation field is given by

ψ
†
k (τ )ψk (τ ) → θ (k)c†

k (τ+)ck (τ ) + θ (−k)ck (τ )c†
k (τ+) = θ (k)ψ†

k (τ+)ψk (τ ) − θ (−k)ψk (τ+)ψ†
k (τ ). (H3)

We now apply this point-splitting procedure to the required expectation value:

〈ψ†
k (τ )ψk′ (τ )〉0 → θ (k)〈ψ†

k (τ+)ψk (τ )〉0 − θ (−k)
〈
ψk (τ+)ψ†

k (τ )〉0 = θ (k)Gkk (−0+) + θ (−k)Gkk (0+)

= θ (k)

h̄β

∞∑
n=−∞

h̄

ih̄ωn − εk
eiωn0+ − θ (−k)

h̄β

∞∑
n=−∞

h̄

ih̄ωn + εk
eiωn0+

= θ (k)nF (εk ) − θ (−k)nF (−εk ), (H4)

where we used Eq. (78) to introduce the Fermi-Dirac distribution. Employing the continuum limit, the desired bubble diagram
can now be written as ∑

k,k′
〈ψ†

k (τ )ψk′ (τ )〉0 = L

2π

∫ ∞

0
dk (nF (εk ) − nF (−ε−k )). (H5)

In the present case, there is particle-hole symmetry (i.e., εk = −ε−k), such that this bubble diagram trivially vanishes.
In addition, we prove that the combination (C35 + C53) is indeed equal to zero in absence of a magnetic field. Using that the

a Majorana fermion is decoupled from the rest of the system, this combination can be expressed as

C35(τ ) + C53(τ ) = − iπvF �g⊥
25/2 h̄L3/2

∑
k,k′,k′′

(εk′ − εk )〈a(τ )a(0)〉0(〈(ψ†
s f ,k′′ (τ ) + ψs f ,k′′ (τ ))ψ†

s f ,k (0)ψs f ,k′ (0)b(0)〉0

+ 〈ψ†
s f ,k (τ )ψs f ,k′ (τ )b(τ )(ψ†

s f ,k′′ (0) + ψs f ,k′′ (0))〉0). (H6)

The expectation values inside the brackets can be evaluated using Wick’s theorem. Before doing so, we first note that the
diagonal components of the propagator Lkk′ remain the same upon interchanging k and k′, which can straightforwardly be shown
by working out the matrix multiplications in the Green functions from Sec. III D. Multiplied with (εk′ − εk ) and summed over
k and k′, this cancels all terms proportional to 〈ψ†

s f ,k (τ )ψs f ,k′ (τ )〉0. Secondly, the propagator Gld,k (iωn) is proportional to ω−2
n

as n → ±∞. As a result, this Green function is independent of the point-splitting procedure, such that we can simply write
Gld,k (0) = (h̄β )−1 ∑

n Gld,k (iωn). Again working out the matrix multiplications, and also using that Dbb(iωn) is odd in ωn to
remove the odd part of the summand, we find

〈ψs f ,k (τ )b(τ )〉0 = 〈ψ†
s f ,k (τ )b(τ )〉0 = −

√
2g⊥√

L

1

h̄β

∞∑
n=−∞

h̄ωn

(h̄ωn)2 + ε2
k

Dbb(iωn). (H7)

Next, we apply Wick’s theorem. After a series of simplifications, this gives

C35(τ ) + C53(τ ) = iπvF �g2
⊥

2h̄L2

1

h̄β

∑
k,k′,k′′

(εk′ − εk )Daa(τ )
∞∑

n=−∞

h̄ωn

(h̄ωn)2 + ε2
k′

Dbb(iωn)
∑
μν

Gll,kk′′,μν (τ ). (H8)

It is straightforward to check that the object following the sum over n is even in all momenta, such that all terms of the overall
momentum sum are odd in either k or k′. This immediately leads to the conclusion that the combination (C35 + C53) is equal to
zero.

13In Appendix A, it was not necessary to take this subtlety into account. The reason for this is that we only used the point-splitting as a
mathematical tool in the previous Appendix, whereas we presently use it for the calculation of observable quantities.

14This particular example is about right-movers. Left-movers can be considered using the same methods, and leads to the same conclusions.
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APPENDIX I: DETAILS OF THE HEAT CURRENT AUTOCORRELATOR CALCULATION

In this Appendix, we elaborate on some of the steps from Sec. V and show explicitly that the remaining terms do not contribute
to the heat conductance. We take n > 0 throughout.

1. Diagonal component C11: the sum
∑n−1

n′=0

1
2 −2(n′−n+ 1

2 )2

n′+ 1
2 + β�

2π

In order to evaluate this object, we first refer back to Eq. (E5) and use it to calculate two related sums:

n−1∑
n′=0

n′

n′ + a
=

n−1∑
n′=1

(
1 − a

n′ + a

)
= n − 1 − a(�(a + n) − �(a + 1)), (I1)

n−1∑
n′=0

n′2

n′ + a
=

n−1∑
n′=1

(
n′ − a + a2

n′ + a

)
= (n − 2a)(n − 1)

2
+ a2(�(a + n) − �(a + 1)), (I2)

where n > 0 and Re(a) > 0. Using the above, a straightforward calculation gives

n−1∑
n′=0

1
2 − 2

(
n′ − n + 1

2

)2

n′ + 1
2 + β�

2π

= −2n(n − 1)
n−1∑
n′=0

1

n′ + 1
2 + β�

2π

+ 2(2n − 1)
n−1∑
n′=0

n′

n′ + 1
2 + β�

2π

− 2
n−1∑
n′=0

n′2

n′ + 1
2 + β�

2π

= 3n2 + β�n

π
+

(
1

2
− 2

(
n + β�

2π

)2)(
�

(
1

2
+ β�

2π
+ n

)
− �

(
1

2
+ β�

2π

))
. (I3)

Expanded to linear order in n, this can be written as

n−1∑
n′=0

1
2 − 2

(
n′ − n + 1

2

)2

n′ + 1
2 + β�

2π

=
[
β�

π
+

(
1

2
− β2�2

2π2

)
ψ (1)

(1

2
+ β�

2π

)]
n + O(n2). (I4)

2. The flavor terms: C22 + C44 + C24 + C42

In order to evaluate these terms, four more Green functions are required. Referring back to Sec. III D and working out the
matrix multiplications, they are given by

∑
μν

Gdd,μν (iωn) = 2Daa(iωn) = 2

iωn
,

∑
μν

Gld,k,μν (iωn) = 0,

∑
μν

Gll,kk′,μν (iωn) = −2ih̄ δk,k′
h̄ωn

(h̄ωn)2 + ε2
k

−8g2
⊥

L

h̄ωn

(h̄ωn)2 + ε2
k

h̄ωn

(h̄ωn)2 + ε2
k′

Dbb(iωn),

Gld,k,11(iωn) − Gld,k,22(iωn) − Gld,k,12(iωn) + Gld,k,21(iωn) = 4ig⊥√
L

h̄ωn

(h̄ωn)2 + ε2
k

Dbb(iωn). (I5)

Here, we used that the a Majorana fermion is completely free in absence of a magnetic field, and has a zero energy. Going
through the same procedure as for C11 and using that the sum over all components of Gld,k (iωn) is equal to zero, we find

C22(i�n) = − (πvF g⊥)2

4L3

1

(h̄β )3

∑
k,k′,k′′
q,q′,q′′

∑
μν

∑
ρσ

∑
n′,n′′,n′′′

G f f ,k′q′′,22(iωn′ )G f f ,k′′q′,11(iωn′′ )

× Gll,kq,μν (iωn′′′ )Gdd,ρσ (−i(ωn′ + ωn′′ + ωn′′′ − �n))

= h̄(πvF g⊥)2

(Lβ )3

∑
k,k′,k′′

∑
n′,n′′,n′′′

1

ih̄ωn′ − εk

1

ih̄ωn′′ − εk′

1

ih̄ωn′′′ − εk′′

1

ih̄(ωn′ + ωn′′ + ωn′′′ − �n)

×
(

1 + 4g2
⊥

h̄L

∑
k′′′

1

ih̄ωn′′′ − εk′′′
Dbb(iωn′′′ )

)
. (I6)

Also evaluating the sums in the same way as for C11 (i.e., performing two frequency sums using Eq. (132), going to the continuum
limit for the momentum sums, introducing the coordinates ε ≡ (εk + εk′ )/2, ε′ ≡ εk − εk′ , and evaluating the integrals over εk′′ ,
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εk′′′ , and ε′):

C22(i�n) = − �

8h̄β

∫ �

−�

dε

∞∑
n′=−∞

ε

tanh(βε)

h̄ωn′−n

(h̄ωn′−n)2 + (2ε)2

h̄ωn′

|h̄ωn′ | + �
. (I7)

Before going any further, we also calculate the component

C44(τ ) = (πvF )2

4L2

∑
k, k′
q, q′

(εk′ − εk )(εq′ − εq)〈a(τ )a(0)〉0〈b(τ )b(0)〉0〈ψ†
f ,k (τ )ψ f ,k′ (τ )ψ†

f ,q(0)ψ f ,q′ (0)〉0. (I8)

Once again following the same procedure as for the previous components, this becomes

C44(i�n) = (πvF )2

4L2β3

∑
k,k′

∑
n′,n′′,n′′′

(εk′ − εk )2 1

ih̄ωn′ + εk

1

ih̄ωn′′ − εk′

1

ih̄(ωn′ + ωn′′ + ωn′′′ − �n)
Dbb(iωn′′′ )

= − 1

2h̄β

∫ �

−�

dε

∞∑
n′=−∞

ε3

tanh(βε)

h̄ωn′−n

(h̄ωn′−n)2 + (2ε)2

1

h̄ωn′ + sgn(ωn′ )�
. (I9)

Finally, without explicitly going through the calculation, the combination (C24 + C42) can analogously be derived to be equal to

C24(i�n) + C42(i�n) = − �

h̄β

∫ �

−�

dε

∞∑
n′=−∞

ε3

tanh(βε)

1

(h̄ωn′−n)2 + (2ε)2

1

|h̄ωn′ | + �
. (I10)

In order to extract the contribution of the above components to the linear susceptibility, we combine the above four
components and discuss them together, starting with Eqs. (I7) and (I10). Combined, these terms can be written as

C22(i�n) + C24(i�n) + C42(i�n)

= − �

2h̄β

∫ �

−�

dε

∞∑
n′=−∞

ε3

tanh(βε)

1

(h̄ωn′−n)2 + (2ε)2

1

|h̄ωn′ | + �

− �

8h̄β

∫ �

−�

dε

∞∑
n′=−∞

ε

tanh(βε)

1

|h̄ωn′ | + �
− ��n

8β

∫ �

−�

dε

∞∑
n′=−∞

ε

tanh(βε)

h̄ωn′−n

(h̄ωn′−n)2 + (2ε)2

1

|h̄ωn′ | + �
. (I11)

The second line of this expression clearly does not contribute to the linear susceptibility: the first term does not depend on n at
all, while the second term is at least quadratic on �n (to see this, simply note that the summand is odd in ωn′ if n = 0, while the
sum goes over all ωn′). With that in mind, we unite the four components. Splitting the remaining sums over n′ into an n′ < 0 part
and an n′ � 0 part, and writing n′ → −n′ − 1 in the former, we find

C22(i�n) + C44(i�n) + C24(i�n) + C42(i�n)

= const − 1

2h̄β

∫ �

−�

dε

∞∑
n′=0

ε3

tanh(βε)

(
h̄ωn′+n + �

(h̄ωn′+n)2 + (2ε)2
+ h̄ωn′−n + �

(h̄ωn′−n)2 + (2ε)2

)
1

h̄ωn′ + �
+ O

(
�2

n

)
. (I12)

Contrary to the previously calculated autocorrelators, the remaining integral cannot be evaluated exactly. As such, we are required
to expand in n before having evaluated all of the sums and integrals. Formally, this is the incorrect order of operations, therefore
leading to incorrect results if not done carefully. For example, although Eq. (I12) suggests that the remaining sum only contributes
to even powers in n, this is not necessarily true. The reason for this is hidden in the fact that ωn′−n < 0 for some of the terms, such
that the identities from Appendix E cannot be applied directly. As a result, the sum over the terms containing ωn′−n evaluates to
a different function than the function that emerges from the sum over the terms with ωn′+n. Taking this into account, we have
to explicitly evaluate the sum before expanding it in n. This is done below. We find that the resulting power series does indeed
contain odd powers in n, but the linear term is missing. As such, this combination of components does not contribute to the linear
susceptibility.

3. Expanding terms in n

As was discussed above, the combination C22 + C44 + C24 + C42 cannot be calculated exactly, such that we have to expand
Eq. (I12) in n before evaluating the integral over ε. First, the sum over the terms involving ωn′−n has to be split into two parts.
This is necessary due to the conditions Re(a) > 0, Re(b) > 0 of Eqs. (E4) and (E6) not being satisfied whenever n′ < n. Doing
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so, we find

∞∑
n′=0

(
h̄ωn′+n + �

(h̄ωn′+n)2 + (2ε)2
+ h̄ωn′−n + �

(h̄ωn′−n)2 + (2ε)2

)
1

h̄ωn′ + �

=
( β

2π

)2
( ∞∑

n′=0

n′ + n + 1
2 + β�

2π(
n′ + n + 1

2

)2 + (
βε

π

)2

1

n′ + 1
2 + β�

2π

+
∞∑

n′=0

n′ + 1
2 + β�

2π(
n′ + 1

2

)2 + (
βε

π

)2

1

n′ + n + 1
2 + β�

2π

+
n−1∑
n′=0

n′ + 1
2 − β�

2π(
n′ + 1

2

)2 + (
βε

π

)2

1

n′ − n + 1
2 − β�

2π

)
, (I13)

where we have written n′ → n′ + n in the second sum on the right-hand side, and n′ → −n′ + n − 1 in the third sum.
Furthermore rewriting all of the sums by using

x

x2 + y2
= 1

2

(
1

x − iy
+ 1

x + iy

)
,

1

x2 + y2
= 1

2iy

(
1

x − iy
− 1

x + iy

)
, (I14)

every sum is now of the form of one of the sums from Appendix E:

∞∑
n′=0

(
h̄ωn′+n + �

(h̄ωn′+n)2 + (2ε)2
+ h̄ωn′−n + �

(h̄ωn′−n)2 + (2ε)2

)
1

h̄ωn′ + �

= β2

8π2

(
1 − i�

2ε

)( ∞∑
n′=0

1

n′ + n + 1
2 − iβε

π

1

n′ + 1
2 + β�

2π

+
∞∑

n′=0

1

n′ + 1
2 − iβε

π

1

n′ + n + 1
2 + β�

2π

+
n−1∑
n′=0

1

n′ + 1
2 + iβε

π

1

n′ − n + 1
2 − β�

2π

)
+ c.c. (I15)

Evaluating the sums and expanding the result in n, one finds that there is no linear term, despite the fact that every other power
does appear in the expansion.

4. Diagonal component C33

The component C33 is very similar to C22, so we can straightforwardly modify the previous steps to find

C33(i�n) = − (�g⊥)2

16h̄2L

1

h̄β

∑
k,k′

∑
μν

∑
ρσ

∞∑
n′=−∞

Gll,kk′,μν (iωn′ )Gdd,ρσ (−iωn′−n)

= − ��2

16h̄β

∞∑
n′=−∞

1

h̄ωn′−n

h̄ωn′

|h̄ωn′ | + �
. (I16)

As is shown below, the latter sum does not contain a linear term in n after evaluation. Consequently, this component does also
not contribute to the linear susceptibility.

5. The sum
∑∞

n′=−∞
1

n′−n+ 1
2

n′+ 1
2

|n′+ 1
2 |+ β�

2π

As usual, the first step in the evaluation of this sum is to split it into three parts:

∞∑
n′=−∞

1

n′ − n + 1
2

n′ + 1
2

|n′ + 1
2 | + β�

2π

=
∞∑

n′=0

1

n′ + n + 1
2

n′ + 1
2

n′ + 1
2 + β�

2π

+
∞∑

n′=0

1

n′ + 1
2

n′ + n + 1
2

n′ + n + 1
2 + β�

2π

−
n−1∑
n′=0

1

n′ + 1
2

n′ − n + 1
2

n′ − n + 1
2 − β�

2π

.

(I17)

Here, we have again written n′ → −n′ − 1 in the first part, n′ → n′ + n in the second part, and n′ → −n′ + n − 1 in the third
part. Each of these sums is subsequently split into two more sums, e.g.,

∞∑
n′=0

1

n′ + n + 1
2

n′ + 1
2

n′ + 1
2 + β�

2π

=
∞∑

n′=0

1

n′ + n + 1
2

− β�

2π

∞∑
n′=0

1

n′ + n + 1
2

1

n′ + 1
2 + β�

2π

. (I18)
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FIG. 8. The component C55(i�n) at the NFL fixed point, numerically calculated as a function of dimensionless Matsubara frequency
h̄�n/� with �/� = 102. (Left) C55(i�n) minus its zeroth order term, rescaled with a constant prefactor to make it dimensionless. (Right)
Log-log plot of minus the same object, divided by the dimensionless frequency. The solid line is a function of the form y = ax (its slope in
the log-log plot therefore being equal to one), confirming that the susceptibility is perfectly linear in the frequency over this domain. Note that
these curves are independent of temperature in the regime T 
 TK .

Two of the six resulting sums diverge, and should be understood to have a finite cutoff N ∼ β� (see footnote 8). Implementing
this cutoff, all of the six sums are now of the form of one of the those discussed in Appendix E, such that we find

N−1∑
n′=−N

1

n′ − n + 1
2

n′ + 1
2

|n′ + 1
2 | + β�

2π

= �

(
1

2
− n + N

)
+ �

(
1

2
+ n + N

)
− 2

n2 − (
β�

2π

)2

(
n2�

(
1

2
+ n

)
−

(β�

2π

)2

�

(
1

2
+ β�

2π

))
,

(I19)

where we have taken N → ∞ whenever possible. Again, although this expression is not even in n, a Taylor expansion in n
reveals that it does not contain a linear term.

6. Diagonal component C55

This component is by far the most complicated due to the fact that the spin-flavor modes are coupled to the b Majorana mode,
combined with the fact that the propagators corresponding to these modes contain nonzero off-diagonal components. Keeping
that in mind, Wick’s theorem gives gives us 15 terms to consider. As is discussed further below, five of these terms are vanishing
bubble diagrams, while the remaining four bubble diagrams do not have a linear term. For the purpose of finding the linear
susceptibility, we therefore only have to consider six terms. Without explicitly performing the lengthy calculation, we note that
these combined terms can be written as

C55(i�n) = const + C44(i�n) − (π h̄vF g⊥)2

(Lh̄β )3

∑
k,k′,k′′

∑
n,n′,n′′

(εk − εk′ )(εk − εk′′ )
1

ih̄(ωn′ + ωn′′ + ωn′′′ − �n)

× 1

ih̄ωn′′′ − εk

(
1

ih̄ωn′ + εk′
− 1

ih̄ωn′′ + εk′

)
1

ih̄ωn′′ + εk′′
Dbb(iωn′ )Dbb(iωn′′ ) + O

(
�2

n

)
. (I20)

As we show below, the isolated component C44 does in fact contain a linear term in �n, however, this term goes to zero at the
NFL fixed point. As such, C44 does not contribute to the linear susceptibility at this point, and we can instead focus on the other
term.

Contrary to all of the previously calculated terms, the remaining term cannot be calculated exactly, nor can it be successfully
expanded in �n before evaluation. The reason for this is the presence of an additional Dbb propagator that is interwoven in the
sums. Instead of using analytical methods, we therefore calculate the sums numerically as a function of �n, and show that the
corresponding contribution to the linear susceptibility goes to zero at the NFL fixed point, see below for further details. The
results for β� → ∞ (i.e., at the NFL fixed point) are shown in Fig. 8, where we have set the only remaining parameter �/�

to 102 as an example. As can be seen in the left panel, the lowest nontrivial order term of the component C55(i�n) is quadratic
in �n, similar to what we have seen for most of the other components. Moreover, the right panel shows a log-log plot of the
corresponding linear susceptibility χ55(i�n) up to a constant prefactor. Analytically continuing to real frequencies, the plot
confirms that this contribution to the susceptibility is perfectly linear in ω over the entire small-ω region, such that it indeed goes
to zero in the dc limit ω → 0.
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7. Analytic expression

Five of the terms appearing in C55 are bubble diagrams that are proportional to∑
k,k′

(εk′ − εk )〈ψ†
s f ,k (τ )ψs f ,k′ (τ )〉0. (I21)

As was discussed in Appendix H, the expectation value appearing in this expression is invariant under k ↔ k′, such that this
entire bubble diagram vanishes after summing over the momenta. In addition to these vanishing bubble diagrams, there are
four terms involving the bubble diagrams from Eq. (H7). Carefully combining these terms, relabelling the momenta wherever
necessary and discarding the terms that are odd in any of the momenta, they are given by

(πvF g⊥)2

2L3

1

(h̄β )2

∑
k,k′,k′′

ε2
k Daa(τ )

∑
μν

L0,k,μν (τ )
∑
n,n′

h̄ωn

(h̄ωn)2 + ε2
k′

Dbb(iωn)
h̄ωn′

(h̄ωn′ )2 + ε2
k′′

Dbb(iωn′ ), (I22)

where L0,k,μν is the μν component of the spin-flavor propagator L0,k in absence of tunneling. In terms of Matsubara frequencies,
the object we have to calculate is thus given by

∑
k

ε2
k

∞∑
n′=−∞

Daa(iωn′ )
∑
μν

L0,k,μν (−iωn′−n) ∝
∑

k

ε2
k

∞∑
n′=−∞

1

n′ + 1
2

n′ − n + 1
2(

n′ − n + 1
2

)2 + (
βεk

2π

)2 , (I23)

everything else simply being a constant prefactor. Splitting this sum into an n′ < 0 part (sending n′ → −n′ − 1) and an n′ � 0
part, it is essentially identical to Eq. (I15) with � → 0. Consequently, the above terms do not contain a linear term. The linear
contribution of the component C55 can thus be calculated from the remaining six terms:

C55(τ ) ∼= (πvF )2

4L2

∑
k,k′,k′′,k′′′

(εk′′′ − εk′′ )(εk′ − εk )〈a(τ )a(0)〉0 (〈ψ†
s f ,k (τ )ψs f ,k′′′ (0)〉0 〈ψs f ,k′ (τ )ψ†

s f ,k′′ (0)〉0〈b(τ )b(0)〉0

− 〈ψ†
s f ,k (τ )ψ†

s f ,k′′ (0)〉0 〈ψs f ,k′ (τ )ψs f ,k′′′ (0)〉0 〈b(τ )b(0)〉0 + 〈ψ†
s f ,k (τ )ψs f ,k′′′ (0)〉0 〈ψs f ,k′ (τ )b(0)〉0 〈ψ†

s f ,k′′ (0)b(τ )〉0

− 〈ψ†
s f ,k (τ )ψ†

s f ,k′′ (0)〉0 〈ψs f ,k′ (τ )b(0)〉0 〈ψs f ,k′′′ (0)b(τ )〉0 + 〈ψ†
s f ,k (τ )b(0)〉0 〈ψs f ,k′ (τ )ψ†

s f ,k′′ (0)〉0 〈ψs f ,k′′′ (0)b(τ )〉0

− 〈ψ†
s f ,k (τ )b(0)〉0 〈ψs f ,k′ (τ )ψs f ,k′′′ (0)〉0 〈ψ†

s f ,k′′ (0)b(τ )〉0). (I24)

At this point, it is a matter of plugging in the propagators from Sec. III D and simplifying the result, mostly by relabelling
indices and using that any term that is odd in any of the momenta vanishes after summation. A straightforward but very lengthy
calculation leads to the following result:

C55(i�n) ∼= − i

16h̄β3

∫ �

−�

dεk

∫ �

−�

dεk′
∑

n′,n′′,n′′′
(εk + εk′ )2 1

ih̄ωn′′′ − εk

1

ih̄ωn′′ − εk′

1

ih̄(ωn′ + ωn′′ + ωn′′′ − �n)

1

h̄ωn′ + sgn(ωn′ )�

+ �

16π h̄β3

∫ �

−�

dεk

∫ �

−�

dεk′

∫ �

−�

dεk′′
∑

n′,n′′,n′′′
(εk + εk′ )(εk + εk′′ )

(
1

ih̄ωn′ − εk′′
− 1

ih̄ωn′′ − εk′′

)
1

ih̄ωn′′′ − εk

× 1

ih̄ωn′′ − εk′

1

ih̄(ωn′ + ωn′′ + ωn′′′ − �n)

1

h̄ωn′ + sgn(ωn′ )�

1

h̄ωn′′ + sgn(ωn′′ )�
, (I25)

where the first line can be identified as C44(i�n), see Eq. (I9). Splitting the sum from Eq. (I9) into two parts, we recognize that
C44 can be evaluated by using Eq. (I15), only with � → 0 in the numerators on the left-hand side and (1 − i�/2ε) → 1 on the
right-hand side. Going through the familiar procedure to evaluate the sum and expanding the result in n, we obtain

C44(i�n) = const + β

8π2h̄

∫ �

−�

dε
ε3

tanh(βε)

β�

2π(
β�

2π

)2 + (
βε

π

)2

[
ψ (1)

(
1

2
− iβε

π

)
+ ψ (1)

(
1

2
+ iβε

π

)]
n + O(n2). (I26)

Since we are interested in the NFL fixed point, we furthermore expand to lowest order in T/TK ∼ 1/β�, allowing us to evaluate
the remaining integral:

C44(i�n) = const + π4�n

256β2

1

β�
+ O

(
�2

n, 1/(β�)2
)
. (I27)

Recognizing that β� → ∞ at the NFL fixed point, we conclude that C44 does not have a linear term at this point.
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For the remaining terms, we first evaluate the sum over n′′ and the integrals over εk′ and εk′′ while keeping � finite. Taking
into account that C44 can be discarded at the NFL fixed point, C55 becomes

C55(i�n) ∼= − �

64π h̄β2

∫ �

−�

dεk

∑
n′,n′′

tanh

(
βεk

2

)
1

ih̄(ωn′ + ωn′′ − �n) + εk

1

h̄ωn′ + sgn(ωn′ )�

1

h̄ωn′′ + sgn(ωn′′ )�

×
(

(εk + ih̄ωn′ )

(
2 arctan

(
h̄ωn′

�

)
− sgn(ωn′ )π

)
− (εk + ih̄ωn′′ )

(
2 arctan

(
h̄ωn′′

�

)
− sgn(ωn′′ )π

))2

. (I28)

This is as far as we will go without falling back to numerical methods, performed below.

8. Numerical evaluation

In order to calculate Eq. (I28) numerically at the NFL fixed point, we first switch to dimensionless variables. In particular, we
define ε ≡ εk/�, ω′ ≡ h̄ωn′/�, ω′′ ≡ h̄ωn′′/�. This choice allows us to take the continuum limit of the sums over the Matsubara
frequencies: the step sizes are 	ω′ = 	ω′′ = 2π/β� → 0, such that we can write

∞∑
n′=−∞

→ β�

2π

∫ ∞

−∞
dω′, (I29)

and similarly for ωn′′ . In terms of these dimensionless variables, we have

C55(i�n) ∼= − �3

256π3h̄

∫ �/�

−�/�

dε

∫ ∞

−∞
dω′

∫ ∞

−∞
dω′′ tanh

(
β�ε

2

)
1

i
(
ω′ + ω′′ − h̄�n

�

) + ε

1

ω′ + sgn(ω′)
1

ω′′ + sgn(ω′′)

×
(

( ε + iω′)
(

2 arctan

(
ω′

�/�

)
− sgn(ω′)π

)
− (ε + iω′′)

(
2 arctan

(
ω′′

�/�

)
− sgn(ω′′)π

))2

. (I30)

We can now treat this as a function of h̄�n/�, and depending on two parameters �/� and β�. The former parameter should be
interpreted as large but finite, while the latter is sent to infinity at the NFL fixed point, such that we can write tanh(β�ε/2) →
sgn(ε). Fixing the parameter �/� (i.e., the ratio of the cutoff energy scale to the Kondo energy scale), we have numerically
calculated Eq. (I30) for many small values of the dimensionless frequency h̄�n/�, leading to the plots shown in Fig. 8. Note that
Eq. (I30) with tanh(β�ε/2) → sgn(ε) (i.e., the NFL fixed point) is valid for finite temperatures, meaning that this component is
independent of temperature for any finite temperatures T 
 TK . This is different from the qualitative behavior of the contributing
component C11 from Eq. (140), which is proportional to T 2 in this regime.

APPENDIX J: DERIVATION OF THE SELF-ENERGY AWAY FROM THE EK POINT

In this Appendix, we derive the diagramatic expression from Eq. (148) explicitly. To do so, we will use the fact that
〈Tτ b(τ )a(τ ′)〉0 is proportional to the magnetic field B and therefore vanishes in the limit T � T ∗, significantly simplifying
the process. Starting with the partition function and using the interaction Hamiltonian from Eq. (146) together with Wick’s
theorem:

Z full = Z

(
1 − iλ

Lh̄

∫ h̄β

0
dτ

〈
b(τ )a(τ )

∑
k,k′

: ψ
†
s,k (τ )ψs,k′ (τ ) :

〉
0

− λ2

2L2h̄2

∫ h̄β

0
dτ

∫ h̄β

0
dτ ′

〈
Tτ b(τ )a(τ )

∑
k,k′

: ψ
†
s,k (τ )ψs,k′ (τ ) : b(τ ′)a(τ ′)

∑
k′′,k′′′

: ψ
†
s,k′′ (τ ′)ψs,k′′′ (τ ′) :

〉
0

+ O(λ3)

)

= Z

(
1 + λ2

2L2h̄2

∫ h̄β

0
dτ

∫ h̄β

0
dτ ′Daa(τ − τ ′)Dbb(τ − τ ′)

∑
k,k′

(Gs,k (0)Gs,k′ (0) − Gs,k (τ − τ ′)Gs,k′ (τ ′ − τ )) + O(λ3)

)

≡ ZZ ′. (J1)

Moreover,
∑

k Gs,k (0) = 0, see Appendix H.
With this information, we can calculate full propagator of interest as well. Using the same methods as before and utilizing

Daa/bb(τ ) = −Daa/bb(−τ ), we find

Dfull
bb (τ − τ ′) = 1

Z ′

(
Dbb(τ − τ ′) + λ2

2L2h̄2

∫ h̄β

0
dτ ′′

∫ h̄β

0
dτ ′′′

×
〈
Tτ b(τ )b(τ ′)b(τ ′′)a(τ ′′)

∑
k,k′

: ψ
†
s,k (τ ′′)ψs,k′ (τ ′′) : b(τ ′′′)a(τ ′′′)

∑
k′′,k′′′

: ψ
†
s,k′′ (τ ′′′)ψs,k′′′ (τ ′′′) :

〉
0

+ O(λ3)

)
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= 1

Z ′

(
Dbb(τ − τ ′) − λ2

2L2h̄2

∫ h̄β

0
dτ ′′

∫ h̄β

0
dτ ′′′Daa(τ ′′ − τ ′′′)

∑
k,k′

Gs,k (τ ′′ − τ ′′′)Gs,k′ (τ ′′′ − τ ′′)

× (Dbb(τ − τ ′)Dbb(τ ′′ − τ ′′′) + Dbb(τ − τ ′′)Dbb(τ ′′′ − τ ′) − Dbb(τ − τ ′′′)Dbb(τ ′′ − τ ′)) + O(λ3)

)

= Dbb(τ − τ ′) − λ2

L2h̄2

∫ h̄β

0
dτ ′′

∫ h̄β

0
dτ ′′′Daa(τ ′′ − τ ′′′)

∑
k,k′

Gs,k (τ ′′ − τ ′′′)Gs,k′ (τ ′′′ − τ ′′)

× Dbb(τ − τ ′′)Dbb(τ ′′′ − τ ′) + O(λ3). (J2)

Finally, we rewrite this in terms of Matsubara frequencies, similar to Eq. (110). Using the τ integrals to obtain Kronecker deltas,
we indeed find

Dfull
bb (iωn) = Dbb(iωn) + Dbb(iωn)�(iωn)Dbb(iωn) + O(λ3), (J3)

where the self-energy is given by Eq. (149).
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[51] T. A. Costi and V. Zlatić, Thermoelectric transport through
strongly correlated quantum dots, Phys. Rev. B 81, 235127
(2010).

[52] J. P. Bergfield and C. A. Stafford, Thermoelectric Signatures of
Coherent Transport in Single-Molecule Heterojunctions, Nano
Lett. 9, 3072 (2009).

[53] J. von Delft and H. Schoeller, Bosonization for beginners –
refermionization for experts, Ann. Phys. 7, 225
(1998).

[54] W. Izumida, O. Sakai, and Y. Shimizu, Many Body Effects on
Electron Tunneling through Quantum Dots in an Aharonov-
Bohm Circuit, J. Phys. Soc. Jpn. 66, 717 (1997).

205137-42

https://doi.org/10.1103/PhysRevB.89.235135
https://doi.org/10.1103/PhysRevLett.119.116802
https://doi.org/10.1103/PhysRevLett.120.186801
https://doi.org/10.1103/PhysRevLett.52.364
https://doi.org/10.1016/0550-3213(91)90419-X
https://doi.org/10.1103/PhysRevB.48.7297
https://doi.org/10.1103/PhysRevB.69.115316
https://doi.org/10.1080/000187398243500
https://doi.org/10.1103/PhysRevB.45.7918
https://doi.org/10.1103/PhysRevB.2.270
https://doi.org/10.1103/PhysRevB.57.2991
https://doi.org/10.1103/PhysRevB.83.245308
https://doi.org/10.1063/1.1700722
https://doi.org/10.1143/JPSJ.12.570
https://doi.org/10.1103/PhysRev.135.A1505
https://doi.org/10.1103/PhysRevB.50.5528
https://doi.org/10.1088/1751-8113/45/36/362001
https://doi.org/10.1103/PhysRevB.81.235127
https://doi.org/10.1021/nl901554s
https://doi.org/10.1002/(SICI)1521-3889(199811)7:4<225::AID-ANDP225>3.0.CO;2-L
https://doi.org/10.1143/JPSJ.66.717

