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Generalized quantum impurity models—which feature a few localized and strongly correlated degrees of
freedom coupled to itinerant conduction electrons—describe diverse physical systems, from magnetic moments
in metals to nanoelectronics quantum devices such as quantum dots or single-molecule transistors. Correlated
materials can also be understood as self-consistent impurity models through dynamical mean-field theory.
Accurate simulation of such models is challenging, especially at low temperatures, due to many-body effects
from electronic interactions, resulting in strong renormalization. In particular, the interplay between local
impurity complexity and Kondo physics is highly nontrivial. A common approach, which we further develop
in this work, is to consider instead a simpler effective impurity model that still captures the low-energy physics
of interest. The mapping from a bare to an effective model is typically done perturbatively, but even this can be
difficult for complex systems, and the resulting effective model parameters can nevertheless be quite inaccurate.
Here we develop a nonperturbative, unsupervised machine learning approach to systematically obtain low-energy
effective impurity-type models, based on the renormalization-group framework. The method is shown to be
general and flexible, as well as accurate and systematically improvable. We benchmark the method against exact
results for the Anderson impurity model, and we provide an outlook for more complex models beyond the reach
of existing methods.
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In the field of condensed-matter physics, the microscopic
Hamiltonian describing a quantum many-body system (the
bare model) is in many cases well known. However, for
interacting systems, the complexity of these models grows
quickly with the number of quantum degrees of freedom (for
example, orbitals or spins), such that a brute force solution
becomes analytically and/or numerically intractable for many
realistic scenarios of interest. The challenge in many-body
theory is therefore not in writing down the bare model, but
rather in solving it. However, in many situations it is not
necessary to consider the entire configuration space of the sys-
tem, because only a (relatively) small active subspace controls
the phenomena of interest [1]. Thus, effective models can be
devised that faithfully capture the phenomena of interest while
only keeping the active part of the configuration space. Such
effective models have a reduced complexity and increased
expressiveness. The challenge in many-body theory can there-
fore be restated as one of finding the best solvable model that
describes approximately but accurately the physics of interest.

As an example, it is often more convenient to analyze
an effective lattice model in second quantized form than
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the ab initio treatment involving an all-orbital description
of the constituent atoms [2–4]. Methods such as the con-
strained random-phase approximation [5,6], coupled cluster
downfolding [7], density matrix downfolding [8], or the
Pariser-Parr-Pople model for molecules [9] were devised to
systematically eliminate inactive degrees of freedom and ac-
count for them with renormalized parameters of a reduced
model.

These methods have in common that they require some
prior knowledge about the bare model to derive the effective
model. This situation shares some similarity with that of the
inverse problem [10] encountered in statistical inference or
machine learning [11], which seeks to infer a probabilis-
tic model from observed data. Recently machine learning
techniques have been explored to construct effective Hamil-
tonians from simulated data [12–15] or from experimentally
measured data [16–18]. Another field where the inference
of Hamiltonians has gained considerable relevance is in the
analog simulation of quantum Hamiltonians on quantum hard-
ware [19–21]. Indeed, machine learning inspired process-
and Hamiltonian-tomography methods have been developed
to infer the precise Hamiltonian that NISQ devices actually
simulate, given hardware imperfections [22–27].

A good effective Hamiltonian must not just reproduce
desired properties of the bare model, it must also be mean-
ingfully simpler than the bare model. The canonical method
to systematically eliminate degrees of freedom and obtain
effective models is the renormalization group (RG) [28–30].
On the level of the thermal density matrix, a single RG trans-
formation acts as the partial trace over the high-energy degrees
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of freedom [31]. In the context of quantum physics, a central
concept from information theory is that thermal states encode
the corresponding Hamiltonian [32], such that comparing the
ensemble of thermal states from two systems is equivalent to
comparing the two Hamiltonians. This provides a way to mea-
sure the “difference” between a Hamiltonian before and after
renormalization. By minimizing the distance in Hamiltonian
space, one can therefore in principle optimize a simplified
effective model to best approximate some more complicated
bare Hamiltonian after renormalization. We rigorously derive
such an approach in this paper for a specific class of systems
known as “quantum impurity” models [33]. These models
involve localized interacting quantum degrees of freedom (the
“impurity” Ĥ imp) coupled (through Ĥhyb) to one or more con-
tinuum baths of noninteracting conduction electrons (Ĥbath),
as described generically by

Ĥ = Ĥ imp + Ĥbath + Ĥhyb. (1)

Generalized quantum impurity models describe semiconduc-
tor quantum dot devices [34] and complex single-molecule
junctions [35]. They also underpin our understanding of
correlated materials through dynamical mean-field theory
[36]. Developing a strategy for systematically and accurately
deriving simple effective models to better understand and
simulate complex systems is the ultimate application of this
work.

A prerequisite for the design and use of complex quan-
tum nanoelectronics devices with advanced functionality
beyond the classical paradigm (for example in quantum
metrology [37,38]) is a fundamental understanding of their
low-temperature correlated electron physics and quantum
transport properties. However, this is a notoriously difficult
theoretical challenge because of the subtle interplay be-
tween the orbital and spin complexity of the nanostructure,
determined by its structure and chemistry; strong electron
interactions due to quantum confinement; and the coupling to
∼1023 conduction electrons in the external circuit. This results
in nontrivial quantum phenomena such as Coulomb block-
ade [39], various forms of the Kondo effect [35,39,40], and
quantum interference [41,42]—all of which strongly affect
low-temperature electronic conductance through the device,
and hence its functionality. As with coupled quantum dot de-
vices [43–45], entangled spin and charge degrees of freedom
can give rise to new physics in single molecule junctions. It
is therefore a formidable task to derive simplified effective
models that can still describe this range of physics in these
kinds of quantum device.

A basic illustrative example is given in Fig. 1. Here we
show the temperature dependence of a physical observable,
in this case the entropy S(T ), for a bare quantum impurity
model (blue), compared with that of a simpler effective model
(orange). One can immediately identify that the effective
model has lower complexity than the bare one, because in the
high-temperature limit it has a lower entropy—signifying that
the effective model has a smaller number of active degrees
of freedom than the bare model. At high temperatures, the
physical properties of the two models are distinctly differ-
ent. But below some low-energy scale, the behavior of the
two models becomes essentially indistinguishable. The low-
energy physics is perfectly captured by the simpler effective

FIG. 1. Schematic of the simplest bare (blue) and effective (or-
ange) impurity models, together with an illustrative comparison of
their impurity entropies after model optimization.

model. We will return to the specific details of this example
later.

In the context of molecular electronics, the complex mi-
croscopic models describing single-molecule junctions can be
mapped to much simpler effective two-channel Kondo models
using a perturbative approach, as described in Refs. [35,42].
This method captures simultaneously the effect of quantum
interference and Kondo physics—but is inevitably approxi-
mate due to the perturbative treatment. Since thermodynamic
observables flow under RG and the bare and effective model
are defined at different energy scales, it is also not a priori
clear whether such minimal Kondo models are sufficiently
general to reproduce local observables of interest in the bare
model [46]. In this paper, we show how an RG analysis of
effective interaction terms can be used to determine thermody-
namic observables that are comparable across different energy
scales. This allows us to introduce a novel machine learning
(ML) methodology to derive accurate effective models for
complex quantum impurity problems that works by optimiz-
ing generalized (minimally constrained) models, and ensuring
that local observables are correctly reproduced. We show by
way of explicit examples that the low-energy Kondo physics
is simultaneously captured. The parameters of the effective
model are optimized by minimizing the Kullback-Leibler di-
vergence (KLD) [47] that compares its ensemble of thermal
states to that of the bare model. Information on the target
is extracted from a numerical simulation of the system of
interest. However, the full solution of the bare model is not
required: minimization of the KLD requires only an estima-
tion of thermal expectation values corresponding to specific
local operators at relatively high temperatures. This can be
achieved with any suitable quantum impurity solver [48–51].
Furthermore, the KLD can be shown to be convex under
reasonable assumptions (see Appendix A) and its gradient is
known analytically in closed form [52], which makes it an
ideal optimization problem. We refer to this method as unsu-
pervised model learning (UML). We demonstrate the efficacy
of the UML method by application to the Anderson impurity
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model (AIM) [33], and we obtain some new nonperturbative
results for this old problem. Finally, we give an outlook to
the application of this framework to more complex problems,
where the development of tractable effective models is essen-
tial for the study of nontrivial correlated electron physics at
low temperatures.

I. OVERVIEW OF THE METHOD

Unsupervised learning is a type of ML with the goal to
recreate the probability distribution of some target data. Ex-
amples such as the Boltzmann machine [10] achieve this
by minimizing the distance between the probabilistic ansatz,
at the core of the machine, and the heuristic estimation of
the target distribution given by some sample data [11]. The
distinguishability between probability distributions can be
computed using the aforementioned KLD [47]. The KLD can
be generalized for quantum density matrices ρ̂ in the form of
the von Neumann relative entropy [53,54],

DKL[ρ̂1 : ρ̂2] = tr[ρ̂1 log(ρ̂1)] − tr[ρ̂1 log(ρ̂2)]. (2)

The generalized KLD quantifies how distinguishable ρ̂1 is
from ρ̂2. The thermal density matrix ρ̂ = 1

Z e−βĤ is fully de-
fined by the system Hamiltonian Ĥ (and inverse temperature
β). Here Z = tr[e−βĤ ] is the partition function of Ĥ . Thus, the
thermal density matrix can be seen as a proxy for its defining
Hamiltonian, and the KLD as a measure of distinguishability
between two Hamiltonians. To emphasize this, we denote
the KLD for two thermal density matrices ρ̂1 = 1

Z1
e−βĤ1 and

ρ̂2 = 1
Z2

e−βĤ2 as DKL[Ĥ1 : Ĥ2].

Given the target Hamiltonian Ĥbare, we seek to optimize the
simpler effective model,

Ĥeff (θ) =
∑

i

θiĥi, (3)

by minimizing DKL[Ĥbare : Ĥeff (θ)] with respect to the set
of parameters {θi} corresponding to the operators {ĥi}. The
minimization yields the vector of optimal couplings θ∗ to
represent Ĥbare with Ĥeff (θ∗). In general, this is an extremely
challenging problem.

Specializing now to quantum impurity models of the type
Eq. (1), the KLD can be evaluated by representing the re-
duced thermal density matrix of the impurity after tracing
out the bath, ρ̂imp = tr bath[e−βĤ/Z], as a classical probability
distribution. The fact that ρ̂imp can be viewed as a classical
probability distribution can be seen as follows. Using the
hybridization perturbation expansion [55], one can write the
partition function Zbare of Ĥbare as a sum over the weights wx

of all impurity occupation diagrams, denoted x. We further
subdivide each such diagram x into a sum over all correspond-
ing diagrams w({α}x ) labeled in terms of impurity eigenstates
{α}x,

Z = Zbath
∑

x

∑
{α}x

w({α}x ),

w({α}x ) = e−〈Ĥ imp〉{α}x �{α}x det(�x ), (4)

where w({α}x ) is the weight of a distinct Feynman diagram
labeled by the eigenstate diagram {α}x, �x is the antiperi-
odic hybridization matrix [55], �{α}x the sequence of impurity
operators comprising the diagram {α}x while being projected
onto the eigenbasis of Ĥ imp, and 〈Ĥ imp〉{α}x is the average
value of the impurity Hamiltonian over the diagram {α}x.
We have also defined Zbath as the partition function of the
free (decoupled) bath Ĥbath. The details of the derivation and
precise definitions of the terms appearing in Eq. (4) are given
in Appendix A.

From Eq. (4) we extract the distribution

P({α}x ) = (Zbath/Z )w({α}x ),

which can be interpreted as a classical probability distribution
provided that w({α}x ) > 0. This distribution acts as a proxy
for the impurity density matrix and hence also for the impurity
Hamiltonian. As with the classical Boltzmann machine, the
probability distribution P is in the form of an energy-based
model, with the weights w({α}x ) here distributed according to
the impurity Hamiltonian, Ĥ imp. We can therefore evaluate the
KLD

DKL[Ĥbare : Ĥeff (θ)]=
∑

x

∑
{α}x : ad

Pbare({α}x ) log

[
Pbare({α}x )

Peff ({α}x )

]
,

(5)

where we have used the term admissible (ad) to denote di-
agrams that involve eigenstates of Ĥ imp

bare for which Ĥ imp
eff has

analogous eigenstates. This is important because the dimen-
sionality of the impurity subspace is lower for the effective
model than in the bare model, by construction. To minimize
the distinguishability between Ĥbare and Ĥeff (θ), we use gradi-
ent descent (GD) methods [11]. For this, we need the analytic
gradient of the KLD,

∇θDKL[Ĥbare : Ĥeff (θ)] = β〈�̂†
ad∇θ Ĥeff�̂ad〉bare

− β〈∇θ Ĥeff〉eff , (6)

where the admissibility operator �̂ad connects the effective
and bare Fock space by mapping the effective eigenstates to
analogous bare eigenstates (see Sec. II A for a detailed deriva-
tion and discussion). Thus, �̂ad eliminates all nonadmissible
states from the bare thermal average such that 〈�̂†

ad�̂ad〉bare <

1, whereas on the effective Hilbert space it holds that

〈�̂ad�̂
†
ad〉eff = 〈1̂〉eff = 1. (7)

From Eq. (6) it follows immediately that the minimum is
found when the impurity observables match,

〈�̂†
adĥi�̂ad〉bare = 〈ĥi〉eff (8)

for all effective impurity operators ĥi of the effective model
(from now on we simplify the notation 〈�̂†

adĥi�̂ad〉bare →
〈ĥi〉bare). Thus, in the precise sense of Eq. (5), the optimal
low-energy effective model Ĥeff for a given bare model Ĥbare

is the one that matches the thermodynamic expectation values
for all effective impurity operators ĥi in the bare model. We
emphasize that the KLD Eq. (5) does not itself ever have to be
evaluated. For the GD optimization, it is sufficient to evaluate
the gradient of the KLD, which can be expressed in terms of
the physical and readily computable observables in Eq. (6).
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We refer to the process of optimizing an effective model to
best represent the low-energy physics of our microscopic bare
Hamiltonian by matching these key observables as unsuper-
vised model learning (UML).

A particularly attractive feature of UML for quantum im-
purity systems is the efficiency of the optimization problem.
This follows from the fact that the second-order derivative of
the KLD corresponds to the second-order derivative of the ef-
fective free energy Feff (θ) = −1/β log tr[exp ( − βĤeff (θ))].
Therefore, provided all operators {ĥi} mutually commute, the
KLD is convex—see Appendix A. Thus we have a single,
global minimum, which a gradient descent algorithm is guar-
anteed to find, making this a trivial optimization problem.
We note that the gradient obtained from the KLD, Eq. (6),
is equivalent to the gradient obtained in the maximum entropy
principle that was recently applied to the problem of Hamil-
tonian tomography in Ref. [22].

The optimization problem is efficient, given the convexity
of Eq. (5). The computational cost of the optimization is
therefore mainly controlled by the method used to compute
the observables comprising the gradient in Eq. (6). The bot-
tleneck is then the calculation of the observables 〈ĥi〉bare in
the bare model. However, this needs to be done just once
[e.g., with quantum Monte Carlo (QMC) methods [48,56]].
On the other hand, although multiple calculations of 〈ĥi〉eff are
required during the optimization, these are performed on the
simplified effective model and are therefore by construction
inexpensive [they can be done with, e.g., the numerical renor-
malization group (NRG) method [49–51]]. For the results
presented in the following, we have used continuous-time
QMC (CT-QMC) and NRG to calculate the observables and
the Adagrad or Adam GD methods [57].

II. DESIGNING AN EFFECTIVE MODEL

The UML methodology described above makes no as-
sumptions about the form of the bare impurity Hamiltonian
(for example, it could be an ab initio type model or in tight-
binding form). However, for illustrative purposes, and without
loss of generality, we assume here that the bare impurity
Hamiltonian is akin to a Pariser-Parr-Pople (extended Hub-
bard) model [58],

Ĥ imp
bare =

∑
i, j,σ

λi j d̂
†
iσ d̂ jσ +

∑
i

Uin̂i↑n̂i↓ +
∑
i> j

U ′
i j n̂in̂ j, (9)

where d̂†
iσ (d̂iσ ) creates (annihilates) a spin-σ electron in im-

purity orbital i, whereas n̂iσ = d̂†
iσ d̂iσ and n̂i = ∑

σ n̂iσ are
number operators. This form of Ĥ imp

bare is particularly suited
to describe molecules in the context of single-molecule tran-
sistors. In the following, we use the term “molecule” to
describe the impurity degrees of freedom, as this emphasizes
the important role of orbital complexity in the bare model.
The total thermodynamic average charge on the molecule,
〈Q̂〉 ≡ Q, can be controlled externally by means of a gate
voltage Ĥgate = VgQ̂, where Q̂ = ∑

i n̂i.
In practice, the molecule degrees of freedom can be cou-

pled to several noninteracting fermionic baths (metallic leads).
For simplicity and concreteness, we now consider one single
bath with particle-hole symmetry, Ĥbath = ∑

k,σ εk ĉ†
kσ

ĉkσ
. We

omit the “bare” label here because the bath will be common to
both bare and effective models. Without any loss of generality,
we cast this in the form of a 1D tight-binding chain,

Ĥbath =
∞∑

n=0

∑
σ

tn (ĉ†
nσ ĉn+1σ + ĉ†

n+1σ ĉnσ ), (10)

where the chain parameters {tn} encode the bath density of
states. This tridiagonal form can be derived explicitly using
the Lanczos method [59]. On-site potentials are zero here
due to particle-hole symmetry, but they may be reinstated if
needed without affecting the following discussions. For the
RG analysis below, we note that the Wilson chain [49] takes
exactly the same form as Eq. (10), but with chain parame-
ters that behave as tn ∼ D�−n/2 for large n, where D is the
bare conduction electron half-bandwidth, and � > 1 is the
logarithmic discretization parameter. In that case, we replace
Ĥbath → Ĥbath

disc .
The impurity degrees of freedom couple to the bath at the

end of the chain via the hybridization term,

Ĥhyb
bare =

∑
i,σ

Vi (d̂†
iσ ĉ0σ + ĉ†

0σ d̂iσ ). (11)

We denote the collection of all bare Hamiltonian couplings
using the vector

C ≡ {λ11, λ12, . . . ,U1,U2, . . . ,U ′
11,U ′

12, . . . ,V1,V2, . . . ,Vg}.
By varying Vg, the ground state of the “molecule” can

be tuned to a specific charge sector, which may be spin-
degenerate. Of particular interest is the case in which the
molecule hosts an odd number of electrons and the ground
state spin is S = 1

2 , although the arguments are general. With
EGS the energy of the (possibly degenerate) ground state and
Eex,1 the energy of the first excited state, the active part of the
molecule Fock space Himp

bare at low temperatures T 
 Eex,1 −
EGS is dominated by the Fock space of the ground-state man-
ifold. We can then map the full impurity Fock space of our
bare model to an effective one spanning only the ground-state
manifold,

Himp
bare → Himp

eff . (12)

In terms of effective Hamiltonians, the above argument im-
plies that we can map Ĥ imp

bare + Ĥhyb
bare → Ĥ imp

eff + Ĥhyb
eff , with

the bath Hamiltonian left unchanged. In particular, for a
spin-degenerate ground state, the entire molecule can be
represented by a single spin Ŝ degree of freedom, and the
molecule-bath hybridization term becomes a spin-exchange
interaction. This mapping constitutes an immense reduction
in complexity: for a molecule with N orbitals, the dimension
of the impurity Fock space is reduced from 4N to 2S + 1. In
the following, we discuss the details of how this mapping
is achieved in practice, and we provide a simple example
demonstration.

For some parametrized effective model Ĥeff (θ) we seek to
optimize the coupling constants θ so that properties of the
bare model are faithfully reproduced at low energies (as in
Fig. 1). A crucial aspect of the GD optimization of Eq. (5) is to
compare bare and effective physical observables. This must be
done with care, since bare and effective models live in differ-
ent Fock spaces and are defined at different energy scales. In
the case of dynamical quantities such as Green’s functions, a
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meaningful comparison of renormalized correlation functions
can be achieved by rescaling procedures [60]. But for static
quantities, like the thermodynamic expectation values we are
comparing, subtleties arise. In particular, a map between bare
and effective eigenstates given by the admissibility operator
�̂ad is required.

A. Admissibility

Effective model operators are only defined on the effective
model Fock space Himp

eff , and thus to apply them to a state in
the bare Fock space Himp

bare, we must project the states using the
admissibility operator. One approach to construct the admis-
sibility operator is to label bare and effective eigenstates with
quantum numbers (QNs) corresponding to the symmetries
that are common to both models,

Ĥ imp|n〉 = En|n〉 �→ Ĥ imp|Q, q; mQ,q〉
= EQ,q;mQ,q |Q, q; mQ,q〉,

where Q = (Q1, Q2, . . . ) denotes a vector of non-Abelian
QNs, and q = (q1, q2, . . . ) is a vector of Abelian QNs. The
label mQ,q ∈ {1, 2, . . . , MQ,q} denotes an index that distin-
guishes multiplets with the same set of QNs. MQ,q is the
number of such multiplets in a given sector, which is in
general smaller in the effective model than in the bare model
Meff � Mbare. This is required in order to have a meaningful
reduction in complexity.

By labeling our states with these QNs, we can identify
which bare states are admissible (“ad” for short) on the level of
symmetries. Importantly, we can remove inadmissible states
in the bare model that have no analog in the effective model.
For example, the full molecule Fock space of the bare model
may contain high-lying spin S = 1 states, whereas the effec-
tive model retains only the ground states with spin S = 1

2 .
Therefore, in this case only S = 1

2 states of the bare model
would be admissible. We regard any state that is labeled with a
QN combination that exists in the effective model Fock space
as an admissible state of the bare model.

For illustration, we now assume that Meff = 1. Then the
admissibility operator can be written as a projector,

�̂ad =
∑

Q,q:ad

[
|Q, q〉eff ×

Mbare∑
mQ,q=1

〈Q, q; mQ,q|bare

]
, (13)

where the notation “Q, q : ad” indicates that the sum runs
only over the quantum numbers that label the eigenstates of
Ĥ imp

eff . Thus, operators ĥi of the effective model can be mean-
ingfully computed in the bare Fock space, via

χi = 〈�̂†
adĥi�̂ad〉bare. (14)

We provide specific examples of this in action shortly.
There are exceptions where the reference-state quan-

tum numbers differ in the bare and effective models and
a little more care has to be taken to make them com-
parable. In particular, this applies to the definition of
the charge quantum number, since the charge depends
on the number of (occupied, fermionic) impurity degrees
of freedom. But the number of degrees of freedom is
smaller in the effective model than the bare one. For ex-

ample, a molecule with N orbitals at half-filling has a
ground-state charge Q = N . But the effective model may
replace these degrees of freedom with a single local mo-
ment spin S = 1/2, which can be regarded as a fermionic
site subject to the constraint that the charge is Q = 1.
Indeed, the bare model may have S = 1/2 representations
in multiple charge sectors. One practical solution is to take
only the charge sector Q̃ of the bare model which contains
the lowest-energy S = 1/2 states. Alternatively, one can sum
over all charge sectors Q̃ that contain S = 1/2 states. Different
spin-S multiplets with the same Q̃ in the bare model can also
be summed over.

B. RG analysis

The UML approach yields the best couplings θ∗ for the
chosen Hamiltonian operators {ĥi} in the effective model,
Eq. (3), given the target Hamiltonian Ĥbare. It may be ad-
vantageous to choose {ĥi} in the most general and unbiased
way possible, for maximum expressiveness and to facilitate
automation of the process. However, we may also utilize
physical insights in making this choice to target the desired
physics.

On the other hand, the RG procedure provides a systematic
way to identify the structure of certain effective models. We
briefly summarize the basics of the RG method below, as it
will be useful in framing the following discussion. For a full
description, see Ref. [30].

The Wilsonian RG map [28] Rl for a Hamiltonian
of the form Ĥ (C) = ∑

i θiĥi [Eq. (3)], with couplings
C = (θ1, θ2, . . . ) and associated interaction terms {ĥi}, allows
one to eliminate correlations between states above and below
a running energy scale cutoff exp(−l )D < D, where D is
the bare model cutoff and l > 1. In the context of impurity
models, D is the conduction electron half-bandwidth. As
the map Rl is successively applied, we therefore focus
on progressively lower and lower energy scales. The RG
map produces a new Hamiltonian that is characterized by
renormalized couplings C′,

Rl [Ĥ (C)] = Ĥ (C′), (15)

while leaving the free energy invariant,

F (C) = F (C′). (16)

Within this framework, all terms ĥi consistent with the
symmetries and Fock space of the system are allowed to
appear in Ĥ (C). For simplicity, we assume that the set of
interactions {ĥi} is finite and does not change during the
RG procedure. The continuous flow of the couplings C is
described by the infinitesimal RG-transformation

dC
dl

= lim
δl→0

1

δl
[Rl+δl (C) − C] ≡ βl (C), (17)

with βl being the Gell-Mann–Low β-function [30].
An important property of RG is the existence of fixed

points (FPs), which are characterized by a set of couplings
C∗ that are invariant under the RG transformation,

Rl [Ĥ (C∗)] = Ĥ (C∗) ≡ Ĥ∗, (18)
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and we call Ĥ∗ the FP Hamiltonian. The RG transformation
can be linearized near the FP Hamiltonian,

Rl [Ĥ
∗ + δĤ ] = Ĥ∗ + R∗

l δĤ + O(δĤ2), (19)

where δĤ is a perturbation to the fixed point. The FP can be
further analyzed by finding the eigensystem of the linearized
RG transformation, R∗

l · Ô∗
i = λ∗

i Ô∗
i . The eigenvalue λ∗

i tells
us whether a given operator Ô∗

i drives the system away from
the FP (for |λ∗

i | > 1) or brings us closer to the FP (for |λ∗
i | <

1). Physical perturbations to the FP can be decomposed in
terms of these operators, δĤ = ∑

i αiÔ∗
i . If there are finite

contributions to δĤ from operators with |λ∗
i | > 1, the per-

turbation is said to be relevant. Conversely, if there are only
contributions from operators with |λ∗

i | < 1, the perturbation is
irrelevant.

Within this framework, we can identify a class of mini-
mal effective models. As in Ref. [46], we define a minimal
effective model here as one that retains only the most RG
relevant corrections to the low-energy stable FP. Elaborated
effective models can also be formulated by including leading
RG irrelevant operators. By contrast, minimally constrained
effective models contain all possible operators consistent with
the symmetries of the bare model that live in the reduced Fock
space. We consider these various scenarios below.

We emphasize that although the RG procedure described
above provides useful information on the structure of FP
Hamiltonians and their leading corrections, the RG equa-
tions for interacting quantum impurity models cannot be
solved analytically exactly. Perturbative RG methods give
useful insights [61] but cannot provide quantitatively accu-
rate predictions for effective model parameters in versatile
settings. Nonperturbative solutions such as the numerical
renormalization group [49] allow exact results to be extracted
[62] but are only viable for sufficiently simple bare models,
where Ĥ imp

bare can be diagonalized exactly. In this paper, we
are interested precisely in the class of bare models that are
beyond the reach of a direct solution using NRG, or at low
temperatures inaccessible to QMC.

C. Schrieffer-Wolff revisited

A paradigmatic example for the derivation of an effective
model is the mapping of the bare symmetric single Ander-
son impurity model (AIM) to the effective Kondo model.
The former features a spinful fermionic interacting orbital d̂σ

on the impurity, whereas the latter involves only a spin-half
impurity operator Ŝd . The mapping eliminates the impurity
charge states with zero or two electrons, and thus reduces
the four-dimensional impurity Fock space of the AIM to the
two-dimensional Fock space of the Kondo impurity spin.

We take the AIM as our bare Hamiltonian,

ĤAIM
bare = Ĥbath

disc + 1
2Ud (n̂d − 1)2

+V
∑

σ

(d̂†
σ ĉ0σ + ĉ†

0σ d̂σ ), (20)

where n̂d = ∑
σ d̂†

σ d̂σ . As defined, the model possesses
particle-hole symmetry and is hence at half-filling (the
ground state has impurity charge Q = 1). For Ud � �, with
� = πV 2/2D the impurity-bath hybridization, local moment

formation on the impurity is expected. Under these circum-
stances, second-order perturbation theory in the impurity-bath
coupling V yields the Kondo model,

ĤK
eff = Ĥbath

disc + JŜd · Ŝ0, (21)

where Ŝ0 = 1
2

∑
σ,σ ′ σσσ ′c†

0σ c0σ ′ is the conduction electron
spin density at the impurity position. This is the famous
Schrieffer-Wolff transformation (SWT) [33,63]. The Kondo
model is as such the minimal effective model for the AIM, in
the sense defined in the previous section.

The second-order perturbative calculation yields an esti-
mate for the spin-exchange coupling, JSW = 8V 2/Ud , which
is naturally a rather crude approximation at finite Ud/�. In-
deed, as discussed in Ref. [46], physical properties such as
the thermodynamic entropy and Kondo temperature of the
effective model Eq. (21) computed with JSW do not match
well those of the bare AIM Eq. (20) unless Ud � D. In
fact, even when the SWT is carried out to infinite order in
the impurity-bath hybridization [64], the predicted value of
J still does not give accurate results for low-energy proper-
ties [46]. The reason for this is well known: the SWT does
not account for the bandwidth renormalization D → Deff . In
the small Ud/D limit, Haldane found a perturbative estimate
for this effect [65], with the intuitive result that Deff ∼ Ud .
This was put on a more concrete footing by Krishnamurthy
et al. in Ref. [49] using RG arguments. Only recently in
Ref. [46] was the precise form determined numerically by
nonperturbative methods for all Ud and V . The conclusion is
that even with this highly simplified minimal effective model,
the free energy and hence low-temperature thermodynamics
can be faithfully reproduced—provided the correct effective
coupling J is found.

D. F -learning for the Kondo model

Since the AIM and the Kondo model are connected by the
RG flow of the AIM, the low-temperature thermodynamics
of the AIM, such as the impurity entropy flow, magnetic
susceptibility, and the Kondo temperature TK , can be exactly
reproduced in an effective Kondo model with a properly cho-
sen coupling constant J , provided TK 
 Ud . As shown in
Ref. [46], this “true” J can be found numerically exactly by
solving the AIM and Kondo models nonperturbatively using,
e.g., NRG, and matching their free energies

F eff (J ) = Fbare(Ud ,V ), (22)

which according to Eq. (16) also matches their RG flows.
This should be done at sufficiently low temperatures T 
 Ud

where the RG flows of the two models are expected to coin-
cide. We refer to this model learning technique as F-learning.
This is a powerful method if one is interested in reproduc-
ing the low-temperature thermodynamics or low-frequency
dynamical correlation functions of some bare model using a
simpler effective model—provided that both bare and effec-
tive models can be solved accurately down to a temperature
T 
 Ud . However, for complex impurity problems, such a
direct solution of the bare model might not be feasible.
Furthermore, a coinciding free energy in bare and effective
models does not guarantee that all local thermodynamic ob-
servables will agree, as discussed in the next subsection. If
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FIG. 2. Impurity-bath spin-spin expectation value 〈Ŝd · Ŝ0〉 com-
puted with NRG at T = 0 for the AIM Eq. (20) (blue line) compared
with the corresponding value in the Kondo model Eq. (21), optimized
by F -learning (green). The inset shows their ratio, which captures
the different renormalizations along the two paths to the same low-
energy fixed point. Plotted as a function of Ud for 8V 2/Ud = 0.3 and
D = 1.

such observables are the desired outcome from an effective
model, F-learning alone is not the best choice.

E. Renormalization of observables

Thermodynamic observables may themselves flow under
RG, and the full path taken, from high to low energies, affects
the result. Since the effective model is defined on an energy
scale below some cutoff, it cannot capture renormalization
effects in the bare model at energies above this cutoff. The
important implication of this is that we cannot expect even
an optimal minimal effective model to capture simultaneously
low-energy scales such as the Kondo temperature TK , as well
as the behavior of thermal expectation values. The former is
controlled by the low-temperature free energy, whereas the
latter depends on the entire RG flow.

We demonstrate this point explicitly for the simplest exam-
ple of the mapping from the AIM to the Kondo model. Using
F-learning [46], we extracted the effective J of the Kondo
model that reproduces exactly the low-temperature thermody-
namics and Kondo temperature TK for reference AIM systems
with different bare Ud (keeping V 2/Ud constant and setting
D ≡ 1). For each bare AIM and corresponding F-optimized
Kondo model, we computed with NRG the zero-temperature
expectation value of the spin-spin correlator 〈Ŝd · Ŝ0〉. The
results are shown in the main panel of Fig. 2, demonstrating
markedly different renormalization of this observable in bare
and effective models, especially at small Ud . The ratio of the
observables calculated in bare and effective models, shown in
the inset, characterizes the different degree of renormalization
in the two models along the RG flow. Only for Ud � 100D do
the observables agree; this is consistent with the fact that the
perturbative SWT becomes asymptotically exact in the large
Ud/� limit.

One can understand this result using the framework of
Wilsonian RG described above. It is instructive to interpret the
RG procedure as a reparametrization of the free energy, F . In
this picture, the renormalization is achieved by replacing the
original coordinate system C with a new coordinate system
C′ that leaves F invariant, as required by Eq. (16). Thus
we have C → C′(C) and thermodynamic observables can be
interpreted as covariant tensors that can be transformed as
such between coordinate systems [60]. For the effective model
Eq. (3), we may therefore write

〈ĥi〉eff = ∂

∂θi
Feff (θ)

=
∑

j

∂θ∗
j

∂θi

∂

∂θ∗
j

Feff (θ∗) =
∑

j

χ∗
θ j

∂θ∗
j

∂θi
, (23)

with θ∗ being the renormalized effective model parameters at
the low-energy FP, and where χ∗

θ j
is the expectation value of

the operator ĥ j evaluated in the FP Hamiltonian. The matrix

of derivatives
∂θ∗

j

∂θi
contains information about the RG flow to

the FP, and can in principle be obtained from the β-function,
Eq. (17). With this information we can make a connection
between the renormalized value of the observable and its FP
value. The desired observable is found to be a linear combina-
tion of all possible FP expectation values.

Taking again the example of the AIM to Kondo model
mapping, the low-energy stable FP (of both models) is of
course the strong-coupling (SC) FP [28,49]. In the effective
Kondo model, the SC FP Hamiltonian is characterized by
J∗ → ∞. Therefore, χ∗

J ≡ ∂J∗Feff (J∗) = 〈Ŝd · Ŝ0〉∗ evaluated
at the SC FP takes the value

χ∗
J = −3/4, (24)

which as such embodies the spin-singlet formed between the
impurity and bath. However, the actual value of the correla-
tor as measured in the Kondo model, χJ ≡ ∂JFeff (J ), carries
information about the RG flow,

〈Ŝd · Ŝ0〉 = −3

4

∂J∗

∂J
. (25)

It is tempting to use perturbative scaling techniques [66] to
evaluate the nontrivial factor ∂J∗

∂J , but we find that these yield
rather poor approximations to the true value of the correlator
obtained by NRG.

To understand the flow of the same observables 〈ĥi〉 in
the bare model, we have to add ĥi to the bare model as a
source term. This is because the effective interactions ĥi do
not typically appear in the original bare model. Thus we may
write

〈ĥi〉bare = ∂

∂θi
Fbare(C; θi )

∣∣∣
θi=0

=
⎡
⎣∂θ∗

i

∂θi

∂

∂θ∗
i

+
∑

j

∂C∗
j

∂θi

∂

∂C∗
j

⎤
⎦Fbare(C∗; θ∗

i )
∣∣∣
θi=0

= χ∗
θi

∂θ∗
i

∂θi

∣∣∣∣∣
θi=0

+
∑

j

χ∗
Cj

∂C∗
j

∂θi

∣∣∣∣∣
θi=0

,

(26)

043044-7



JONAS B. RIGO AND ANDREW K. MITCHELL PHYSICAL REVIEW RESEARCH 6, 043044 (2024)

where C∗ are the bare model FP parameters, and χ∗
θi

or χ∗
Cj

are expectation values evaluated in the FP Hamiltonian of the
bare model.

In the low-energy limit, both bare and effective models
share the same FP, by construction. Therefore, in the bare
model we may write the FP parameters θ∗

j ≡ θ∗
j (C) as func-

tions of the bare model parameters. From this it follows that

〈ĥi〉bare =
∑

j

χ∗
θ j

∂θ∗
j

∂θi

∣∣∣∣∣
θi=0

, (27)

where χθ∗
j

are the FP expectation values of the effective model

operators ĥ j . Since the FP is the same, these expectation
values are the same in bare and effective models. For the AIM
to Kondo mapping, we find

〈Ŝd · Ŝ0〉eff � 〈Ŝd · Ŝ0〉bare, (28)

as demonstrated numerically in Fig. 2. This implies that[
∂J∗

∂J

]
bare

/[
∂J∗

∂J

∣∣∣
J=0

]
eff

� 1, (29)

where equality is only approached in the large-Ud limit of the
AIM where the RG flow is equivalent to that of the Kondo
model.

The above has consequences for automated model learn-
ing. When optimizing an effective model with UML using
GD, Eq. (6), we should match the full set of observables
〈ĥi〉bare = 〈ĥi〉eff for all effective model operators ĥi. This in
turn implies that we enforce[

∂θ∗
j

∂θi

]
eff

=
[

∂θ∗
j

∂θi

∣∣∣
θi=0

]
bare

. (30)

However, the RG flow to reach the low-energy FP is not the
same in bare and effective models since the latter typically has
fewer FPs. Therefore, enforcing Eq. (30) will give a solution
for which the free energy of the effective model is in general
not the same as that of the bare model. The low-temperature
thermodynamic entropy, Kondo scales, etc., are therefore only
in good agreement if the matched observables do not flow
strongly. For the Kondo model, we see that 〈Ŝd · Ŝ0〉 is in
general renormalized rather differently compared with the
AIM.

Our conclusion is that the KLD Eq. (5) is only a good mea-
sure of Hamiltonian distinguishability if the bare and effective
models have similar RG flows. A minimal effective model
may therefore be poorly suited to this kind of optimization.

The question addressed in the next section is, can more
general effective model structures in principle capture the
Kondo scale and thermal expectation values simultaneously,
at least approximately? If so, can UML be used to automate
the optimization while remaining computationally tractable?

III. MINIMALLY CONSTRAINED EFFECTIVE MODELS

We now go beyond minimal models, like the Kondo model,
and introduce a family of minimally constrained (MC) effec-
tive models. With a given choice for the reduced Fock space of
the effective model, MC models are characterized by a com-
pletely general operator structure, constrained only to respect

the symmetries of the bare model. This allows for the inclusion
and parametrization of all possible RG relevant, marginal, and
irrelevant operators. We show in the following sections that
such an effective model can much more accurately capture
the physics of the bare model. Because its RG flow is more
comparable with the bare model, an MC model is better able
to capture both the behavior of local observables as well as
the Kondo temperature and associated universal low-energy
Kondo physics. This also means that the UML strategy can be
used to find good effective models, when the starting point is
an MC model.

To construct an MC model, we first must decide on the
reduced Fock space in which the effective model lives. In
this regard, we note that by replacing the impurity part of
the bare Hamiltonian by operators spanning only the ground-
state manifold, we also implicitly change the nature of the
impurity-bath hybridization term. Consider, for example, the
classic mapping of the AIM to the Kondo model. The impurity
degrees of freedom d̂σ are mapped to a spin- 1

2 operator Ŝd , but
the impurity-bath tunneling V

∑
σ (d̂†

σ ĉ0σ + H.c.) in Eq. (20)
is also replaced by a spin-spin exchange coupling JŜd · Ŝ0 in
Eq. (21).

An alternative way to formulate the mapping is to take an
extended view on what constitutes the “impurity” to include
also the local bath orbitals to which the bare impurity degrees
of freedom couple. In so doing, we also redefine our bath
to exclude these local orbitals. We thus repartition the bare
model as Ĥbare = ˆ̃H imp

bare + Ĥbath
1 + Ĥhyb

1 , where our extended
impurity is now given by

ˆ̃H imp
bare = Ĥ imp

bare + Ĥhyb
bare. (31)

The extended impurity Fock space is thus

H̃imp
bare = Himp

bare ⊗ Hbath
0 . (32)

The bath and hybridization terms are correspondingly rede-
fined,

Ĥbath
N =

∞∑
n=N

∑
σ

tn (ĉ†
nσ ĉn+1σ + ĉ†

n+1σ ĉnσ ), (33)

Ĥhyb
N =

∑
σ

tN−1(ĉ†
N−1σ ĉNσ + ĉ†

Nσ ĉN−1σ ), (34)

where N = 1 indicates the new starting site index of the rede-
fined bath chain. This has the advantage that the new bath and
hybridization terms are always the same in bare and effective
models. We have emphasized this by now removing the “bare”
label from these terms.

The MC effective model is similarly structured,

ĤMC
eff (θ) = ˆ̃H imp

eff (θ) + Ĥbath
1 + Ĥhyb

1 , (35)

where ˜̃H imp
eff (θ) = ∑

i θiĥi and the effective impurity operators
ĥi live in the extended MC effective Fock space,

H̃imp
eff = Himp

eff ⊗ Hbath
0 . (36)

As before, Himp
eff spans the ground-state manifold of Ĥ imp

bare, and
Hbath

0 is the Fock space of the local bath orbital(s).
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A. Corrections to the Kondo model

As the simplest example, we again consider the particle-
hole symmetric AIM as our bare model, Eq. (20). The MC
effective model can be found by following the above argu-
ments. With a spin- 1

2 operator Ŝd representing the impurity
and ĉ0σ for the local bath orbital, the effective impurity Fock
space H̃imp

eff is eight-dimensional. Since we have conserved
spin S, spin projection Sz, and charge Q, we may label the
basis states of the MC effective impurity Hamiltonian by these
quantum numbers, |Q, S; Sz〉. Then H̃ imp

eff (θ) assumes a block-
diagonal structure, with each quantum number block in this
case being simply a 1 × 1 scalar. The allowed configurations
are

Q S Sz

±1 1
2 ± 1

2
0 0 0
0 1 0, ±1

where we specify the charge Q with respect to the two-
electron half-filled state. Due to SU(2) spin symmetry, states
with the same Q and S are degenerate; and due to particle-
hole symmetry, states with Q = ±1 are degenerate. The
most general MC effective Hamiltonian defined in this Fock
space, consistent with these symmetries, can therefore be
parametrized by just three distinct Hamiltonian matrix el-
ements. Because in this case each quantum number block
contains a unique basis state, the Hamiltonian operator can be
entirely specified in terms of projectors onto these symmetry
spaces,

P̂QS =
∑

Sz

|Q, S; Sz〉〈Q, S; Sz|, (37)

according to

H̃ imp
eff (θ) = θ±1,1/2(P̂−1,1/2 + P̂+1,1/2) + θ0,0P̂0,0 + θ0,1P̂0,1.

(38)
These projectors can be written out explicitly as

P̂0,1 = |↑,⇑〉〈↑,⇑| + |↓,⇓〉〈↓,⇓| + 1
2 (|↑,⇓〉〈↑,⇓|

+ |↓,⇑〉〈↓,⇑| + |↓,⇑〉〈↑,⇓| + |↑,⇓〉〈↓,⇑|),
P̂±1,1/2 = (|0〉〈0| + |↑↓〉〈↑↓|) ⊗ (|⇑〉〈⇑| + |⇓〉〈⇓|),

P̂0,0 = 1
2 (|↑,⇓〉〈↑,⇓| + |↓,⇑〉〈↓,⇑| − |↓,⇑〉〈↑,⇓|
− |↑,⇓〉〈↓,⇑|), (39)

where |φ, σ 〉 ≡ |φ〉0 ⊗ |σ 〉d with φ = {0,↑,↓,↑↓} for the
local bath orbital and σ = {↑,↓} for the impurity spin.

The identity operator can also be resolved in this basis,

1̂eff =
∑
Q,S

P̂QS, (40)

such that 〈1̂eff〉eff = 1. We can therefore use the identity op-
erator to eliminate one of the projectors in Eq. (38). As an

example, we eliminate the P̂0,0 projector and write

H̃ imp
eff (θ) = θ±1,1/2(P̂−1,1/2 + P̂+1,1/2) + θ0,1P̂0,1 + θ11̂eff ,

(41)
where θ1 = θ0,0 and the (as yet still unknown) parameters
θ±1,1/2 and θ0,1 have been suitably rescaled. This is useful
because the identity operator strictly does not flow under
RG. Thus, the term θ11̂eff cannot change the RG flow of the
effective model or affect thermal expectation values of the
projectors 〈P̂QS〉eff evaluated in the effective model. Further,
setting θ1 = 0 corresponds to a uniform shift of all energy
levels and does not affect the dynamics. For the symmet-
ric AIM, the ground state lives in the Q = 0, S = 0 sector,
so this choice is equivalent to measuring energies relative
to the ground-state energy. Importantly, the UML optimiza-
tion, which is based on matching thermal expectation values,
is sensitive to this elimination of a projector, as the unas-
suming operator 1̂eff becomes nontrivial in the bare model
�̂

†
ad · 1̂eff · �̂ad �= 1̂bare. The intricacies that arise from this

sensitivity are discussed in detail in Sec. III B.
In any case, we are left with an MC effective model featur-

ing just two tunable parameters. The physical interpretation of
Eq. (41) is manifested by expressing the projectors in second-
quantized form,

P̂0,1 = 3
4 (n̂0↑ + n̂0↓ − 2n̂0↑n̂0↓) + Ŝd · Ŝ0,

P̂0,0 = 1
4 (n̂0↑ + n̂0↓ − 2n̂0↑n̂0↓) − Ŝd · Ŝ0,

P̂±1,1/2 = 1̂eff − n̂0↑ − n̂0↓ + 2n̂0↑n̂0↓, (42)

where n̂0σ = ĉ†
0σ ĉ0σ . Recombining these projectors yields a

different parametrization of Eq. (41) (but with the same ex-
pressibility). We write it as

H̃ imp
eff (θ) ≡ ĤJU0

eff = JŜd · Ŝ0 + 1
2U0(n̂0 − 1̂eff )2 + L1̂eff ,

(43)
where n̂0 = ∑

σ n̂0σ and J = θ0,1 − θ0,0, U0 = 2θ±1,1/2 −
3
2θ0,1 − 1

2θ0,0, L = 3
4θ0,1 + 1

4θ0,0 + θ1. Again, the term in-
volving 1̂eff can be neglected and we set L = 0. The effective
model written in this way is equivalent to a Kondo model with
an additional electron-electron interaction term on the local
bath orbital.

Equation (41), and equivalently Eq. (43), are the most
general forms of the effective model that live in the extended
Fock space H̃imp

eff , consistent with SU(2) spin symmetry, U(1)
charge conservation, and particle-hole symmetry.

Although the minimal effective model for the AIM is the
Kondo model Eq. (21), the MC effective model ĤMC

eff (J,U0),
with H̃ imp

eff parametrized according to Eq. (43), is precisely
the Kondo model plus the leading RG-irrelevant perturbation
to the local moment fixed point identified by Krishnamurthy,
Wilkins, and Wilson in Ref. [49]. The extended-impurity ap-
proach thus allows us to define more general models that
include such RG marginal and irrelevant terms, beyond those
obtained by, e.g., a Schrieffer-Wolff transformation.

In terms of the interpretability of effective models learned
by UML, we note that the symmetry analysis already offers
insights into the kinds of coupling terms that can arise in
a given extended impurity space. The fact that the physical
impurity hosts a local moment is exploited directly to reduce
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the dimensionality of the active impurity space; this has impli-
cations for the interactions appearing in the effective model.
By formulating the resulting symmetry projectors in second-
quantized form, as per Eq. (42), we obtain a more physical
interpretation of these terms. Indeed, recombining these in
the form of Eq. (43) makes a connection to the RG theory
of the low-energy properties of the bare model. However, the
numerical values of the optimized coupling constants remain
somewhat inscrutable. Only in perturbative limits do these
effective parameters take a simple form in terms of the bare
model parameters.

When the AIM is the bare model, the extended impurity
Fock space dimension is reduced modestly from 16 to 8,
but the parametric complexity (Ud ,V ) → (J,U0) is the same
and we do not appear to have gained much. However, we
emphasize that the AIM is not the intended application of this
method. Rather, we are interested in being able to systemati-
cally derive expressive effective models for complex impurity
systems. We provide examples of this in the following. The
AIM is, however, still a useful benchmark test case that we
continue to explore.

B. UML optimization of the MC effective model

With the form of the MC effective model now at hand,
we turn to the problem of optimizing its parameters using
the UML method. As explained in Sec. I, this amounts to
matching the observables 〈�̂†

adĥi �̂ad〉bare = 〈ĥi〉eff in bare and
effective models, where ĥi are the operators comprising the
MC effective model, and �̂ad is the admissibility operator that
projects onto the reduced Fock space of the effective model.
The explicit form of these will be discussed below, and an
explicit example of the UML optimization is given at the level
of the AIM.

First, we note that for the MC effective model [in either
form, Eq. (41) or Eq. (43)], we have two observables to
match and two parameters to learn when comparing with
the bare model. In particular, we emphasize that the identity
1̂eff is not a matchable observable, because the Fock spaces
of bare and effective models are different by construction.
Therefore, although 〈1̂eff〉eff = 1 in the effective model, we
have 〈�̂†

ad · 1̂eff · �̂ad〉bare < 1 in the bare model. From this it
follows that it is in fact impossible to demand that

〈�̂†
ad · P̂QS · �̂ad〉bare = 〈P̂QS〉eff (44)

be satisfied simultaneously for the full set of projectors
P̂QS . Importantly, we conclude that the optimization problem
Eq. (5) is overdetermined when using these projectors. There-
fore, at least one projector must be omitted from the UML
observable matching process. In Eq. (41) we eliminated P̂0,0,
but other choices can be made.

Another key point is that matching different combinations
of observables may yield different results for the optimized
effective model parameters. The operator content and scaling
dimensions for different observables means they are renormal-
ized differently. Since bare and effective models have different
RG flows in the UV, different effective model parameters are
in general needed to ensure agreement between for a given
set of observables. We return to the systematic selection of

optimal observables below, but here we simply note that ob-
servables that flow the least are the best choice.

Although the impurity Hamiltonian terms in ĤJU0
eff in

Eq. (43) are arguably more physically meaningful, the de-
composition in terms of symmetry projectors in Eq. (41) turns
out to be most advantageous for UML. This is because (i) the
projectors have a direct meaning in the bare model, since bare
and effective models have the same symmetries; (ii) the pro-
jectors mutually commute, and so the optimization problem is
convex; and (iii) the action of the admissibility operator on the
projectors is straightforward.

1. UML for the AIM

We first look at the AIM as our bare model. As explained
above, we have two observables to match within the UML op-
timization procedure. Working with the projectors in Eq. (41)
we tune the effective model parameters θ±1,1/2 and θ0,1 via
GD according to Eq. (6). Importantly, the KLD loss function
itself need not be computed at any stage; the optimization
can be done with a knowledge of its gradient, which involves
only the observables 〈P̂±1,1/2〉eff and 〈P̂0,1〉eff in the effective
model, and 〈�̂†

adP̂±1,1/2�̂ad〉bare and 〈�̂†
adP̂0,1�̂ad〉bare in the

bare model. The optimal solution is found when both

〈P̂±1,1/2〉eff = 〈�̂†
ad P̂±1,1/2 �̂ad〉bare,

〈P̂0,1〉eff = 〈�̂†
ad P̂0,1 �̂ad〉bare. (45)

The Q and S quantum numbers have physical meaning in
the enlarged Fock space H̃imp

bare of the bare model, and so P̂QS

can be defined in the bare model. The admissibility operator
projects onto the S = 1

2 states of the impurity. For the AIM,
this means the two local moment impurity states with nd = 1.
Because of the simplicity of the AIM and the symmetry con-
straints, we can construct �̂ad = n̂d − 2n̂d↑n̂d↓ and use the
definitions of the projectors given already in Eq. (42).

A key advantage of UML is that the optimization is
done via physical quantities that can be obtained using any
numerical method able to compute static thermodynamic
observables, including ab initio methods. Indeed, different
methods can be used for bare and effective models, if de-
sired. For the AIM considered in this section, we use NRG
to compute the observables in both bare and effective models
at temperature T = 0 [50,67]. We consider the role of finite
temperature in the next subsection. Note that the (relatively
expensive) bare model “reference” observables need to be
computed only once. The (computationally cheap) effective
model observables are iteratively calculated during the GD
until Eq. (45) is satisfied. Once the optimized effective model
parameters have been found, the effective model can be fully
solved to obtain the physical properties of interest.

In Fig. 3 we show one such example calculation for the
AIM to MC model mapping. The temperature dependence of
the impurity entropy is shown for the bare AIM (points), com-
pared with that of the optimized MC effective model (lines)
for three different values of Ud , keeping 8V 2/Ud = 0.3 fixed.
The inset shows a comparison with UML optimization of only
J in the minimal Kondo model Eq. (21) by matching just
〈Ŝd · Ŝ0〉 (dashed line), as well as UML optimization of both
J and U0 in Eq. (43) by matching 〈Ŝd · Ŝ0〉 and 〈(n̂0 − 1̂eff )2〉
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FIG. 3. Demonstration of the UML optimization for the MC
effective model. The impurity contribution to the entropy of the
bare AIM (points) is computed as a function of T/D (D = 1) using
NRG, and compared with that of the optimized MC effective model
(lines) for fixed 8V 2/Ud = 0.3 and Ud/D = 0.1, 1, 10. Inset shows
a comparison for Ud = 1 with the minimal Kondo model using the
SWT value of J (dotted) and UML-optimized J (dashed), as well as
UML-optimized model Ĥ JU0

eff (dot-dashed). Training done at T = 0
with NRG.

(dot-dashed line). Also given for reference is the minimal
Kondo model with J obtained perturbatively from SWT (dot-
ted line).

The numerical results show that UML using the MC effec-
tive model Eq. (41) represents a significant improvement over
the other methods, already at relatively high Ud (of the order
of the bandwidth Ud ∼ D) where the RG flows of the bare and
effective models only mildly differ. However, we also see that
the low-energy physics, characterized by the low-temperature
crossover scale TK , is still not perfectly reproduced by UML
for Ud/D 
 1. We show in Sec. IV how the results can be
systematically improved.

2. Optimizing the set of matched observables

As noted above, there is some ambiguity in Eq. (38) as to
which projector to eliminate in the UML observable matching
process. In Eq. (42) we somewhat arbitrarily eliminated the
projector P̂0,0 by using the identity operator, but in principle
P̂0,1 or P̂±1,1/2 could have been eliminated. Here we present a
method for identifying which projector should be eliminated,
and we validate this numerically by comparing effective mod-
els based on different choices. For the case of the MC effective
model, it turns out that indeed Eq. (42) is the optimal model.
However, for the more complicated effective models consid-
ered in Sec. IV, which feature a larger number of observables,
one requires a systematic approach

The first step is to define the Frobenius scalar product
(FSP) on the operator space 〈Â, B̂〉 = tr[Â† · B̂] and the cor-
responding norm ‖Â‖ =

√
〈Â†, Â〉. Here we use the FSP to

decompose an operator ĥi from the effective model into con-
tributions from the low-energy fixed point Hamiltonian of the

bare model Ĥ∗, and contributions from RG irrelevant correc-
tions to the fixed point, �̂i. We define αi = 〈ĥi, Ĥ∗〉/‖Ĥ∗‖2

and βi = 〈ĥi, �̂i〉/‖�̂i‖2, noting that 〈�̂i, Ĥ∗〉 = 0. The op-
erator �̂i can be found by the Gram-Schmidt procedure
�̂i = ĥi − αiĤ∗. We now decompose the projector as θiĥi =
θi(αiĤ∗ + βi�̂) ≡ γiĤ∗ + λi�̂i, which can be used for the
substitution,

∂

∂θi
Fbare(C; θi )

∣∣∣
θi=0

=[
βi

∂

∂λi︸ ︷︷ ︸
RG irrelevant

+ αi
∂

∂γi︸ ︷︷ ︸
RG relevant

]
Fbare(C; λi, γi )

∣∣∣
γi=λi=0

. (46)

The coefficients αi and βi in Eq. (46) tell us the relative
weight of RG relevant and RG irrelevant terms in the de-
composition of a given operator ĥi. In particular, the larger
αi is, the stronger 〈ĥi〉 flows under RG. For the example of the
minimal Kondo model with ĥi = Ŝd · Ŝ0, we have trivially that
βi = 0 and the operator is entirely RG relevant, αi = 1. The
projectors P̂QS in Eq. (42), on the other hand, have a nontrivial
decomposition. To render the overlap parameter αi compa-
rable for different projectors, we introduce the normalized
quantity, α̃i = |〈ĥi, Ĥ∗〉|/‖Ĥ∗‖‖ĥi‖. This provides a means to
compare the strength of the renormalization of the effective
interactions. Since we wish to compare only the most weakly
renormalized observables in bare and effective models, we can
use the FSP to eliminate the projector with the largest α̃i. For
the effective interactions of ĤJU0

eff and ĤMC
eff and the fixed point

Hamiltonian Ĥ∗ = Ŝd · Ŝ0, the FSP yields

Ŝd · Ŝ0 (n̂0 − 1)2 P̂0,1 P̂0,0 P̂±1,1/2

α̃ ≈ 1 0 0.5 0.87 0

Based on these calculated values of α̃i, the best effective
Hamiltonian is ĤMC

eff with θ0,0 = 0, since this excludes the
term that gets renormalized the strongest. This is precisely
Eq. (42).

We put this hypothesis to the test by performing the UML
optimization for all four effective Hamiltonians and compar-
ing the results: Eqs. (43) and (38) with each of the three
projectors eliminated in turn. Our numerical results are pre-
sented in Fig. 4.

In the top-left of panel (a), we perform UML optimiza-
tion on ĤJU0

eff , matching the two effective model operators
Ŝd · Ŝ0 and (n̂0 − 1)2. The T = 0 expectation values of these
operators evaluated in bare and effective models using NRG
are plotted as a function of Ud . Both observables can be
matched in the effective model for all bare model param-
eters. In the top-right panel of Fig. 4(a) we show instead
the UML optimization of ĤMC

eff [Eq. (38)] with θ0,0 = 0.
Here we match 〈P̂0,1〉 and 〈P̂±1,1/2〉, which is also achiev-
able for all Ud . Although 〈P̂0,0〉 is not matched during the
optimization, we can still compare its calculated expectation
value in the optimized effective model with that of the bare
model. We find, as expected, that they only agree in the
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FIG. 4. Analysis of UML optimization of MC effective models
for the AIM bare model. (a) Top-left panel: Ĥ JU0

eff [Eq. (43)], with
observables compared in bare and effective models, as a function of
Ud . Other panels: similarly for ĤMC

eff [Eq. (38)] with θ0,0 = 0 (top-
right); θ±1,1/2 = 0 (bottom-right); θ0,1 = 0 (bottom-left). (b) Relative
(logarithmic) error for the Kondo temperature TK [Eq. (47)] in the
optimized model as a function of Ud for the four cases considered in
panel (a). The orange line corresponds to Eq. (41). Plotted for fixed
8V 2/Ud = 0.3 as a function of Ud , with results obtained at T = 0 by
NRG.

perturbative limit Ud � 1. It is not possible to match all
projectors simultaneously in general. The bottom-left and
bottom-right panels of Fig. 4(a) correspond to optimization
of Eq. (38) with θ0,1 = 0 and θ±1,1/2 = 0, respectively—a
similar result pertains.

In Fig. 4(b), we compare the accuracy of these differently
optimized effective models by calculating their Kondo tem-
perature TK , and comparing with that in the bare model. Our
figure of merit is the (logarithmic) relative error, defined as

�
(
T eff

K , T bare
K

) =
∣∣∣∣∣1 − ln

[
max

(
T eff

K , T bare
K

)]
ln

[
min

(
T eff

K , T bare
K

)]
∣∣∣∣∣. (47)

Given the exponential dependence of the Kondo temperature
on the coupling J in the minimal Kondo model [33], Eq. (47)
captures the error in the effective J . Our numerical results in
Fig. 4(b) show that including the U0 term as a correction to
the Kondo model as per Eq. (43) (dotted line) does not appre-
ciably improve on the results of the minimal Kondo model.
Furthermore, UML optimization of the MC effective model
Eq. (42), with θ0,1 = 0 (dashed) or θ±1,1/2 = 0 (dot-dashed),
does not produce markedly better results for �(T eff

K , T bare
K ).

We attribute this to the injudicious attempt to match

observables that flow strongly under RG. However, when the
most RG relevant operator is eliminated, P̂0,0 = 0 (orange
line), the Kondo temperature is well approximated at all Ud .
This shows an enormous improvement over the observable-
matching minimal model. We conclude that the FSP is a
good way to establish RG relevance of Hamiltonian terms
and to identify ill-fitted interactions for the optimization. Ob-
servables with weaker flow are better suited for the KLD
distinguishability measure. This analysis provides a guide to
the proper set of observables to match within UML.

3. Temperature dependence of the optimization

Minimization of the KLD loss function during UML
involves computing static thermal expectation values, and
comparing these in bare and effective models. In principle,
this can be done at any temperature, T . However, one obtains
meaningful results only when the temperature is sufficiently
low that the active Fock space of the bare model is compa-
rable to that of the effective model, T 
 Eex,1 − EGS. For
the AIM, this means in practice T 
 Ud , since then impu-
rity charge fluctuations are frozen, and the description of
the impurity as a local moment spin- 1

2 degree of freedom
is applicable.

So far we performed UML by calculating observ-
ables at zero temperature using NRG. We note that other
methods operating at T = 0 that target the ground state
can similarly be used, for example quantum-chemical
methods [4], the density matrix renormalization group
(DMRG) [68–70], or ab initio methods based on the
variational principle [71,72]. However, here we show
that that the results of the effective model optimization
are rather insensitive to temperature provided T 
 Ud .
The important consequence of this is that the bare model need
not be completely solved down to T = 0, or the exact ground
state of the many-body system determined. Methods based on
imaginary-time evolution that favor relatively high tempera-
tures T � 10−2D [48] can therefore be used for complex bare
model calculations. Indeed, imaginary-time ab initio methods
can also be used for a first-principles treatment of the bare
model [73,74].

In Fig. 5 we plot the temperature dependence of the op-
timized MC effective model parameters θQS [panel (a)] and
the corresponding thermal observables 〈P̂QS〉 [panel (b)]. For
this demonstration, we use the AIM as the bare model and use
NRG as our impurity solver. Once the AIM reaches the local
moment regime for T/Ud � 0.1, the optimized parameters
θQS become essentially temperature-independent. The observ-
ables can also be precisely matched in this regime, down
to T = 0. Demonstrating that the calculated observables can
be matched and do not change appreciably with temperature
provides an independent check on the convergence of the
UML optimization. By contrast, it is clear that a good effective
model cannot be formulated for T/Ud � 1.

4. UML for complex impurities

Finally, we turn to UML optimization of the MC effective
model for more complex impurity systems. For a bare model
with a unique doublet ground state, Eq. (41) still consti-
tutes a good effective model and UML involves matching the
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FIG. 5. (a) Evolution of optimized parameters of the MC effec-
tive model Eq. (41) with temperature for the AIM with Ud = 0.4D
and 8V 2/Ud = 0.3. (b) Corresponding observables evaluated in the
bare and effective models. The logarithmic temperature axis includes
a cut to T = 0 to show that optimization can be done using ground-
state properties if desired.

observables as per Eq. (45). With conserved charge Q and spin
S in the bare model, we can again define projectors P̂QS . How-
ever, care must now be taken because (i) a multiorbital bare
model might have a reference charge Q̃ that is not the same as
in the MC effective model; (ii) in general the bare model will
have several multiplets for a given symmetry subspace defined
by the quantum numbers Q and S; and (iii) the admissibility
operator projects onto the physical impurity S = 1

2 space of

Himp
bare but the operators are defined in the extended impurity

Fock space H̃imp
bare.

In the following, we address these issues by interpreting
the operators P̂QS = �̂

†
ad P̂QS �̂ad in the bare model as mean-

ing the projector onto the spin-S subspace of the enlarged
impurity Fock space H̃imp

bare with spin S = 1
2 on the physical

impurity Fock space Himp
bare, where the local bath orbital ĉ0σ

has a charge Q relative to half-filling. We assume a trace over
different charge states and multiplets of the physical impurity
space that are compatible with these conditions. Thus, we may

define

〈P̂±1,1/2〉bare = 〈(n̂0 − 1)2〉S=1/2
bare ,

〈P̂0,1〉bare = 〈
(n̂0 − 2n̂0↑n̂0↓)

(
5
4 − 1

3 Ŝ2
imp

)〉S=1

bare , (48)

where Ŝimp = ∑
i Ŝi is an operator for the total spin of the

physical impurity space and 〈· · · 〉S
bare denotes the thermal ex-

pectation value in the full bare model of an operator defined
in the spin S block of the enlarged MC impurity Fock space.

We emphasize that any method that can compute such
observables can be used for the UML optimization. This can
be done at any temperature where bare and effective models
should agree (that is, T 
 Eex,1 − EGS and including T = 0
ground-state calculations). For example, QMC can be used
to compute reference observables in the bare model at rela-
tively high temperatures, and NRG can be used to iteratively
refine the MC effective model via GD. With the optimized
effective model at hand, one can then solve the effective
model down to T = 0 cheaply with NRG, and calculate real-
frequency dynamical correlation functions as might be needed
for a DMFT calculation, electrical conductance via the Kubo
formula, or the temperature dependence of thermodynamic
quantities such as entropy or magnetic susceptibility.

Ultimately, we envision that UML will be integrated with
ab initio methods to tackle problems that are currently out of
reach for brute-force calculations. This is beyond the scope
of the present work, but we provide a discussion of how few-
body approximants to bare-model observables might play a
role in UML in Appendix D.

5. Application: Triple quantum dot device

As a nontrivial demonstration of the UML methodology,
we now consider its application to a bare model describing
a triangular triple quantum dot (TQD) coupled to a metallic
lead in a magnetic field—see Fig. 6(a). This system supports
a rich range of physics [75–77]. The physical impurity Hilbert
space has dimension dH = 43 = 64, and SU(2)-spin symme-
try as well as particle-hole symmetry is broken. We consider a
regime of filling in which the TQD hosts a net spin- 1

2 moment,
delocalized across the three interacting quantum dot sites. The
bare model Hamiltonian is given by

ĤTQD
bare = Ĥbath

disc + 1
2Ud

3∑
i=1

(
n̂d

i − 1
)2 + ζ N̂d + BŜd

z

+
∑

σ

[
t d̂†

1σ (d̂2σ + d̂3σ ) + t ′d̂†
2σ d̂3σ + H.c.

]
+ V

∑
σ

(d̂†
1σ ĉ0σ + ĉ†

0σ d̂1σ ), (49)

where n̂d
i = ∑

σ d†
iσ diσ is the number operator for each quan-

tum dot, N̂d = ∑
i n̂d

i is the total TQD number operator, and
Ŝd

z = 1
2

∑
i(d

†
i↑di↑ − d†

i↓di↓) is the total TQD spin projection.
The UML analysis for the TQD proceeds similarly

to that of the AIM. However, with the application of a
magnetic field B, the spin multiplets previously labeled by
the quantum number S are now no longer (2S + 1)-fold
degenerate (although total Sz is still conserved). Due
to the broken particle-hole symmetry, Q = +1 and −1
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FIG. 6. (a) Schematic of the triple quantum dot bare model (blue)
and the associated MC effective model (orange). (b) Entropy Simp(T )
vs T/B for the TQD bare model (dot-dashed lines) and the UML-
optimized effective model (solid lines) for different magnetic field
strengths B. (c) Corresponding behavior of the magnetic suscepti-
bility T χimp(T ). Plotted for TQD model parameters Ud = 1.1, V =
0.25, t = 0.10, t ′ = 0.15, ζ = 0.05, D = 1. Both bare and effective
models solved using NRG. Quantitative agreement is found in all
cases in the regime T 
 Ud where the mapping is expected to hold.

sectors are no longer degenerate. The lower symmetry
of the bare TQD model therefore implies that we also
have spin and charge anisotropies in the MC effective
model. As a consequence, UML for the TQD entails
matching eight independent observables, rather than three
for the symmetric AIM. Thermal expectation values of
the symmetry projectors P̂Q,Sz are the observables that
we compare in bare and effective models, with (Q, Sz ) =
(0, 0), (0, 1), (0,−1), (1, 1/2), (1,−1/2), (−1, 1/2),
(−1,−1/2). The (0,0) block is a diagonal 2 × 2 matrix.
These observables can be defined and computed (here using
NRG) in both bare and effective models.

The effective model is then optimized by minimizing the
KLD loss function by gradient descent. Since the KLD is
still convex and its gradient, Eq. (6), is expressed in terms
of the computed observables 〈P̂Q,Sz 〉, the optimization remains
highly efficient, despite the increase from 3 to 8 in the number
of parameters to be tuned. The gradient descent method is eas-
ily able to treat optimization problems of this complexity [11].
Indeed, as shown later, systems with a far larger number of
parameters in the nonconvex case are also readily optimized.

Each step of the optimization process involves solving the
MC effective model using the updated coupling constants, and
computing the updated set of observables. The compute time
simply grows linearly in the number of observables. These
are compared with those of the bare model from a one-shot
calculation. Even though the effective model has to be solved
many times, these calculations are comparatively cheap, since
by construction the Hilbert space dimension of the impurity
in the effective model is less than that in the bare model.
Although the effective model may have a larger number of
coupling constants than the original bare model, it is defined
in a reduced Hilbert space and therefore is of lower computa-
tional complexity to solve.

The iterative solution and refinement of the effective model
with UML has essentially fixed computational cost, and is
highly efficient. The potential bottleneck is in the one-shot
solution of more complex bare models, as noted above. For
the TQD, however, NRG can still be used to obtain exact
benchmark results.

We demonstrate the viability of UML for the TQD,
Eq. (49), in Fig. 6. Thermodynamic properties of the bare
TQD (dot-dashed lines) and the optimized MC effective
model (solid lines) are compared, for different temperatures T
and field strengths B. Panel (b) shows the impurity contribu-
tion to the total entropy, Simp(T ), and (c) shows the magnetic
susceptibility T χimp(T ), both versus T/B. The simplified ef-
fective model successfully captures the physics of the TQD
for T 
 Ud . At higher temperatures, TQD degrees of freedom
not included in the effective model contribute to thermody-
namic averages.

As B is increased in the bare TQD model, we see a
crossover from Kondo screening of the TQD local moment to
polarization of the local moment by the field. Both the entropy
and the magnetic susceptibility are fully quenched as T → 0
for any B. However, the scale on which this happens depends
on the underlying mechanism. For small fields B 
 TK (green
line) screening occurs due to the Kondo effect, and the physics
is insensitive to B. However, at larger B the Kondo effect,
which depends on dynamical spin-flip scattering, is destroyed.

043044-14



UNSUPERVISED LEARNING OF EFFECTIVE QUANTUM … PHYSICAL REVIEW RESEARCH 6, 043044 (2024)

The TQD local moment is then screened on the scale of B. For
B � TK we therefore see scaling collapse in terms of T/B,
with polarization of the local moment setting in for T/B ∼ 1
(see the yellow, blue, and red lines). The low-energy behavior
of the optimized effective model captures this crossover and
the onset of scaling versus T/B accurately.

We conclude that more complex models, including those
with more interacting degrees of freedom and lower sym-
metries, can be treated efficiently and accurately with UML.
Physical properties of the resulting optimized effective mod-
els agree quantitatively at low temperatures with bare model
benchmark reference results.

IV. SYSTEMATIC IMPROVEMENT OF EXTENDED
MODELS

We now put the above discussions on a more general
footing, and consider systematic improvements to the MC
effective models explored so far.

The expressibility of our effective model to capture differ-
ent aspects of the physics of the bare model depends on the
types of operators that can be included. Going beyond the
minimal Kondo model, which includes only the most RG-
relevant operator, our MC effective model lives in an extended
impurity Fock space Eq. (36), which allows for inclusion of
more general coupling terms, Eq. (41). Our starting point in
this section is to note that the quality of the effective model
can be systematically improved by further enlarging the ef-
fective impurity Fock space:

≈
H imp

eff = Himp
eff ⊗ Hbath

0 ⊗ Hbath
1 , (50)

which now includes both ĉ0σ and ĉ1σ bath orbitals. The ex-
tended effective model then takes the form

Ĥ ext
eff (θ) = ≈̂

H
imp
eff (θ) + Ĥbath

2 + Ĥhyb
2 , (51)

where the extended effective impurity Hamiltonian
≈̂
H imp

eff (θ)

lives in the extended impurity Fock space
≈
Himp

eff and cor-
respondingly the bath and hybridization terms have been
redefined according to Eqs. (33) and (34). The bath chain now
starts on site index N = 2. The impurity part can of course
be further extended if required. The MC effective model dis-
cussed in Sec. III can be viewed as the first member of a family
of such extended models.

When the original bath Eq. (10) takes the form of a
Wilson chain [49], we note that the ĉnσ operators become
progressively less RG relevant as the chain index n increases
[specifically, the most relevant operator of the linearized RG
transformation Eq. (19) involved in the decomposition of ĉnσ

near the low-energy fixed point has an eigenvalue |λ∗| that
decreases with n]. Therefore, expanding our effective impu-
rity Hamiltonian to include operators from Wilson orbitals
with larger n results in additional terms that are progressively
more RG irrelevant. On the one hand, strongly RG irrelevant
corrections to our effective model become less important for
determining the low-energy physics, but on the other hand,
expectation values of these operators flow very weakly under
RG and therefore can be accurately matched even at relatively

high energy scales with corresponding observables in the bare
model during UML optimization.

To proceed with the construction and UML optimization
of our generalized effective models, we first note that the
symmetry representations of U(1) charge Q and SU(2) spin

S on
≈
Himp

eff still commute, and so we can construct a basis on
the effective Fock space labeled by quantum numbers S for
the non-Abelian spin, Sz for the Abelian magnetic quantum
number of the Cartan subalgebra of S, and Q for the Abelian
charge,

〈Q, S, Sz; m|Q′, S′, S′
z; m′〉 = δQQ′δSS′δSzS′

z
δmm′ , (52)

where m is the multiplet index that distinguishes different
basis states with the same set of quantum numbers Q, S, Sz.
Unlike in the basic MC example, in general the symmetry
blocks of the extended impurity Hamiltonian are not simply
1 × 1 scalars. Furthermore, such multiplets are not unique
since linear combinations of different multiplets with the same
set of quantum numbers are also valid multiplets. This intro-
duces a gauge degree of freedom in the choice of the basis
that means we cannot unambiguously compare degenerate
multiplets between bare and effective models based on sym-
metry alone. We show below that fixing the gauge by lifting
the multiplet degeneracy allows us to reestablish a one-to-one
correspondence between bare and effective models.

Accounting for the multiplet structure of the symmetry
spaces, we construct projectors by generalizing Eq. (37),

P̂QS =
∑
Sz,m

|Q, S, Sz; m〉〈Q, S, Sz; m|. (53)

One can use these projectors as a mutually commuting opera-
tor basis to construct the effective impurity Hamiltonian,

≈̂
H

imp
eff (θ) =

∑
Q,S

θQSP̂QS. (54)

The allowed quantum number configurations compatible with
Eq. (50) are

Q S Sz Meff

0 1
2 ± 1

2 4
0 3

2 ± 1
2 , ± 3

2 1
±1 0 0 2
±1 1 0, ±1 2
±2 1

2 ± 1
2 1

where the charge Q is again specified relative to half-filling,
Meff is the number of multiplets with a given Q and S, and we
take the impurity to be a spin- 1

2 object. We therefore have 15
QS multiplets that span the extended impurity space.

The advantage of formulating the effective model in terms
of such symmetry projectors is that equivalent projectors can
be identified in the bare model, since the two models share
the same symmetries. The projectors so defined also mutually
commute, which means the UML optimization problem is
convex (Appendix A).
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A disadvantage is that several QS blocks contain more
than one multiplet, which means that the projectors cannot
distinguish between multiplets with the same QS. The effec-
tive model Eq. (54) is therefore not the most general extended
impurity model one can write down. Interactions in the bare
model will in general lift the energy degeneracy of these
multiplets, but this effect cannot be captured by a model of
the form of Eq. (54).

A. Fixed basis

A partial solution is to fix the basis according to physical
intuition of the problem, and add terms to Eq. (54) that lift
the energy degeneracy of multiplets with the same Q and S
quantum numbers. This should be done in such a way that (i)
the new set of operators still all mutually commute, so as to
guarantee convexity of the UML optimization problem; and
(ii) the added terms have a physical correspondence in the
bare model. This approach is still not the most general form
of the extended MC effective model, because we make a basis
choice. We return to the fully general case later.

Since the ĉ0σ and ĉ1σ bath orbitals are common to both bare
and effective models, and there is a physical tunneling matrix
element between these orbitals in both cases, we introduce the
operator

T̂ =
∑

σ

(ĉ†
0σ ĉ1σ + ĉ†

1σ ĉ0σ ). (55)

The tunneling operator T̂ has support only on the physical
bath Fock space and therefore does not depend on the struc-
ture of the impurity in the bare model. However, one might
anticipate that 〈T̂ 〉bare will depend on details of the bare impu-
rity model. Action of the tunneling operator conserves charge
and spin and so T̂ commutes with Q̂ and Ŝ2 defined on the
extended impurity space. We can use the eigenvalues T of the
tunneling operator to label our basis states, as shown explicitly
in Appendix B. With basis states |Q, S, T, Sz; m〉 we almost
fully remove multiplet degeneracies,

Q S T Sz Meff

0 1
2 0 ± 1

2 2
0 1

2 ±2 ± 1
2 1

0 3
2 0 ± 1

2 , ± 3
2 1

±1 0 ±1 0 1
±1 1 ±1 0, ±1 1
±2 1

2 0 ± 1
2 1

The (Q, S, T ) = (0, 1
2 , 0) subspace still has Meff = 2 mul-

tiplets, but this degeneracy can be lifted by introducing an ad-
ditional operator (which we take to act only in this subspace),
Ŵ = n̂0↑n̂0↓ + n̂1↑n̂1↓, which measures double-occupancy on
the bath sites included in the extended impurity space. Ŵ has
eigenvalues 0 or 1 only in the subspace where the operator
acts, so we employ a concise notation in which the (T,W )
eigenvalues are augmented into one label (T,W ) �→ T .

As such, all multiplet degeneracies are lifted when we express

≈̂
H

imp
eff (θ) =

∑
Q,S,T

θQST P̂QST , (56)

where the spin multiplets |Q, S, T, Sz〉 are now
unique (we drop the multiplet index m) and P̂QST =∑

Sz
|Q, S, T, Sz〉〈Q, S, T, Sz|.

Fixing the multiplet basis in such a way allows us to
address each multiplet individually and make a comparison
of their projector expectation values in bare and effective
models. This is the best one can do while retaining a fully
commuting set of extended impurity Hamiltonian operators,
as required for convexity. However, the most general extended
effective model would not constrain the basis in this way.

If desired, the projectors P̂QST can be formulated in second-
quantized form (see Appendix D). New types of coupling
term arise in the extended MC effective model, relative to the
basic MC model. In particular, we see assisted hopping terms
in which an impurity spin-flip is accompanied by electronic
tunneling between bath sites. This might be expected from the
physical interpretation of the Kondo effect in terms of spin-flip
scattering.

B. Generalized basis

The most general extended effective impurity model must
include off-diagonal terms coupling different multiplets. This
can be captured by operators of the type

X̂ T,T ′
QS =

∑
Sz

|Q, S, T, Sz〉〈Q, S, T ′, Sz| + H.c. (57)

such that our effective model reads

≈̂
H

imp
eff (θ) =

∑
Q,S

∑
T,T ′

θT,T ′
QS X̂ T,T ′

QS . (58)

The model thus features 25 distinct interaction terms. Due to
the cross terms T �= T ′, the operators X̂ do not in general
commute, and so the UML optimization problem is no longer
convex. This is unavoidable for more complex effective mod-
els, but the appearance of local minima in the search landscape
can still be dealt with in practice using more sophisticated
GD-based routines.

The impact of including the off-diagonal terms T �= T ′ can
be quantified using the FSP. An optimized representation of
any operator Ŷ using the set of operators contained in the
model Eq. (58) can be found by minimizing the normalized
FSP [78],

L(θ, Ŷ ) = 1 −
∣∣〈 ≈̂

H
imp
eff (θ), Ŷ

〉∣∣∥∥ ≈̂
H

imp
eff (θ)

∥∥ · ‖Ŷ ‖
. (59)

As a demonstration of the expressibility of the model Eq. (58),
we consider its ability to represent the Kondo Hamiltonian
operator Ŷ = Ŝd · Ŝ0 from Eq. (21). In the limit Ud � 1 where
the perturbative SWT holds, the effective model should re-
duce to Eq. (21), so this is a nontrivial and stringent check
that a good effective model should satisfy. By minimizing
L(θ, Ŝd · Ŝ0) with respect to θ using standard gradient de-
scent, we find L(θopt, Ŝd · Ŝ0) = 0, meaning that Eq. (58)
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can perfectly represent this operator. However, if we use a
fixed basis (no off-diagonal terms) as with Eq. (56), then
L(θopt, Ŝd · Ŝ0) ≈ 0.3. The fixed basis, therefore, substantially
reduces the expressibility of the extended model. Therefore,
even though the fully general extended model lacks convexity,
we argue that this feature should be sacrificed and that Eq. (58)
should be used.

C. UML optimization of extended models

Extended MC effective models with a general multiplet
basis such as Eq. (58) can represent any Hamiltonian term
in the extended Fock space of Eq. (50), consistent with SU(2)
spin and U(1) charge symmetries.

Within UML, the GD optimization of the effective model
is achieved by matching observables in the bare and effective
models, Eq. (6). As noted in Sec. III, however, one cannot
hope to match the full set of symmetry projectors because
the optimization problem is overdetermined. The solution dis-
cussed in Sec. III B 2 is to eliminate the observable that flows
strongest under RG, as quantified by the FSP Eq. (59).

However, even by omitting the observable with the largest
α̃, we are still left with 24 observables to compute in the
effective model Eq. (58). It is not obvious that for generalized
effective models one can always simultaneously match all
such observables in bare and effective models. Indeed, we find
that even in the optimized effective model, a small number
of observables are not matched, and the KLD loss function
can therefore only be approximately minimized. To quantify
this, we introduce a measure of the relative error in a given
observable,

�(〈ĥi〉eff , 〈ĥi〉bare ) =
∣∣∣∣∣1 − max(〈ĥi〉eff , 〈ĥi〉bare )

min(〈ĥi〉eff , 〈ĥi〉bare )

∣∣∣∣∣. (60)

When learning a representation for complex bare models (for
example ab initio models of a realistic molecular junction),
the Kondo temperature TK will not typically be a good fig-
ure of merit to assess the quality of the effective model. This
is because, for any practical application of UML, the bare
model will not itself be solvable down to very low but finite
temperatures—hence the need in the first place for a simplified
effective model that can be fully solved. Therefore, one will
not in general have access to the reference TK for the bare
model, from which to compute the relative error Eq. (47).
The error in computable observables is thus more practical;
the KLD loss function gradient depends on these observables,
which are matched during the optimization process. For sim-
ple bare model test cases such as the AIM, we can, however,
still compare with TK and other quantities.

Taking the AIM again as our bare model for demonstra-
tion, we perform UML optimization on the extended MC
effective model Eq. (58). For representative AIM parameters,
in Fig. 7(a) we plot the relative error of selected (diago-
nal) observables labeled by the projector quantum numbers
(Q, S, T ) as a function of the optimization step (epoch).
We find that most effective model observables converge
exponentially quickly towards their reference bare model
counterparts, whereas a few are essentially stationary and
cannot be matched. Indeed, it is in general not possible to

FIG. 7. Analysis of UML optimization of the extended MC ef-
fective models [Eqs. (56) and (58)], taking the AIM as our bare
model. (a) Comparison of relative errors in computed observables
[Eq. (60)] as a function of the GD optimization parameter update step
(epoch). Lines are color-coded according to the key, labeled by the
(diagonal) projector quantum numbers (Q, S, T ). (b) Convergence
of the Kondo temperature TK with epoch (red line) compared with
the reference result in the bare model (blue line). (c) Comparison
of relative (logarithmic) error in the Kondo temperature for the
fixed-basis effective model Eq. (56) (pink line) and generalized-basis
model Eq. (58) (red line). Plotted for 8V 2/Ud = 0.3 and Ud = 0.4,
with the optimization performed at T = 0 using NRG as the impurity
solver for both bare and effective models.

perfectly match multiple observables simultaneously, and the
minimum relative error is small but remains finite after con-
vergence. This is because the effective model has good but
not unlimited expressibility: minimization of the KLD loss
function typically involves a compromise in the optimized so-
lution. However, as Fig. 7(b) shows, this does not make much
difference to the quality of the optimized effective model, as
quantified by the Kondo temperature TK . After ∼100 or so
training steps, TK for the effective model (red line) converges
quite accurately to that of the bare model (blue line).
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In Fig. 7(c) we show the relative (logarithmic) error in TK

in the fully effective model, as a function of AIM interaction
strength Ud , with the red line for the fully general extended
MC effective model Eq. (58), compared with the fixed-basis
model Eq. (56) as the purple line. We see that TK is reproduced
rather well by the effective model in both cases for all values
of Ud . As expected from the above arguments, the generalized
model does better at large Ud . However, somewhat unexpect-
edly, the fixed-basis model has a smaller error at small Ud .
We attribute this to the fact that optimization of the fixed-
basis model requires us to match fewer observables, which
is easier to achieve in practice. Furthermore, the additional
(off-diagonal) observables in Eq. (58) appear to flow more
strongly under RG at small Ud than the projectors in Eq. (56),
meaning that matching them may ironically reduce the quality
of the optimized effective model. Despite these subtleties of
the training process, the extended MC effective models do
represent a systematic improvement over simpler effective
models.

We compare the different approaches in the following.

V. COMPARISON OF MODELS

In this section, we consider the relative performance of
the various effective models introduced in this paper. Each is
optimized by UML to capture the physics of the AIM, which
serves as our benchmark bare model. As we have shown, it
is in general not possible to simultaneously capture within
a simplified effective model the universal low-temperature
thermodynamics (as characterized by the Kondo temperature
TK ) as well as the behavior of static thermal expectation values
of local operators. Any effective model must therefore strike a
compromise in reproducing these features. Different methods
may target different aspects of the physics and be better suited
to different applications.

The F-learning approach [46] requires calculation of the
full free energy of bare and effective models within the opti-
mization process. It guarantees to reproduce the low-energy
thermodynamics and TK within a minimal Kondo model, but
fails to capture local observables except in the perturbative
limit Ud � D where the SWT also holds as a good descrip-
tion. However, it might not be possible to accurately calculate
the free energy of a complex bare model in practice, so other
methods might be preferred.

UML, by contrast, is based on matching certain local ob-
servables, and so by construction these observables agree in
bare and optimized effective models. However, applied to
crude effective models, such as minimal Kondo-type mod-
els that only feature the most RG-relevant terms, UML
yields solutions that do not capture well the low-energy ther-
modynamics and Kondo scale TK . By including minimally
constrained models in an expanded effective impurity Fock
space, we systematically improve upon results obtained by
UML. Such models include RG-marginal and RG-irrelevant
corrections, and UML optimization is done using the set of
observables that do not flow strongly. Depending on the level
of theory employed, one can optimize with UML generalized
effective models that do capture local observables while also
approximating TK with good accuracy.

FIG. 8. Comparison of performance metrics for the optimized
effective models considered in this work, taking the AIM as the bare
model. (a) Kondo temperature TK vs Ud , comparing the AIM (points)
and F -learned Kondo result (blue line) with the UML-optimized
effective models: minimal (green), MC (orange), and extended MC
(red). Corresponding TK relative error shown in (b). Observables
〈Ô〉 normalized by their Ud → ∞ values shown in panel (c), with
Ô = Sd · S0 (solid lines, top) and (n̂0 − 1)2 (dashed lines, bottom).
(d) Entropy Simp(T ) vs T/Ud for the bare AIM (Ud = 0.4, points)
and the optimized effective models (lines). We set 8V 2/Ud = 0.3
throughout.
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These features are illustrated in Fig. 8, where we compare
the performance of the different effective models.

The UML method is based on minimizing the KLD loss
function Eq. (5) that quantifies the distinguishability between
bare and effective model. In general ML applications, the
value of the loss function is a useful metric to judge the train-
ing progress and ultimately the performance of the model. In
the case of Eq. (5), however, the KLD is essentially impossible
to compute in practice. The training progress cannot therefore
be established in the standard way. On the other hand, we have
shown that to minimize the KLD via GD we only need to
know its gradient, Eq. (6). This can be done without actually
ever evaluating the KLD itself. For a commuting set of local
impurity operators (for example, the symmetry projectors in
MC models), the KLD is convex and so the gradient vanishes
only at saddle points or global minima of the KLD. Thus, the
gradient is itself a good replacement for the loss function to
determine whether the training of a model has converged. For
the cases considered in Fig. 8, the KLD gradient can always
be made to vanish.

We therefore turn to our other metrics to quantify the
relative performance of the models. With our NRG solution
of the bare and optimized effective models, we can compute
the Kondo temperature directly. This is shown in Fig. 8(a)
as a function of Ud . The exact results for the bare AIM
(points) are compared with the effective models (lines): the
F-learning and UML result for the minimal Kondo model
shown are as blue and green lines; the MC and extended MC
models are shown as orange and red lines. Panel (b) shows
the corresponding relative error �(T eff

K , T bare
K ) evaluated using

Eq. (47). In panel (c) we plot the T = 0 value of static ob-
servables 〈Ô〉 = 〈Ŝd · Ŝ0〉 and 〈(n̂0 − 1)2〉, comparing results
in bare AIM (points) with those of the optimized effective
models (lines). We have normalized the results by their value
in the Ud/D → ∞ limit.

First, we note that by construction, F-learning perfectly re-
produces the TK value for all Ud ; see the blue line in Fig. 8(a).
However, the behavior of 〈Ô〉 = 〈Ŝd · Ŝ0〉, which is not di-
rectly optimized by F-learning, is poorly captured; see panel
(c). On the other hand, UML for the minimal Kondo model
(green line) directly matches the observable 〈Ô〉 = 〈Ŝd · Ŝ0〉
in panel (c) and therefore by construction agrees perfectly
with the bare AIM results. The TK in this case is not directly
matched, and panel (a) shows that UML for the minimal
model performs very poorly using that metric, except in the
SWT (perturbative) limit Ud/D → ∞.

The behavior of the Kondo temperature and the
observables is a stringent nontrivial performance check
for the MC and extended MC models, since neither TK nor
〈Ŝd · Ŝ0〉 is directly matched within UML. We find that UML
represents a good compromise on the performance of these
models for the two metrics. Good performance is seen for
each over all Ud , with a systematic improvement for extended
MC over plain MC.

With the optimized effective models at hand, we compute
using NRG the full temperature-dependence of the thermody-
namic entropy for a representative example of the bare AIM
with Ud = 0.4D, comparing the results in Fig. 8(d). Within the
regime of validity of the effective models (T/Ud 
 1), we see

that the MC and extended MC models do accurately capture
the physics of interest for the AIM.

VI. CONCLUSION

In this paper, we focused on developing new ML-inspired
methodologies for the automatic derivation of expressive and
accurate effective models for quantum impurity systems. To
establish the feasibility and performance of our UML method,
we studied in detail the AIM as the bare model. This is be-
cause the AIM is a very well-known paradigm [33], which we
can solve exactly down to T = 0 using NRG [50] for bench-
marking purposes. The same approach can in principle be
used for more complicated bare model systems as described in
Sec. III B 5. However, we recognize that useful applications of
UML may require integration with ab initio methods to treat
realistic systems [4,70–74]. This is beyond the scope of the
current work, but we discuss possible ways to do this as an
outlook in Appendix D.

The UML framework that we have introduced is based
on unsupervised ML techniques, with the goal to optimize
parameters of a variational effective Hamiltonian, to best de-
scribe the low-temperature physics of a more complex bare
model quantum impurity system. In a well-defined sense,
the optimized effective Hamiltonian is the “best fit” descrip-
tion at a given complexity level. We propose a loss function
to quantify the distinguishability between bare and effective
models, based on a classical distribution of quantum Feynman
diagrams within a hybridization expansion of the partition
function. The loss function can be minimized using GD by
computing certain physical observables. In the standard case
we discuss, the resulting optimization problem is convex, re-
sulting in a highly efficient learning process. The optimized
effective model is the one in which local static observables
match in bare and effective models.

Care must be taken, however, since thermodynamic ob-
servables are not invariant under RG and so bare and effective
models with different RG flows may have different static
expectation values. Thus, the naive matching of observables
does not imply that low-energy scales, such as the Kondo
temperature, are correctly recovered. We confirm this directly,
already at the simplest possible example of the Anderson-
Kondo model mapping. To mitigate this, we identify and
construct the best observables to match, based on an anal-
ysis of their RG relevance. We show that this can be done
while maintaining convexity of the optimization, and that
low-energy scales can be recovered. The accuracy of our ef-
fective models can be systematically improved by increasing
the complexity of the effective impurity. Although this clearly
offers no advantage at the level of the AIM, UML produces
dramatically simplified effective models when applied to more
complex systems, consisting of three or more interacting ac-
tive orbitals. The accuracy and efficiency of UML may be
further improved by formulating bare and effective models
in the “natural orbital” (NO) basis [79]. Since entanglement
between NOs and the rest of the fermionic bath is small by
construction, local observables to be matched in UML should
flow weakly, which we have showed is a desirable property
when formulating effective models.
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An important aspect of the UML framework is that it can be
performed at relatively high temperatures without compromis-
ing precision. This opens the door to applying the algorithm
to vastly more complex systems than could be treated by
brute-force NRG calculations alone. For example, a one-shot
CT-QMC calculation of observables for the bare model could
be used as a reference to optimize a simpler effective model
treated cheaply within NRG, which can then be solved down
to T = 0. Integration with ab initio methods may permit the
realistic study of complex strongly correlated systems that are
currently out of reach.
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APPENDIX A: HYBRIDIZATION EXPANSION AND
CONVEXITY OF THE LOSS FUNCTION

For a general Hamiltonian, which can be bipartitioned
Ĥ = Ĥ0 + Ĥ1, one can compute the partition function as an
expansion in powers of Ĥ1 by [65]

Z =
∞∑

n=0

(−1)n

n!
Tτ

∫ β

0
dτ1 · · ·

∫ β

0
dτn

× tr[e−βĤ0 Ĥ1(τn) · · · Ĥ1(τ1)], (A1)

where τ is the imaginary time. This expansion is discussed
extensively in the context of continuous-time quantum Monte
Carlo (CT-QMC) [80–82]. In the case of hybridization ex-
pansion CT-QMC [82], Ĥ1 = Ĥhyb describes the hybridization
between a noninteracting bath Ĥbath and an interacting quan-
tum impurity Ĥ imp. For the following discussion, we therefore
consider Hamiltonians of the form

Ĥ0 = Ĥbath + Ĥ imp, (A2a)

Ĥ1 = Ĥhyb =
∑

k

∑
σ

V σ
k d̂†

σ ĉkσ + H.c., (A2b)

where we assume that the hybridization tensor is diagonal in
the spin quantum number σ [82]. For this type of Hamiltonian,
Eq. (A1) becomes

Z =
∞∑

n=0

∫ β

0
dτ1 · · ·

∫ β

τn−1

dτn

∫ β

0
dτ ′

1 · · ·
∫ β

τ ′
n−1

dτ ′
n

×
∑

a1,...,an
a′

1,...,a
′
n

∑
k1,...,kn
k′

1,...,k
′
n

V a1
k1

V
a′

1∗
k′

1
· · ·V an

kn
V a′

n∗
k′

n

× tr
[
Tτ e−βĤbath

c†
k′

na′
n
(τ ′

n)ĉknan (τn) · · · ĉ†
k′

1a′
1
(τ ′

1)ĉk1a1 (τ1)
]

× tr
[
Tτ e−βĤ imp

d̂a′
k
(τ ′

n)d̂†
an

(τn) · · · d̂a′
1
(τ ′

1)d̂†
a1

(τ1)
]
. (A3)

Equation (A3) can be interpreted as a sum over all possible
diagrams obtained by allowing electrons to hop between the
impurity and the bath. Since the bath is noninteracting it can
be integrated out, and using Wick’s theorem the antiperiodic
hybridization function can be obtained,

det
i j

[
V σi

ki
V

σ ′
j∗

k′
j

tr
(
Tτ e−βĤbath

ĉ†
kiσi

(τi )ĉk′
jσ

′
j
(τ ′

j )
)]

= Zbath det
i j

[
V σi

ki
V

σ ′
j∗

k′
j

〈Tτ ĉ†
kiσi

(τi )ĉk′
jσ

′
j
(τ ′

j )〉bath
]

= Zbath det(�(x) ), (A4)

where x = (n, {ki, k′
i, ai, a′

i, σi, σ
′
i , τi, τ

′
i }n

i=1) denotes an im-
purity diagram in terms of the sequence of impurity operators
[65] such that∫ β

0
dτ1 · · ·

∫ β

τn−1

dτk

∑
a1,...,an

∑
k1,...,kn

�→
∑

x

. (A5)

Following the approach of Ref. [55], we bring the impurity
operators into the eigenbasis {(Eα, |α〉)} of Ĥ imp and thus
e−τ Ĥ imp

can be trivially evaluated, with

d†
a (τ ) = e−τi Ĥ imp

d†
a eτiĤ imp =

∑
α,α′

eτ (Eα′ −Eα )|α〉〈α′|〈α|d (†)
a |α′〉

(A6)
and instead of occupation diagrams we obtain diagrams
involving impurity eigenstates {α}x ≡ {α1 · · ·αk, α

′
1 · · · α′

k}x.
Thus, Eq. (A1) can be rewritten in terms of the weights of the
sum of the eigenstate diagrams,

Z/Zbath =
∑

x

∑
{α}

�{α}x det(�x )e−〈Ĥ imp〉{α}x , (A7)

with �{α}x denoting the contribution from impurity operators
in the impurity eigenbasis

�{α}x =
n∏

i=1

〈αi|da′
i
|α′

i〉〈α′
i|d†

ai
|αi+1〉 (A8)

and 〈Ĥ imp〉{α}x is the average impurity energy over a diagram

〈Ĥ imp〉{α}x =
n∑

i=1

[
Eαi (τ

′
i − τi−1) + Eα′

i
(τi − τ ′

i )
]

+ Eαn (β − τn). (A9)

Having reformulated the expansion of the impurity partition
Eq. (A3) as Eq. (A7), we now look to prove the convexity of
KLD loss function Eq. (5).

To show the convexity of Eq. (5), it suffices to show that
the free energy log(Z ) is convex in the variational parameters
θ. The core assumption of our calculation is that the effective
impurity Hamiltonian is constructed as follows:

H imp =
∑

i

θiĥi, [ĥi, ĥ j] = 0, (A10)

which is the case for the effective models in the main text. For
the following proof, it is convenient to define a weight w for
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eigenstate diagrams to reformulate Eq. (A7),

Z = Zbath
∑

x

∑
{α}x

w({α}x ), (A11)

w({α}x ) = e−〈Ĥ imp〉{α}x �{α}x det(�x ), (A12)

where we also assume that w({α}x ) > 0, such that w acts as
a probability distribution upon normalization. To show that
log(Z ) is convex, we need to show its Hessian is positive-
semidefinite,

∂θi∂θ j log(Z ) � 0. (A13)

In the following, we use the shorthand notation ∂i for ∂θi

for concision. It is straightforward to compute the first-order
derivative using the fact that the trace is invariant under circu-
lar shifts,

∂i ln(Z ) = − 1

Z

∫ β

0
dτ tr

[
Tτ e− ∫ τ

0 dτ ′Ĥ ĥi(τ ) e− ∫ β

τ
dτ ′Ĥ ]

= − 1

Z

∫ β

0
dτ tr

[
e− ∫ τ

0 dτ ′Ĥ−∫ β

τ
dτ ′Ĥ ĥi(τ )

]
= − 1

Z

∫ β

0
dτ

∑
α

e−βEα 〈α|e−τEα ĥi eτEα |α〉

= −β tr[ρ̂ĥi] = −β〈ĥi〉.
However, we can also carry out the derivative directly on the
diagrammatic expansion of the partition function,

∂i log(Z ) = 1

Z ∂i

[
Zbath

∑
x

∑
{α}x

e−〈Ĥ imp〉{α}x �{α}x det(�x )

]

= 1

Z

[
Zbath

∑
x

∑
{α}x

∂iw({α}x )

]
. (A14)

It holds that a given eigenbasis {(Eα, |α〉)} of Ĥ imp depends in
the following way on the parameters θ:

∂iEα = 〈α|ĥi|α〉, (A15)

∂i|α〉 =
∑
α �=β

〈β|ĥi|α〉
Eα − Eβ

|β〉. (A16)

With the assumptions Eq. (A10) in place, all operators in
the Hamiltonian are mutually commuting, implying that they

share a common set of eigenvectors. This property allows us
to trivially evaluate these derivatives,

∂iEα = εα
i , (A17)

∂i|α〉 = 0, (A18)

with ĥi|α〉 = εα
i |α〉. With these relationships it is straightfor-

ward to show that

∂ j�{α}x = 0, (A19)

∂ j〈Ĥ imp〉{α}x = 〈ĥ j〉{α}x . (A20)

This allows the calculation of the derivative of w, which
amounts to

−∂iw({α}x ) = 〈ĥi〉{α}x w({α}x ). (A21)

This shows that w is a generating functional of moments of
〈ĥi〉{α}x . We therefore write

−∂i log(Z ) = − 1

Z

[
Zbath

∑
x

∑
{α}x

∂iw({α}x )

]

= Ew

[〈ĥi〉{α}x

]
. (A22)

Accordingly, the second-order derivative becomes

∂ j∂i log(Z ) = Ew[〈ĥi〉{α}x 〈ĥ j〉{α}x ]

−Ew[〈ĥi〉{α}x ]Ew[〈ĥ j〉{α}x ], (A23)

which can be identified as the covariance. Since the covariance
is a positive-semidefinite matrix, we have

∂ j∂i log(Z ) = covw[〈ĥi〉{α}x , 〈ĥ j〉{α}x ] � 0, (A24)

making the Hessian of log(Z ) positive-semidefinite, and the
same applies to the Hessian of the KLD loss function Eq. (5)
under the aforementioned assumptions Eq. (A10).

APPENDIX B: EXTENDED IMPURITY BASIS

To construct the projectors of the extended MC Hamil-
tonian, we require the basis |Q, S, T, Sz; m〉 on the extended
Fock space Eq. (50). The first step in the construction is
to determine the charge Q̂, total spin Ŝ2, and Ŝz eigenstates
|Q, S, Sz; m〉. For the occupation basis, we use the following
labeling convention:

|orbital 2 (L), orbital 1 (R), local moment (M)〉. (B1)

Thus, the Hilbert space is spanned by the states

|−2, 1/2, Sz; m〉 |−1, 1, Sz; m〉 |−1, 0, Sz; m〉
|0, 0, ⇑〉 |↑, 0, ⇑〉 1/

√
2(|↑, 0,⇓〉 − |↓, 0, ⇑〉)

|0, 0, ⇓〉 |↓, 0, ⇓〉 1/
√

2(|0,↑,⇓〉 − |0, ↓, ⇑〉)
1/

√
2(|↑, 0, ⇓〉 + |↓, 0, ⇑〉)

|0, ↑,⇑〉
|0, ↓,⇓〉

1/
√

2(|0,↑, ⇓〉 + |0, ↓, ⇑〉)
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|0, 3/2, Sz; m〉 |0, 1/2, Sz; m〉 |0, 1/2, Sz; m〉
|↑, ↑, ⇑〉 √

2/3|↑, ↑, ⇓〉 − √
1/6(|↓, ↑, ⇑〉 + |↑,↓, ⇑〉) |↑↓, 0, ⇑〉

1/
√

3(|↓, ↑, ⇓〉 + |↓, ↓, ⇑〉 + |↑,↓, ⇓〉) −√
2/3|↓,↓, ⇑〉 + √

1/6(|↓, ↑, ⇓〉 + |↑, ↓,⇓〉) |↑↓, 0, ⇓〉
1/

√
3(|↓, ↑, ⇑〉 + |↑, ↑, ⇓〉 + |↑,↓, ⇑〉) |0, ↑↓, ⇑〉

|↓, ↓, ⇓〉 |0, ↑↓, ⇓〉√
1/2(|↓,↑, ⇑〉 − |↑, ↓, ⇑〉)√
1/2(|↓,↑, ⇓〉 − |↑, ↓, ⇓〉)

The states |2, 1/2, Sz; m〉, |1, 1, Sz; m〉, and |1, 0, Sz; m〉 can be obtained straightforwardly by replacing all 0 entries with ↑↓.
It is important to note that when using only Q and S quantum numbers, the Q = −1, S = 1 subspace is twofold-degenerate and
the Q = 0, S = 1/2 subspace is threefold-degenerate. Therefore, using only the projectors onto the Q and S quantum number
subspaces limits the expressibility of our effective model. Full tunability of the model requires that we can address each basis
state individually. The next step is thus to lift these degeneracies. We may do this by diagonalizing the hopping operator in the
degenerate subspaces,

T̂ =
∑

σ

ĉ†
Lσ ĉRσ + ĉ†

Rσ ĉLσ . (B2)

In the |QS〉 = |±1, 1〉 and |±1, 0〉 subspaces, we can find a common eigenbasis |Q, S, T, Sz; m〉 of T̂ and Ŝ2 that allows us to
completely lift the multiplet degeneracy, e.g.,

|−1, 1, +1, Sz; m〉 |−1, 1, −1, Sz; m〉
1
√

2(|↑, 0, ⇑〉 + |0, ↑, ⇑〉) 1
√

2(|↑, 0, ⇑〉 − |0,↑, ⇑〉)
1/

√
4(|0,↑, ⇓〉 + |0,↓, ⇑〉 + |↑, 0, ⇓〉 + |↓, 0, ⇑〉) 1/

√
4(|0, ↑, ⇓〉 + |0, ↓, ⇑〉 − |↑, 0,⇓〉 − |↓, 0, ⇑〉)

1
√

2(|↓, 0, ⇓〉 + |0, ↓, ⇓〉) 1
√

2(|↓, 0, ⇓〉 − |0,↓, ⇓〉)

In the Q = 0 subspace, one can show that the hopping has no effect on the quadruplet and the doublet. However, the Q =
0, S = 1/2 subspace behaves nontrivially under the hopping:

T̂ |↑↓, 0,⇑〉 = |↓,↑,⇑〉 − |↑,↓,⇑〉,
T̂ |0,↑↓,⇑〉 = |↓,↑,⇑〉 − |↑,↓,⇑〉,

T̂ (|↓,↑,⇑〉 − |↑,↓,⇑〉)/
√

2 =
√

2(|↑↓, 0,⇑〉 + |0,↑↓,⇑〉).

We can combine these states such that they become eigenstates of T̂ :

|0, 1/2, 0, Sz; m〉 |0, 1/2, +2, Sz; m〉 |0, 1/2, −2, Sz; m〉√
2
3 |↑, ↑, ⇓〉 −

√
1
6 (|↓, ↑,⇑〉 + |↑, ↓, ⇑〉) 1√

4
(|↓, ↑,⇑〉 − |↑, ↓, ⇑〉 + |↑↓, 0, ⇑〉 +

|0, ↑↓, ⇑〉)

1√
4
(|↓, ↑, ⇑〉 − |↑, ↓,⇑〉 − |↑↓, 0, ⇑〉 −

|0, ↑↓, ⇑〉)

−
√

2
3 |↓, ↓,⇑〉 +

√
1
6 (|↓, ↑,⇓〉 +

|↑, ↓, ⇓〉)

1√
4
(|↓, ↑,⇓〉 − |↑, ↓, ⇓〉 + |↑↓, 0, ⇓〉 +

|0, ↑↓, ⇓〉)

1√
4
(|↓, ↑, ⇓〉 − |↑, ↓,⇓〉 − |↑↓, 0, ⇓〉 −

|0, ↑↓, ⇓〉)
1√
2
(|↑↓, 0, ⇑〉 − |0, ↑↓, ⇑〉)

1√
2
(|↑↓, 0, ⇓〉 − |0, ↑↓, ⇓〉)

The fourfold degenerate multiplet is now almost completely lifted. Only the |0, 1/2, 0, Sz; m〉 subspace is still twofold-
degenerate. This last degeneracy can be lifted by introducing a further operator,

Ŵ = n̂L
↑n̂L

↓ + n̂R
↑n̂R

↓ ,

which has the eigenvalues W ∈ {0, 1} in the |0, 1/2, 0, Sz; m〉 subspace. Instead of introducing a new label for only this subspace,
the eigenvalues for T̂ and Ŵ are added together in the T label. This gives the states
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|0, 1/2, 1, Sz; m〉 |0, 1/2, 0, Sz; m〉√
2
3 |↑, ↑, ⇓〉 −

√
1
6 (|↓, ↑,⇑〉 + |↑, ↓, ⇑〉) 1√

2
(|↑↓, 0, ⇑〉 − |0,↑↓, ⇑〉)

−
√

2
3 |↓, ↓,⇑〉 +

√
1
6 (|↓, ↑,⇓〉 + |↑, ↓, ⇓〉) 1√

2
(|↑↓, 0, ⇓〉 − |0,↑↓, ⇓〉)

The dimension of each subspace spanned by these labels
has thereby been reduced to M = 1, as desired.

APPENDIX C: DETAILS OF NRG CALCULATIONS

All calculations in this work were carried out using Wil-
son’s NRG method [50,83] using the full density matrix
approach [67,84], which allows the precise calculation of
the static observables discussed here. The impurity entropy,
which is used to estimate TK via Simp(TK ) = 1

2 , was computed
using standard thermodynamic NRG [50]. For the simulation
of bare and effective models, the number of kept states is
MK = 2000 and we use a Wilson chain discretization param-
eter of � = 2.5 at a Wilson chain length of N = 40. Total
charge and spin projection quantum numbers are exploited.

APPENDIX D: INTEGRATION WITH AB INITIO METHODS

At the heart of the UML method is the computation of
local observables in bare and effective models. The effective
models are simple enough that this can be done accurately
at any temperature using, e.g., NRG. However, evaluating
objects such as 〈P̂QS〉 in the bare model within an ab initio
description is in general challenging.

For methods that operate in second quantization, we
present here a straightforward way to construct the bare pro-
jectors P̂QS that project onto the quantum number states |Q, S〉.
First we introduce the auxiliary operators,

X̂Q = Q̂ − Q, (D1)

ŶS = Ŝ2 − S(S + 1), (D2)

where Ŝ2 is the total spin operator of the extended impurity,
and Q̂ is the total charge operator of the extended impurity.
The operator X̂Q eliminates all contributions with charge Q
to a state |ψ〉 and similarly ŶS eliminates all contributions
with total spin S. Using these operators, we can now write
the projector onto the multiplet subspace of Q and S as

P̂QS = 1

NQS

∏
Q′ �=Q

X̂Q′ ×
∏
S′ �=S

ŶS′ , (D3)

where

NQS =
∏

Q′ �=Q

(Q − Q′)
∏
S′ �=S

[S(S + 1) − S′(S′ + 1)] (D4)

is a normalization constant. One can similarly construct the
admissibility operator �̂ad. However, these operators are man-
ifestly of high order: Eq. (D3) is an N-body operator, where

N is the number of particles in the extended bare impurity
Hilbert space.

Within an ab initio framework, expectation values of
such N-body operators are typically intractable, because they
are usually expressed in terms of reduced density matrices
(RDMs) [85]. For a given basis of molecular orbitals {φi}M

i=1
one can express the spinless single particle RDM (1-RDM) as

ρ1(r′; r) =
M∑
i, j

1Di
jφi(r

′)φ j (r), (D5)

where 1Di
j = di × d j = 〈ψ |ĉ†

i ĉ j |ψ〉 is the 1-RDM, which en-
codes a single-particle wave function as

ψ (r) =
M∑
i

diφi(r). (D6)

The 1-RDM is not a many-body object, although it is related
to the 2-RDM 2D as [85]

2Dpq
st = 2 1Ds

p ∧ 1Dq
t + 2�

pq
st , (D7)

where 2� is a cumulant that encodes the relations between
multiple determinants. The tensor Dpq

st = 〈ψ |ĉ†
pĉ†

qĉsĉt |ψ〉
encodes two-body correlations. The construction of the
N-RDM is therefore possible for an arbitrary number
for particles N , but it becomes prohibitively expensive
rather quickly.

Instead of attempting to compute Eq. (D3) exactly within
this framework, we instead sketch a method for reducing the
projectors P̂QS to a simplified but approximate form that might
be compatible with ab initio methods using one- or two-body
RDMs.

We wish to find the best variational approximate represen-
tation to Eq. (D3) using at most two-body operators. We can
do this using the FSP, Eq. (59). We therefore construct a full
basis of operators for the bare Hilbert space,

Â ∈ �n ∈ {{ĉ†
i ĉ j}, {ĉ†

i ĉ†
j ĉk ĉl}, {ĉ†

i ĉ†
j ĉ

†
k ĉ†

l ĉmĉnĉoĉp}, . . . }.
(D8)

Now retaining only the one- and two-body terms, we have
a basis {ĥi} for the approximate representation of P̂QS . For
a complete basis �n, the decomposition P̂QS = ∑

i θiĥi is
unique and can be achieved like a regular spectral decomposi-
tion of a vector using the FSP, viz.,

θi = 〈P̂QS, ĥi〉
||ĥi||

, ĥi ∈ �n. (D9)

However, we note that the basis Eq. (D8) is generally over-
complete and therefore any representation of P̂QS according to
Eq. (59) is not necessarily unique. Constructing a complete
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operator basis on the bare Hilbert space can be challeng-
ing. On the other hand, the variational approach can find
optimal representations of any operator even for an over-
complete basis, and the value of the optimized loss function

can serve as an error estimation for the decomposition. We
argue that this is a controlled approach to obtain two-body
approximations of the UML operators P̂QS . We leave develop-
ment and implementation of these methods for future work.
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