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Molecular junctions—whether actual single molecules in nanowire break junctions or artificial
molecules realized in coupled quantum dot devices—offer unique functionality due to their orbital
complexity, strong electron interactions, gate control, and many-body effects from hybridization with the
external electronic circuit. Inverse design involves finding candidate structures that perform a desired
function optimally. Here we develop an inverse design strategy for generalized quantum impurity models
describing molecular junctions, and as an example, use it to demonstrate that many-body quantum
interference can be leveraged to realize the two-channel Kondo critical point in simple 4- or 5-site
molecular moieties. We show that remarkably high Kondo temperatures can be achieved, meaning that
entropy and transport signatures should be experimentally accessible.
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Nanoelectronics circuits are quantum devices featuring a
nanostructure with a few confined and typically strongly
correlated degrees of freedom coupled to source and drain
metallic leads [1–5]. For molecular junctions, a single
molecule can bridge the gap in a nanowire [6]. The
electrical conductance of such a junction is controlled by
the structure and chemistry of the molecule, through which
a current must pass [7]. A range of physics can be realized
in such systems—including Coulomb blockade [8] and
various Kondo effects [4,9–15], quantum interference
[16–23], and phase transitions [24,25]. This presents the
tantalizing possibility of devices at the limit of miniaturi-
zation that leverage inherently quantum effects to provide
enhanced functionality as switches [26–29], transistors
[4,5], diodes and rectifiers [30–35], and even as tools for
chemical analysis [36]. A grand challenge is to find
molecular species that can form robust junctions to perform
a desired function optimally [37].
Simple artificial molecular junctions can also be fab-

ricated in semiconductor coupled quantum dot (QD)
devices [38,39]. The design of such systems need not
obey chemical structure principles [40], and they benefit
from in-situ tunability [41,42]. They can also be integrated
with other components to realize more exotic effects, such
as fractionalization at the two-channel Kondo (2CK)
quantum critical point [43], which results from the frus-
tration of screening when a single spin-1

2
degree of freedom

is coupled to two independent conduction electron channels
[44]. The 2CK effect has gained prominence recently as a

route to engineer many-body Majorana zero modes in
nanostructures [45–48]. Spectacular experimental realiza-
tions of 2CK physics in QD systems [49–51] have however
required the use of a ‘quantum box’ or metallic island to
provide a reservoir of many interacting electrons [52,53].
Can the 2CK effect be realized in simpler QD systems
without the use of these components? If so, what is the
minimum number of interacting sites needed? Can we find
molecular moieties that realize 2CK physics when placed in
a junction?
Model—Molecular junctions and QDs are described by

generalized quantum impurity models [54] of the form
Ĥ ¼ Ĥmol þ Ĥleads þ Ĥhyb þ Ĥgate. Here we formulate the
isolated molecule as an extended Hubbard Hamiltonian,

Ĥmol ¼
X
σ¼↑;↓

X
m;n

tmnd
†
mσdnσ þ

1

2

X
m;n

Umnn̂mn̂n ð1Þ

where dð†Þmσ annihilates (creates) an electron on molecule
orbital m with spin σ and n̂m ¼ P

σ d
†
mσdmσ is a number

operator. Single-particle processes are parameterized by tmn
whereas Umn embodies electronic interactions. The gate
voltage Vg controls the charge on the molecule via
Ĥgate ¼ Vg

P
m n̂m. The leads are described by continua of

free fermions, Ĥleads ¼
P

α;σ ϵkc
†
ασkcασk with α ¼ s, d for

source and drain. The molecule frontier orbital drασ couples
to a local orbital cασ of lead α via Ĥhyb ¼P

α;σ Vαðd†rασcασ þ H:c:Þ, where cασ ¼ ð1=VαÞ
P

k Vkcασk.
Strong electron interactions [3,4] produce rich many-

body physics but also preclude brute force solutions [54].*Contact author: Andrew.Mitchell@UCD.ie
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Inverse design is challenging because physical properties
then depend in a highly nontrivial way on the delicate
interplay of many microscopic parameters. It is a formidable
task to find a set of model parameters that yield specific
device functionalities. However, if only the low-temperature
behavior is of interest, then simpler low-energy effective
models may be used [55–57]. The connection between
effective model parameters and low-temperature physical
properties is typically far more transparent.
Here we focus on one such scenario, where the low-

temperature physics that we seek is that of the 2CK critical
point [58]. The condition for obtaining this behavior in
molecular junctions is simply stated in terms of the low-
energy effective 2CK model. Inverse design then consists
of finding the set of microscopic model parameters satisfy-
ing this condition. We show that this is achievable in
remarkably simple systems, with just a few interacting
degrees of freedom, and without the interacting electron
reservoirs used previously in experiments [49–51].
Effective models.– An odd number of electrons can be

accommodated on the molecule by tuning gate voltages,
such that the ground state of Ĥmol is a unique spin-doublet
state. At low temperatures, effective spin-flip Kondo
exchange interactions and potential scattering are gener-
ated, described by a generalized 2CK model [59],

Ĥeff ¼ Ĥleads þ
X
α;β

�
Jαβ

ˆS⃗ · ˆs⃗αβ þWαβ

X
σ

c†βσcασ

�
ð2Þ

where ˆS⃗ is a spin-1
2
operator for the molecule ground state

doublet and ˆs⃗αβ ¼ 1
2

P
ss0 c

†
βs0 σ⃗s0scαs are conduction electron

spin operators. We refer to the Jαβ and Wαβ terms as

exchange and potential scattering, respectively. The form of
Eq. (2) is guaranteed by SUð2Þ spin symmetry if only the
most RG relevant terms are considered [21]. Since Jsd ¼
Jds andWsd ¼ Wds by hermiticity, the low-energy behavior
of such molecular junctions is controlled by just six
effective parameters.
The 2CK critical point arises for equal antiferromagnetic

Kondo interactions Jss ¼ Jdd > 0, but when the source-
drain mixing terms vanish, Jsd ¼ Wsd ¼ 0 [58,75]. In
molecular junctions or coupled QD devices, the 2CK effect
should be realizable when the molecule or QD has a net
spin-1

2
ground state and when the effective model param-

eters satisfy these conditions. Wss and Wdd are RG
irrelevant and play no role in the following.
Quantum interference (QI) and conductance nodes—

Single-molecule junctions often exhibit QI phenomena,
with the most dramatic effect being electrical conductance
nodes due to the destructive interference of competing
transport pathways through the molecule [17–20].
However, such a description of the QI and transport is
typically on the single-particle level encoded by the real-
space hopping matrix tnm [76], and is inapplicable for
interacting systems displaying Coulomb blockade or
Kondo effects. Although sequential single-particle tunnel-
ing processes may be afflicted by decoherence at weak
coupling [8], coherent many-body processes are more
robust at low temperatures in interacting systems [77].
Many-body QI [21,78] is naturally richer than its single-
particle counterpart, being defined in a high-dimensional
Fock space, and provides new channels for QI (e.g.
between particles and holes). Many-body QI can cause
any of the parameters Jαβ andWαβ to vanish in the effective
2CK model Eq. (2). Jsd ¼ Wsd ¼ 0 must produce a
conductance node because then the charge in the leads
is separately conserved. The 2CK critical point therefore
arises at a conductance node, which can be driven by many-
body QI. We dub this the QI-2CK effect.
Perturbative solution—We consider first the perturbative

derivation of the effective 2CK parameters from those of the
bare model by means of a generalized Schrieffer-Wolff
transformation (SWT) [55]. This is done by projecting the
full model for the junction onto the spin-doublet molecule
ground states by eliminating virtual excitations to second
order in Ĥhyb. In the Supplemental Material [59] we
formulate this problem in an efficient way that does not
require full diagonalization of Ĥmol, but only uses informa-
tion on the ground state energy and wavefunction of the
isolated molecule. Comparatively large systems can then be
treated by using methods that target ground state properties
[79–81].
Eq. (2) is obtained by SWT with effective parameters

Jαβ ≡ VαVβjαβ and Wαβ ≡ VαVβwαβ that can be calculated
from many-body scattering amplitudes Aσαβ ¼ pσαβ − hσαβ

which involve the tunnelingof both particles (p) andholes (h)
with spin-σ through the molecule from lead α to lead β. We

FIG. 1. The simplest molecular moiety to exhibit the 2CK effect
with 5 interacting active orbitals. The effective molecule-lead
Kondo interactions jss and jdd are equal and antiferromagnetic
(blue line), while source-drain mixing terms vanish due to many-
body QI. Potential scattering wsd (red) vanishes at gate voltage
Vg ¼ 0 by particle-hole symmetry, whereas exchange cotunneling
jsd (black) vanishes on tuning the couplings t0=t. Obtained here
via SWT and plotted for U=t ¼ 1.

PHYSICAL REVIEW LETTERS 133, 076501 (2024)

076501-2



may write jαβ¼2ðA↑αβ−A↓αβÞ and wαβ¼1
2
ðA↑αβþA↓αβÞ,

with the p and h amplitudes obtainable in closed form as
detailed in the Supplemental Material [59].
Many body QI can appear here in different ways:

through the vanishing of individual p or h processes due
to interference of competing Fock space propagators, by a
cancellation of terms with different spin, or by a cancella-
tion of p and h amplitudes for a given process.
In fact, particle-hole (ph) symmetry guarantees the latter,

since then pσαβ ¼ h−σαβ and henceWss ¼ Wdd ¼ Wsd ¼ 0
in Eq. (2). A system isph-symmetricwhen itsHamiltonian is
invariant to theph transformations dnσ → eiϕnσd†nσ for all nσ
(with suitable phases ϕnσ). The celebrated Coulson-
Rushbrooke pairing theorem [82] is a statement about ph
symmetry, withp and h excitations appearing symmetrically
around the ground state for molecules satisfying the ‘starring
rule’ [78,83]. A system may exhibit ph symmetry if the
molecular structure encoded by the single-particle adjacency
matrix tmn can be accommodated on a bipartite graph.
Therefore ph-symmetric systems must not have odd loops.
Satisfying the 2CK condition—Since ph symmetry

implies Wsd ¼ 0, we search for ph-symmetric systems
in which Jsd ¼ 0 can also be achieved. In addition we want
Jss ¼ Jdd for the 2CK effect so we consider only sd-
symmetric molecular moieties. As a simple starting point
we study M-site Hubbard chains with constant nearest
neighbour hopping t, local Coulomb repulsion U, and local
potential ϵ ¼ −U=2. Leads s and d are connected to
molecule sites 1 and M. For odd M the ground state
around Vg ¼ 0 is a unique spin-doublet and we numerically
perform the SWT as shown in the Supplemental Material
[59]. The system is ph-symmetric at Vg ¼ 0 such that
Wαβ ¼ 0. We also find Jss ¼ Jdd > 0. Although Jsd is
always finite, we find that its sign alternates for
M ¼ 1; 3; 5; 7;…. In particular, Jsd < 0 for M ¼ 3 but
Jsd > 0 for M ¼ 5. One might anticipate that interpolating
between M ¼ 3 and M ¼ 5 might yield a sweet spot
solution where Jsd ¼ 0. Avoiding odd loops and preserving
sd symmetry, this can be achieved by connecting sites 1 to
4 and 2 to 5, viz:

Hmol ¼
U
2

X5
m¼1

ðn̂m − 1Þ2 þ t
X
σ

X4
m¼1

�
d†mσdmþ1σ þ H:c:

�

þ t0
X
σ

�
d†1σd4σ þ d†2σd5σ þ H:c:

�
: ð3Þ

For small t0=t we expect small perturbations to the M ¼ 5
chain solution, whereas for large t0=t the next-next-nearest-
neighbour tunneling provides a shortcut through the chain
so that only 3 sites are needed to connect s and d leads.
Numerical results of the SWT are presented in Fig. 1,
together with a schematic illustration of the junction. At ph
symmetry Vg ¼ 0, the effective model parameters are
plotted as a function of t0=t in the right panel. We indeed

confirm that jsd ¼ 0 at a special value t0 ¼ t0c (black line).
In the left panel we show the gate evolution of the same
parameters at t0 ¼ t0c, with the 2CK conditions being
satisfied here at Vg ¼ 0.
Non-perturbative solution: NRG—To confirm the exist-

ence of a 2CK critical point in this simple 5-site molecular
cluster, we turn to the non-perturbative solution of the full
molecular junction involving Eq. (3) using NRG [84],
where we set t ¼ 1

2
and the conduction electron bandwidth

D ¼ 1 from now on. Numerical results are presented in
Fig. 2. In panel (a) we compare SWT predictions for the
critical t0c with those obtained by NRG for different
interaction strengths U, showing excellent agreement. In
particular, we note that the 2CK critical point can be
realized for any finite U. Interestingly, we find that t0c → t
as U → 0. The U ¼ 0 limit of Eq. (3) is studied in the
Supplemental Material [59]: we find t0 ¼ t is a singular
point of the non-interacting model with strictly decoupled
molecular degrees of freedom that give a finite T ¼ 0
entropy and a QI-driven conductance node. With inter-
actions switched on, the critical t0c is no longer at t but we
still find a residual T ¼ 0 entropy and a conductance
node—now characterizing the 2CK critical fixed point.
Panel (c) shows the molecular contribution to the entropy
Smol as a function of T at the critical point for different V.
The critical point can be realized for any combination of V
and U (in panel (c) we take fixed U), and in all cases we
find Smol ¼ 1

2
lnð2Þ for T ≪ TK, with TK the critical Kondo

(a) (b)

(c)

FIG. 2. 2CK critical point driven by QI. (a) Critical coupling t0c
as a function of U=t, with NRG results (points) validating SWT
predictions (line). (b) 2CK Kondo temperature TK vs 8V2=U ≡
JK for different U=t obtained by NRG. Dashed line is TK=U ∼
exp½−4=JK � valid for JK < 1 whereas the dotted lines show
TK=U ∼ exp½−aJK � with a≡ aðUÞ ∼Oð1Þ for JK > 1. (c) En-
tropy Smol vs T=U for different V=U at the 2CK critical point for
U=t ¼ 10, showing a residual 1

2
lnð2Þ.
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temperature. This unusual value for the entropy is a
hallmark of the free Majorana fermion localized on the
molecule at low temperatures at the 2CK critical point
[45,58]. For small molecule-lead coupling, TK is small and
we have an extended intermediate ln(2) plateau correspond-
ing to the local moment regime of Eq. (2). Remarkably
however, at larger V the Kondo temperature can be boosted
to large (non-universal) values and local moment physics is
entirely eliminated. This scenario lies outside of the regime
described by Eq. (2), suggesting that the interference giving
rise to criticality is a topological feature of the geometry in
Eq. (3). In Fig. 2(b) we plot the evolution of the Kondo
temperature with 8V2=U ≡ JK (where JK is the SWT
Kondo coupling for a single Anderson impurity [54]),
showing that a maximum value TK ∼ 10−2U can be
realized for all values of U considered when JK ∼ 1. A
weak-strong coupling duality [85] is found on further
increasing JK—see dashed and dotted lines in Fig. 2(b).
Note that the critical point is a non-Fermi liquid and as such
is not perturbatively connected to the U ¼ 0 limit: even
though the critical point can be realized at small U, we find
that TK → 0 as U → 0.
Gate control and entropy measurement—With t0 tuned

to the 2CK critical point at t0c, we can vary the gate voltage
Vg in the vicinity of Vg ¼ 0. This perturbation drives the
system away from the 2CK fixed point and towards a
standard Kondo strong-coupling Fermi liquid (FL) state on
the scale of T�. From NRG we find [59],

T� ∼ V4
g when T� ≪ TK; ð4Þ

which holds in the universal critical regime. Along this FL
crossover, physical properties are universal scaling func-
tions of T�=T and hence Vg=T1=4. For the pure 2CK model
in this regime, bosonization methods give an exact result
for the entropy change from the critical point [45],

ΔS
�
T�

T

�
¼ T�

T

�
ψ

�
1

2
þ T�

T

�
− 1

�
− ln

�
1ffiffiffi
π

p Γ
�
1

2
þ T�

T

��

ð5Þ
with Γ (ψ) the gamma (digamma) function. The form of this
crossover is entirely characteristic of the 2CK critical point
[75]. Using Eq. (4), this crossover can be achieved by fixing
T (≪ TK) and detuning Vg (which controls T�). This is
shown in the top panel of Fig. 3, which compares NRG
results for the junction (line) to Eq. (5) (points).
Recent progress has been made in observing entropic

signatures in nanoelectronics experiments, by exploiting
local Maxwell relations which connect the entropy change
for a process to measureable changes in the charge [86–88].
Since the gate voltageVg couples to the total molecule charge
N̂ ¼ P

m n̂m, the change in entropy induced by scanning Vg
as in Fig. 3(a) follows as ΔS ¼ −

R
dVgdN=dT. The

quantity dN=dT is shown in Fig. 3(b). Application of the
Maxwell relation yields the blue-dashed line in Fig. 3(a),
which agrees perfectly with the direct entropy calculation.
We argue that the molecular system is well suited to this
because TK can be boosted to large values, meaning that
the universal critical regime should be experimentally
accessible.
Transport—At the 2CK critical point, the series con-

ductance through the molecular junction vanishes due to
the many-body QI node. However, a nontrivial transport
signature is picked up along the FL crossover by detuning
the gate voltage. NRG results for the junction conductance
GcðTÞ as a function of T at fixed detuning Vg are shown in
Fig. 4(a). The maximum conductance of 2e2=h for a single
electron transistor is recovered at low temperatures T ≪ T�
in all cases. Figure 4(b) shows the gate evolution of the

(a)

(b)

FIG. 3. (a) Entropy change ΔS as the molecular junction is
driven away from the critical point by increasing gate voltage Vg.
NRG results (line) compared with analytic result Eq. (5) (points).
(b) dN=dT from NRG (line), compared with prediction via
conductance from Eq. (7) (dotted line). Dashed line in the top
panel obtained by integrating dN=dT over Vg. Plotted for
U=t ¼ 10, V=U ¼ 0.15, t0 ¼ t0c, T ¼ 10−6 ≪ TK.

(a) (b)

FIG. 4. Series conductance along the FL crossover (a) as a
function of temperature for different gate voltages; and (b) as a
function of gate voltage at fixed T ¼ 10−6 ≪ TK; compared with
Eq. (6). Shown for U=t ¼ 10, V=U ¼ 0.15, t0 ¼ t0c.
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conductance GcðVgÞ at fixed T (≪ TK), and is the
analogous plot to Fig. 3(a).
The exact solution of the pure 2CK model along the FL

crossover [45] yields a prediction for conductance [89],

Gc

�
T�

T

�
¼ 2e2

h
×

�
T�

T

�
ψ 0
�
1

2
þ T�

T

�
; ð6Þ

where T� depends on Vg via Eq. (4) and ψ 0 is the trigamma
function. This expression matches essentially perfectly
with NRG data for the full molecular junction in Fig. 4.
Finally, from the Maxwell relation dN=dT ¼ −dS=dVg

we can use Eqs. (4)–(6) to prove the exact conductance-
charge relation [87] in the universal FL crossover regime,

dN
dT

∼
V3
g

T

�
1 −

GcðVg; TÞ
2e2=h

�
; ð7Þ

meaning that experimental conductance data can be trans-
lated into dN=dT [see Fig. 3(b), dotted line] and then
integrated to extract the entropy.
Inverse design—The above results establish the existence

of theQI-2CKeffect in a simplemolecularmoietywith exact
ph and sd symmetry. In a more general setting, however, we
can use inverse design to search for candidate systems that
satisfy the 2CK conditions. This can be done by setting up a
loss function, for example L ¼ j2sd þ w2

sd þ ðjss − jddÞ2,
which is minimumwhen the 2CK conditions on the effective
model parameters are met. We then minimize this function
with respect to the baremodel parameters bygradient descent
(GD). In practice this involves finding the derivatives of jαβ
and wαβ with respect to tmn andUmn, which can be achieved
using differentiable programming techniques [90]. In the
Supplemental Material [59] we show that this can be
implemented very efficiently within our improved SWT
scheme. Using this methodology, we could find a family of
low-symmetry molecular junctions involving just 4

interacting sites [59], a representative example of which is
shown in Fig. 5. By fine-tuning the gate voltage Vg in this
structurewe predict 2CK criticality.We did not find any 2CK
critical systems involving 1, 2, or 3 sites.
A nonperturbative extension utilizing ‘differentiable

NRG’ [91] to optimize bare model parameters directly
via GD could be used to bypass the SWT approximation.
Conclusion—The 2CK critical point can be realized by

exploiting many-body QI effects in simple molecular
junctions or coupled quantum dot devices, featuring a
few tunnel-coupled, interacting orbitals. QI effects can be
manipulated by tuning gate voltages to switch between a
perfect node and perfect Kondo resonant transmission.
Inverse design can be used to search automatically for

systems displaying desired functionality. The molecular
moieties we identified are not intended to be atomistic
models of any real molecule. However, the inverse design
approach could be integrated with chemical databases to
search for realistic candidate molecular junctions [92]. In
the Supplemental Material [59] we explore three such
candidate molecules based on the simple design principles
uncovered from our toy model studies [59]. Full ab initio
studies are left for future work. On the other hand, for
artificial molecular junctions formed in semiconductor
quantum dot devices, the simplest 4 or 5 site structures
discussed here might be directly implementable.
Our results open the door to designer devices utilizing

many-body QI effects. For example, simple structures
exhibiting three-channel Kondo [59,93] or two-impurity
Kondo [94–96] effects, or lattice extensions describing
non-Fermi liquid materials [97]. Inverse design could be
used to optimize performance of nanoscale transistors,
rectifiers, spintronics devices, and other quantum devices.
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S-I. MICROSCOPIC MODELS OF
MOLECULAR JUNCTIONS

We describe molecular junctions (and coupled quan-
tum dot devices constituting artificial molecular junc-
tions) in terms of generalized quantum impurity models
of the type,

Ĥ = Ĥmol + Ĥleads + Ĥhyb + Ĥgate (S-1)

where the part of the Hamiltonian Ĥmol describing the
isolated molecule is given by an extended Hubbard
model,

Ĥmol =
∑
σ=↑,↓

∑
m,n

tmnd
†
mσdnσ + 1

2

∑
m,n

Umnn̂mn̂n (S-2)

as given in Eq. 1 of the main text. Here d
(†)
mσ annihilates

(creates) an electron on molecule orbital m with spin
σ and n̂m =

∑
σ n̂mσ is the total number operator for

orbital m, where n̂mσ = d†mσdmσ. The single-particle
tunneling matrix elements between orbitals m ̸= n are
given by tmn (= t∗nm) whereas the onsite potentials are
ϵm = tmm + 1

2Umm. The term Umn (= Unm) embodies
electronic interactions on the molecule. The standard
local Hubbard interaction term Umn̂m↑n̂m↓ between up
and down spin electrons on a given site m is already
included in the diagonal part of the second term of Eq. S-
2, with Um ≡ Umm. The off-diagonal parts Umn for m ̸=
n correspond to capacitive (Coulomb) repulsion between
different sites. In principle one can also add spin-orbit
coupling terms, anisotropies, and exchange interactions.
The formalism presented below can be straightforwardly
adapted to treat any Ĥmol.

The source (α = s) and drain (α = d) leads are taken
to be thermal reservoirs of non-interacting conduction
electrons, Ĥleads =

∑
α Ĥ

α
leads with

Ĥα
leads =

∑
k,σ

ϵkc
†
αkσcαkσ (S-3)

where for simplicity we take the dispersion ϵk to be in-
dependent of spin σ and equivalent for both leads α (al-
though again this can be straightforwardly generalized
without affecting the following).

The molecule frontier orbital drασ couples to the con-
duction electrons of lead α according to the hybridization

term

Ĥhyb =
∑
α,k,σ

Vαk(d
†
rασcαkσ +H.c.) . (S-4)

We now define the local lead orbitals at the molecule
position as cασ = 1

Vα

∑
k Vαkcασk with V 2

α =
∑
k V

2
αk

such that Ĥhyb =
∑
α,σ Vα(d

†
rασcασ +H.c.).

The free lead density of states at the junction posi-
tion (taken to the same for both leads and independent
of spin) is ρ(ω) = − 1

π Im G0
lead(ω) where G0

lead(ω) =

⟨⟨cασ; c†ασ⟩⟩ is the free Green’s function for the local lead
orbital cασ to which the molecule couples. For simplicity
we use ρ(ω) = ρ0θ(D− |ω|) such that the lead density of
states is constant ρ0 = 1/2D in a band of half-width D.
Throughout this work we set D = 1.
The gate voltage Vg allows to tune the number of elec-

trons on the molecule via Ĥgate = Vg
∑
m n̂m.

A. Interacting nanowire (Hubbard chains)

In the main text we discuss a particular limiting case
of Eq. S-2 corresponding to anM -site 1d Hubbard chain,

Ĥmol = t

M−1∑
m=1

∑
σ

(
d†mσdm+1σ +H.c.

)
+

M∑
m=1

(ϵn̂m + Un̂m↑n̂m↓)

(S-5)
which describes an interacting nanowire (for example the
π-system of a conjugated hydrocarbon polymer [1]). We
take constant nearest-neighbour tunneling t, constant on-
site potentials ϵ and constant local Hubbard repulsion U .
The source and drain leads are connected to the ends of
the nanowire at sites rs = 1 and rd =M , such that

Hhyb =
∑
σ

(
Vs c

†
sσd1σ + Vd c

†
dσdMσ +H.c.

)
. (S-6)

The low-energy effective model for this system with odd
chain length M is discussed below in Sec. S-II B.

B. Symmetric 5-site cluster

Introducing additional tunnel-couplings between dif-
ferent sites of the above 1d Hubbard chain clearly pro-
duces greater complexity and, in particular, more possi-
bilities for QI effects.
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However, if we want exact ph symmetry then the
molecule connectivity must be compatible with a bi-
partite graph – which in the present context simply
means that there should not be any odd-membered loops.
The simplest system with an odd total number of sites
with sd-symmetry to contain multiple paths through the
molecule, while also realizing exact particle hole symme-
try at Vg = 0, is theM = 5 chain with next-next-nearest-
neighbour tunneling connecting sites 1 ↔ 4 and 2 ↔ 5,

Hmol =

5∑
m=1

(
− 1

2Un̂m + Un̂m↑n̂m↓
)

+ t

4∑
m=1

∑
σ

(
d†mσdm+1σ +H.c.

)
+ t′

∑
σ

(
d†1σd4σ + d†2σd5σ +H.c.

)
(S-7)

which is equivalent to Eq. 3 of the main text. We attach
leads to sites 1 and 5 via Eq. S-6. We discuss the low-
energy effective model for this system below in Sec. S-II C

C. Low-symmetry 4-site cluster

Finally we consider a general low-symmetry structure
with just M = 4 interacting sites. We simplify to local
Hubbard interactions:

Ĥmol =
∑
m,n

∑
σ

tmnd
†
mσdnσ +

∑
m

Umn̂m↑n̂m↓ (S-8)

Leads are attached to sites 1 and 4 via Eq. S-6. We
discuss gradient descent optimization of this system to
satisfy the QI-2CK conditions in Sec. S-VIIIA.

The parameters used in Fig. 5 of the main text are
t11 ≃ 0.697, t22 ≃ 0.642, t33 ≃ 0.480, t44 ≃ 0.253, Vg =
0.42, t12 ≃ 0.102, t13 ≃ 0.053, t14 ≃ 0.1, t23 ≃
0.109, t24 ≃ 0.046, t34 ≃ 0.169.

S-II. GENERALIZED NUMERICAL
SCHRIEFFER-WOLFF TRANSFORMATION

The Schrieffer-Wolff transformation (SWT) was first
applied to the mapping between the Anderson impurity
model (AIM) and the Kondo model [2]. For the AIM
it involves projecting onto the impurity spin states by
eliminating virtual excitations and folding in their con-
tribution to effective model parameters. The SWT is in
essence a single-step renormalisation group (RG) proce-
dure. Typically the mapping is done perturbatively to
second order in the impurity-bath hybridization, which
is then equivalent to performing second-order Brillouin-
Wigner perturbation theory (BWPT) [3]. For the AIM-
to-Kondo mapping this can be done straightforwardly
and analytic expressions for the Kondo model parame-
ters are easily obtained.

However, in the present context of complex molecular
junctions, an exact analytic treatment of the SWT is in
general not possible, and we must resort to a numerical
evaluation of the effective model parameters [4, 5]. Such a
generalized numerical SWT is an ideal tool for efficiently
describing many-body quantum interference (QI) effects.
It can also be integrated with machine learning (ML)
algorithms for inverse design, by identifying candidate
molecular junctions that have specific desired effective
model properties, as shown below.

Before proceeding we make a comment on the valid-
ity of the SWT. The RG character of quantum impu-
rity systems means that a second-order SWT typically
yields the correct operator structure of the low-energy
effective model, even if the precise value of the derived
parameters is not exact [6]. However, even infinite-order
SWT [7] neglects retardation effects from the conduction
electrons resulting in bandwidth renormalization [8], and
more sophisticated non-perturbative techniques such as
the numerical renormalization group [9] (NRG) are ul-
timately required. On the other hand, in this work we
demonstrate that QI effects are very well captured by
SWT (even quantitatively) when compared with NRG.

A. Formalism

In this work we are interested in deriving generalized
two-channel Kondo (2CK) models of the type Eq. 2 from
the main paper. Such a description arises in two-lead
molecular junctions as the low-energy effective model
when the isolated molecule ground state manifold com-
prises a unique spin-doublet [4, 5]. The structure of the
effective model is constrained by U(1) charge conserva-
tion and SU(2) spin symmetry. The spin-doublet ground
state of the molecule implies that the ground state hosts
an odd number N of electrons, and that tunneling to and
from the leads involves N ± 1 even-electron sectors with
integer spin.

With Ĥ ′
mol = Ĥmol + Ĥgate taken to include gate volt-

age effects on the isolated molecule, we define a set of ex-

act eigenstates {|ψn;S
z

j ⟩} satisfying the Schrödinger equa-
tion Ĥ ′

mol|ψ
n;Sz

j ⟩ = En;S
z

j |ψn;S
z

j ⟩, where n is the num-
ber of electrons on the isolated molecule, Sz is the to-
tal molecule spin projection, and j is an index distin-
guishing molecule states with the same n and Sz. The

ground spin doublet states are specified by |ψN ;σ
0 ⟩ with

σ =↑, ↓, and the corresponding ground state energy is

Egs ≡ EN ;↑
0 = EN ;↓

0 .

Eigenstates of Ĥ ′
mol can be expressed in the (computa-

tional) many-body product-state basis {|ϕn;S
z

k ⟩}, which
are labelled by the same quantum numbers, viz:

|ψn;S
z

j ⟩ =
∑
k

Un;S
z

k,j |ϕn;S
z

k ⟩ . (S-9)

For notational convenience we define product basis vec-

tors ϕ⃗n,S
z

=
(
|ϕn;S

z

0 ⟩, |ϕn;S
z

1 ⟩, |ϕn;S
z

2 ⟩, ...
)

and eigen-
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basis vectors ψ⃗n,S
z

=
(
|ψn;S

z

0 ⟩, |ψn;S
z

1 ⟩, |ψn;S
z

2 ⟩, ...
)
.

These are related by Eq. S-9 as ψ⃗n,S
z

= ϕ⃗n,S
z

Un;Sz

in terms of the transformation matrices Un;Sz

with el-
ements Un;S

z

k,j . The Hamiltonian matrix for the isolated
but interacting molecule in the computational product
basis of a given quantum number subspace can then be

written as Hn;Sz

ϕ =
(
ϕ⃗n,S

z
)†
Ĥ ′

mol ϕ⃗
n,Sz

, whereas in

the eigenbasis we have Hn;Sz

ψ =
(
ψ⃗n,S

z
)†
Ĥ ′

mol ψ⃗
n,Sz

=(
Un;Sz)†

Hn;Sz

ϕ Un;Sz ≡ diag
(
En,S

z

0 , En,S
z

1 , En,S
z

2 , ...
)
.

These expressions hold separately in each subspace.
Finally, we will find it useful to define the vector of

expansion coefficients for the N -electron ground state

with spin σ as U⃗N ;σ
gs =

(
UN ;σ
0,0 , UN ;σ

1,0 , UN ;σ
2,0 , ...

)T
such that |ψN ;σ

0 ⟩ = ϕ⃗N ;σ · U⃗N ;σ
gs . We may also denote

ϕ⃗gs ≡ ϕ⃗N ;↑ and |ψgs⟩ ≡ |ψN ;↑
0 ⟩ and U⃗gs ≡ U⃗N ;↑

gs for
notational compactness where applicable.

With the above preliminaries established, we now use
BWPT to project the full Hamiltonian Ĥ = Ĥleads +
Ĥ ′

mol+Ĥhyb onto the low-energy manifold containing the
spin-doublet molecule ground states, by perturbatively
eliminating excitations to higher-lying molecule states.

We define the projector P̂ =
∑
σ=↑,↓ |ψ

N,σ
0 ⟩⟨ψN,σ0 | for the

ground states to be kept and Q̂ = 1̂ − P̂ for the excited
states to be discarded in our effective model. To second
order in Ĥhyb we obtain an effective Hamiltonian,

Ĥeff = P̂ ĤP̂+P̂ ĤhybQ̂(Egs−Ĥ ′
mol)

−1Q̂ĤhybP̂ . (S-10)

With the specific form of the hybridization Hamiltonian,

Ĥhyb =
∑
s=↑,↓
α=s,d

Vα
(
c†αsdrαs + d†rαscαs

)
, (S-11)

the effective model takes the form,

Ĥeff = Ĥleads +
∑(

VαVβ A
σσ′

s,s′

α,β

)
c†βs′cαs|ψ

N ;σ′

0 ⟩⟨ψN ;σ
0 | ,

(S-12)
where a sum over all indices of the tensor A is implied.
Charge conservation, SU(2) spin symmetry and Her-
miticity impose constraints on the the tensor A. Together
with the definitions,

Ŝ+ = |ψN ;↑
0 ⟩⟨ψN ;↓

0 | (S-13)

Ŝ− = |ψN ;↓
0 ⟩⟨ψN ;↑

0 | (S-14)

Ŝz = 1
2

[
|ψN ;↑

0 ⟩⟨ψN ;↑
0 | − |ψN ;↓

0 ⟩⟨ψN ;↓
0 |

]
(S-15)

for the retained molecule states and

ˆ⃗sαβ = 1
2

∑
ss′

c†βs′σ⃗s′s cαs , (S-16)

for the conduction electrons, we obtain the effective gen-
eralized 2CK model [4, 5], Eq. 2 of the main paper:

Ĥeff = Ĥleads +
∑
αβ

[
Jαβ

ˆ⃗S · ˆ⃗sαβ +Wαβ

∑
σ

c†βσcασ

]
.

(S-17)
In the following we consider the rescaled couplings jαβ
and wαβ defined by Jαβ = VαVβjαβ and Wαβ =
VαVβwαβ , which follow from the factorized form of the
couplings up to second order in Eq. S-12. It immediately
follows that:

jαβ = 2

(
A

↑↑
↑↑
α,β

−A
↑↑
↓↓
α,β

)
(S-18)

wαβ = 1
2

(
A

↑↑
↑↑
α,β

+A
↑↑
↓↓
α,β

)
(S-19)

in terms of the amplitudes appearing in Eq. S-12.
There are other equivalent forms which follow from the
symmetry transformations but we shall use these ones.

The final step is of course to calculate the amplitudes
A. This is done by inserting Eq. S-11 into Eq. S-10 and
comparing with Eq. S-12. The amplitudes decompose
into particle and hole tunneling processes

A
σσ′

s,s′

α,β
= p

σσ′

s,s′

α,β
− h

σσ′

s,s′

α,β
(S-20)

where

p
σσ′

s,s′

α,β
=

∑
j

⟨ψN ;σ′

0 |drβs′ |ψ
N+1;σ+s
j ⟩⟨ψN+1;σ+s

j |d†rαs|ψ
N ;σ
0 ⟩

Egs − EN+1;σ+s
j

(S-21)
for the particle process and

h
σσ′

s,s′

α,β
=

∑
j

⟨ψN ;σ′

0 |d†rβs′ |ψ
N−1;σ−s
j ⟩⟨ψN−1;σ−s

j |drαs|ψ
N ;σ
0 ⟩

Egs − EN−1;σ−s
j

(S-22)
for the hole process. Note that spin conservation requires
σ + s = σ′ + s′ for particle tunneling and σ − s = σ′ − s′

for hole tunneling.

Numerical calculations can be made dramatically more
efficient by exploiting the following observation: we may
express particle and hole amplitudes in matrix form, viz:

p
σσ′

s,s′

α,β
=

[(
XN ;σ′

βs′+

)† [
EgsI −HN+1;σ+s

ψ

]−1 (
XN ;σ
αs+

)]
00

(S-23)

h
σσ′

s,s′

α,β
=

[(
XN ;σ′

βs′−

)† [
EgsI −HN−1;σ−s

ψ

]−1 (
XN ;σ
αs−

)]
00

(S-24)

where XN ;σ
αs± =

(
ψ⃗N±1,σ±s

)†
d
(†)
rαs ψ⃗

N ;σ is evaluated in

the eigenbasis. Switching now to the product basis, we
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write XN ;σ
αs± =

(
UN±1;σ±s)† XN ;σ

αs± UN ;σ, where XN ;σ
αs± =(

ϕ⃗N±1,σ±s
)†
d
(†)
rαs ϕ⃗

N ;σ.

Inserting into Eqs. S-23 and S-24 we finally obtain,

p
σσ′

s,s′

α,β
=

(
U⃗N ;σ′

gs

)†
M
σσ′

s,s′

α,β
(+) U⃗N ;σ

gs (S-25)

h
σσ′

s,s′

α,β
=

(
U⃗N ;σ′

gs

)†
M
σσ′

s,s′

α,β
(−) U⃗N ;σ

gs (S-26)

with

M
σσ′

s,s′

α,β
(±) =

(
XN ;σ′

βs′±

)† [
EgsI −HN±1;σ±s

ϕ

]−1 (
XN ;σ
αs±

)
(S-27)

and where U⃗N ;σ
gs is the vector of expansion coefficients

for the ground state wavefunction only, as above.

The beauty of Eqs. S-25, S-26, S-27 is that only the

ground eigenstate |ψN ;σ
0 ⟩ and the ground state energy

Egs of the isolated molecule are required: one does not
need to fully diagonalize the entire molecule. The matrix
M is simply evaluated in the original product basis. This
is highly efficient since one can use eigensolvers targeting
just the ground state for the calculation, meaning that
large systems can be dealt with cheaply. This in turn
permits high throughput calculations which can be
integrated within ML routines for inverse design.

Although the above formulation is entirely general, we
note from Eqs. S-18, S-19 that in the present context,
the 2CK mapping requires only a few elements of the
full tensor A. Specifically, we may set σ = σ′ =↑, which
we assume from now on. Furthermore, spin conservation
then implies that s = s′. Therefore we abbreviate our
full A, p and h tensors to,

A
↑↑
s,s
α,β

→ Asαβ = psαβ − hsαβ . (S-28)

Likewise we abbreviate,

M
σσ′

s,s′

α,β
(±) → Msαβ

± , (S-29)

as used in the main paper. Thus we may write,

psαβ =
(
U⃗N ;↑
gs

)†
Msαβ

+

(
U⃗N ;↑
gs

)
(S-30)

hsαβ =
(
U⃗N ;↑
gs

)†
Msαβ

−

(
U⃗N ;↑
gs

)
(S-31)

Msαβ
± =

(
XN ;↑
βs±

)†
[
EgsI −H

N±1;
1
2±s

ϕ

]−1 (
XN ;↑
αs±

)
(S-32)

XN ;↑
αs± =

(
ϕ⃗N±1,

1
2±s

)†

d(†)rαs

(
ϕ⃗N ;↑

)
(S-33)

FIG. S-1. Effective model parameters jαβ and wαβ as a func-
tion of gate voltage Vg from SWT calculations on chains
of length M = 1, 3, 5, 7 sites, with local interaction U and
nearest-neighbour hopping t. In this example we have taken
U/t = 1 and set t = 0.5. Source and drain leads are connected
to sites 1 and M . Kondo exchange interactions jss and jdd
(blue dashed lines) are equal and antiferromagnetic through-
out the entire gate voltage range shown where the many-body
molecule ground state is a spin-doublet. Potential scatterings
wss, wdd, and wsd vanish at the particle-hole symmetric point
Vg = 0 in all cases. The sign of jsd is seen to alternate, be-
ing antiferromagnetic for M = 4m+ 1 and ferromagnetic for
M = 4m+ 3.

B. SWT results for odd Hubbard chains

As a simple application, we consider the SWT and
resulting effective 2CK model parameters as a func-
tion of gate voltage Vg for chains of M interacting sites
with on-site Coulomb repulsion U , connected by nearest-
neighbour hoppings t. The Hamiltonian is given by Eq. S-
5, and we take ϵ = −U/2 here so that the system pos-
sesses exact particle-hole symmetry when Vg = 0. Leads
are connected to either end of the chain, Eq. S-6. For odd
M , the molecule supports a unique spin-doublet ground
state for gate voltages around Vg = 0 (the Coulomb
blockade transitions to M ± 1 electron states depend
on U , and t). When the molecule hosts a spin-doublet
ground state, the effective 2CK model, Eq. S-17, de-
scribes the low-energy behavior [10].
Fig. S-1 shows the effective 2CK model parameters

jαβ and wαβ as a function of gate voltage Vg for odd
M = 1, 3, 5, 7 as derived using the numerical SWT with
U/t = 1. We note that the prescription developed above
allows the calculations to be performed cheaply even for
the M = 7 chain using exact diagonalization, with the
entire gate-voltage sweep obtained in a few minutes on a
standard desktop computer.
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The M = 1 case is equivalent to a two-lead version
of the AIM, and is a special limit since both source and
drain lead couple to the same molecule orbital (rs = rd =
1). This is the only ‘molecule’ to satisfy ‘proportionate
coupling’, which allows us to reduce the system exactly
to a single-channel model. This is achieved by canonical
transformation of the lead operators from source-drain
basis to even-odd basis,

ceσ = 1
Ṽ
(Vscsσ + Vdcdσ) ,

coσ = 1
Ṽ
(Vdcsσ − Vscdσ) , (S-34)

where Ṽ 2 = V 2
s +V

2
d , such that the odd lead is decoupled.

This exact decoupling on the level of the bare Hamilto-
nian is not possible for M > 1. For M = 1 however, the
model reduces to the 1-channel AIM and the usual SWT
results then pertain on mapping to an effective 1-channel
Kondo (1CK) model involving only the even lead [3]:

Ĥ1CK = Ĥe
lead + Jee

ˆ⃗S · ˆ⃗see +Wee

∑
σ

c†eσceσ (S-35)

Jee = 2Ṽ 2

[
1

U + ϵ+ Vg
− 1

ϵ+ Vg

]
, (S-36)

Wee = −Ṽ 2

[
1

U + ϵ+ Vg
+

1

ϵ+ Vg

]
. (S-37)

On inverting the transformation Eq. S-34 and return-
ing to the physical source-drain lead basis, the effec-
tive 1-channel Kondo model Eq. S-35 becomes precisely
our original generalized 2CK model, Eq. S-17. However,
the underlying single-channel description for M = 1 im-
plies additional relations between the coupling param-
eters that are not present in general [5]. For M = 1
we have jss = jdd = jsd = jds and likewise wss =
wdd = wsd = wds (where, as before, we have divided
out the hybridization dependence Jαβ = VαVβjαβ and
Wαβ = VαVβwαβ). The important conclusion is that the
source-drain mixing terms jsd and wsd are equal to the
local terms when there is an underlying 1CK description.
Although the single-channel limit is certainly not generic
for multi-orbital nanostructures, jsd and wsd are typically
finite: these are the terms that mediate a source-drain
current through the molecular junction. By contrast, for
the 2CK critical point we require jsd = wsd = 0, which
corresponds to a conductance node.

Returning now to Fig. S-1, we see that for M = 1 the
1CK condition on the couplings is indeed satisfied. How-
ever, more interestingly, we find that jss = jdd = jsd =
jds and wss = wdd = wsd = wds very accurately holds
(although not exactly) for M = 5, suggesting that (per-
haps surprisingly) the odd lead combination is almost
decoupled in the M = 5 case at energies or tempera-
tures ≪ U where the SWT effective model is expected
to hold. This holds also for M = 9 (not shown) and we
conjecture is the case for all M = 4m+ 1 (note however
that the range of gate over which the doublet ground
state occurs narrows on increasing M). Furthermore, for

FIG. S-2. Effective model parameters jαβ and wαβ as a func-
tion of gate voltage Vg from SWT calculations for the M = 5
site molecular junction. We take local on-site interaction U
and nearest-neighbour hopping t, with U/t = 1 and t = 0.5 as
usual. Here, the next-next-nearest-neighbour hopping t′ (con-
necting sites 1 ↔ 4 and sites 2 ↔ 5 of the chain) is now also
included. The inclusion of t′ does not break exact particle-
hole symmetry at Vg = 0, but does continuously interpolate
between M = 3 and M = 5 limiting cases of the pure chains
shown in Fig. S-1 by providing a “shortcut” route through the
molecule. This implies the existence of a node in jsd at Vg = 0,
which we confirm at a critical value of t′ = t′c ≃ 0.4283, as
shown in the middle panel.

M = 3 and M = 7 (and again we suspect M = 4m + 3
in general), we have jss = jdd ≃ −jsd = −jds and
wss = wdd ≃ −wsd = −wds. This also implies an ef-
fective 1CK description at low energies or temperatures,
but this time involving the odd lead combination (and
with the even lead decoupling).
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C. SWT results for 5-site cluster

The effective 1CK behavior of the odd-length Hubbard
chains shown above is particular to the chain geometry
around half-filling. Introducing couplings between dif-
ferent sites clearly produces greater complexity on the
molecule. Here we consider the 5-site molecular cluster,
Eq. S-7, which has sd symmetry, and also an exact ph
symmetry at Vg = 0.

We expect interesting crossover behavior as a function
of the ratio t′/t. For small t′/t, the t′ connections are a
small perturbation and we expect physics similar to the
pure 5-site chain. On the other hand, for large t′/t, we
may regard t as the perturbation . Source and drain leads
then have a dominant connecting path that is of length 3;
the t′ bonds offer a kind of ‘shortcut’ through the M = 5
chain. Tuning t′/t therefore allows us to continuously
deform between the M = 5 and M = 3 limits. Since the
sign of jsd changes on going from M = 5 to M = 3 we
expect a critical value t′ = t′c where jsd = 0 just vanishes
at Vg = 0. As shown in Fig. S-2, this is precisely what
we find. Here we plot the SWT model parameters for the
model Eq. S-7, with source and drain leads connected to
sites 1 and 5, and for U/t = 1 and t = 0.5 as a function
of gate voltage Vg. The ratio t′/t is increased from top
to middle to bottom panels. In the top panel, we see
behavior similar to that of the pure M = 5 chain shown
in Fig. S-1, but with the effective single-channel condition
now violated (jss = jdd ̸= jsd and wss = wdd ̸= wsd). In
the bottom panel we see behavior instead more similar
to the pure M = 3 chain, with negative jsd. The middle
panel shows the ‘sweet spot’ condition where jsd precisely
vanishes at Vg = 0 due to many-body QI effects of the
competing pathways through the 5-site molecular moiety.

S-III. QI CLASSES

Ref. [4] made a detailed study of many-body QI effects
in molecular junctions, focusing on the transport prob-
lem within perturbation theory. Alternant hydrocarbon
molecules were studied, whose structures can be accom-
modated on a bipartite graph with no odd loops, and to
which the Coulson-Rushbrooke pairing theorem applies
[11, 12]. Exchange cotunneling and potential scattering
terms equivalent to our Jsd and Wsd were identified for
systems with a net spin-doublet ground state.

A key insight from Ref. [4] is that QI effects in such sys-
tems can be classified according to the number of nodes
found by varying the gate voltage all the way across
a given charge state. In our notation, for a particular
molecular junction they define,

QW =
⟨ψ

N ;
1
2

0 |d†rs↑|ψ
N−1;0
0 ⟩⟨ψN−1;0

0 |drd↑|ψ
N ;

1
2

0 ⟩

⟨ψ
N ;

1
2

0 |drd↑|ψ
N+1;1
0 ⟩⟨ψN+1;1

0 |d†rs↑|ψ
N ;

1
2

0 ⟩
, (S-38)

and

QJ =
⟨ψ

N ;− 1
2

0 |d†rs↓|ψ
N−1;0
0 ⟩⟨ψN−1;0

0 |drd↑|ψ
N ;

1
2

0 ⟩

⟨ψ
N ;− 1

2
0 |drd↑|ψ

N+1;0
0 ⟩⟨ψN+1;0

0 |d†rs↓|ψ
N ;

1
2

0 ⟩
,

(S-39)
where a sum over possible degeneracies of the N ± 1
ground states is implied.
Ref. [4] showed that for bipartite molecules Q > 0 de-

scribes the odd QI class with an odd number of QI nodes
found upon scanning Vg, whereas Q < 0 describes the
even QI class with an even number of QI nodes. Indeed,
QW > 0 if the source and drain leads connect to the same
sublattice, whereas QW < 0 if the source and drain leads
connect to different sublattices. Furthermore, bipartite
molecules with an odd number of sites (which therefore
have a spin-doublet ground state at their ph symmetric
point) satisfy the rule QW = −QJ , meaning that W and
J always necessarily belong to different QI classes. In a
given molecule charge sector, if W shows an odd number
of nodes on scanning Vg then J must show an even num-
ber. This is borne out by our SWT results in Fig. S-1,
where the odd Hubbard chains (which have leads coupled
to the same sublattice) have a single node in W but no
nodes in J . Ref. [4] concludes that a true conductance
node is therefore ‘generally not possible’ in such systems
since Jsd and Wsd do not generally have a node at the
same Vg.
However, it is also possible that two QI nodes in the

even QI class can occur at the same gate voltage (degen-
erate case). This is precisely what we see in Fig. S-2. W
is in the odd QI class with a node in Wsd at Vg = 0.
On the other hand J is in the even QI class and has no
nodes for t′ < t′c but two nodes for t′ > tc. The two nodes
coalesce and are exactly degenerate at Vg = 0 when pre-
cisely at t′ = t′c. This is our 2CK critical point. The QI
classification therefore provides a topological perspective
on the 2CK phase transition in terms of coalescing and
annihilating QI nodes in the 2CK model parameters.
Finally, we note that this analysis holds only for bipar-

tite molecules. Therefore more general structures with
odd loops (such as the one considered in Fig. 5 of the
main text) need not be so constrained.

S-IV. NUMERICAL RENORMALIZATION
GROUP

As noted above, the SWT is a perturbative technique
and more sophisticated methods are required to perform
the exact mapping [6]. In particular, the SWT does not
take into account renormalization effects from the con-
duction electrons in the leads [8]. It is also confined to
the perturbative regime of large U/V . And of course, the
solution of the effective model is still required to under-
stand the low-energy physics of the system and compute
physical observables of interest relevant to experiments,
such as the series conductance.
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The numerical renormalization group [9] (NRG)
is considered the gold-standard method of choice for
solving generalized quantum impurity problems, such
as those describing the low-energy physics of molecular
junctions [5]. Furthermore, experimentally-relevant
transport signatures can be accurately calculated us-
ing NRG down to low temperatures [13], including
renormalization effects from strong electron correla-
tions, such as Coulomb blockade, Kondo effect, and
many-body quantum interference phenomena. NRG
is a numerically-exact, non-perturbative technique for
solving quantum impurity type problems. The NRG
method involves the following steps [9].

(i) The source and drain lead density of states ρ(ω) is
divided up into intervals on a logarithmic grid accord-
ing to the discretization points ±DΛ−n, where D is the
bare conduction electron bandwidth, Λ > 1 is the NRG
discretization parameter, and n = 0, 1, 2, 3, .... The con-
tinuous electronic density in each interval is replaced by
a single pole at the average position with the same total
weight, yielding ρdisc(ω). In this work, as is conventional,
we assume metallic leads with a constant density of states
ρ0 = 1/2D within a flat band of half-width D.
(ii) The conduction electron part of the Hamiltonian
Hleads is then mapped onto semi-infinite tight-binding
chains for each lead α = s, d:

Hleads → Hdisc
leads =

∑
α,σ

∞∑
n=0

tn

(
f†αn,σfαn+1,σ +H.c.

)
,

where the Wilson chain coefficients {tn} are determined
such that the density of states at the end of each chain
reproduces exactly the discretized lead density of states,

that is − 1
π Im ⟨⟨fα0,σ; f

†
α0,σ⟩⟩ = ρdisc(ω). Due to the log-

arithmic discretization, the Wilson chain parameters de-
cay roughly exponentially down the chain, tn ∼ Λ−n/2.
However the detailed form of the tn encode the specific
lead density of states [9].
(iii) The hybridizing molecule orbitals are coupled to site
n = 0 of the two Wilson chains. We define a sequence of
Hamiltonians HN comprising the molecule and the first
N + 1 Wilson chain sites,

HN =Hmol +Hhyb +
∑
α,σ

N−1∑
n=0

tn

(
f†αn,σfαn+1,σ +H.c.

)
,

We now define the recursion relation,

HN+1 = HN +
∑
α,σ

tN

(
f†αN,σfαN+1,σ +H.c.

)
,

such that the full (discretized) model is obtained as
Hdisc = limN→∞HN .
(iv) Starting from the molecule, the chain is built up
successively by adding Wilson chain sites using the recur-
sion, Eq. S-40. At each step N , the intermediate Hamil-
tonian HN is diagonalized, and only the lowest Ns states

are retained to construct the Hamiltonian HN+1 at the
next step, with the higher energy states being discarded.
With each iteration we therefore focus on progressively
lower energy scales. Furthermore, the iterative diagonal-
ization and truncation procedure can be viewed as an RG
transformation [9], HN+1 = R[HN ].
(v) The sequence of HN can be viewed as coarse-grained
versions of the full model, which faithfully capture the
physics at progressively lower and lower temperatures.
Useful information is therefore extracted from each step,
and physical observables can be obtained at essentially
any temperature or energy scale [9].

In this work we use a discretization parameter Λ = 3
and retain Ns = 5000 states at each NRG step. Total
charge and spin projection abelian quantum numbers are
exploited in the block diagonalization procedure.

In the main text we present results for the linear re-
sponse series differential conductance Gc = dIsd/dVb
through the molecular junction due to a small source-
drain bias voltage Vb. Since anything more complex
than the M = 1 single-impurity limit does not satisfy
the proportionate coupling condition, transport coeffi-
cients cannot be simply related to molecule Green’s func-
tions. However, the Kubo formula can still be used [14].
Here we use the ‘improved Kubo’ formulation given in
Ref. [13], which produces much more accurate results in
the context of NRG calculations for the linear response
electrical conductance.

S-V. 2CK CRITICAL POINT

By tuning the ratio t′/t in our 5-site molecular moiety
Eq. S-7, the SWT results indicate that we can simulta-
neously eliminate both jsd and wsd terms of the effective
2CK model. The sd symmetry of the model means that
the local Kondo couplings jss = jdd are equal. Since they
are also antiferromagnetic, we expect to be able to realize
the QI-2CK effect in this prototype molecular junction.
In Fig. S-3 we demonstrate that this is indeed the case,
using full NRG results. Furthermore, the QI-2CK effect
is found to be remarkably robust, holding beyond the
perturbative regime of applicability of the SWT.

In Fig. S-3 we plot the molecule contribution to the
total entropy Smol(T ) as a function of temperature T
for systems tuned precisely to the QI-2CK critical point
(Vg = 0 and t′ = t′c). Panels (a,b,c) show different in-
teraction strengths U/t (with t = 0.5 and D = 1 fixed),
over a very wide range from perturbative (U/t = 0.1)
to intermediate/non-perturbative strength (U/t = 1), to
strong coupling (U/t = 10). We have also tested other
ratios of U/t and find equivalent results. The different
lines plotted in each panel are for different molecule-lead
hybridization strengths V . Small V and large U corre-
sponds to the regime of applicability of the SWT calcula-
tion, but NRG allows to interrogate the non-perturbative
regimes as well – as shown in the figure. In particular,
the magenta line in each panel is for a comparatively
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FIG. S-3. NRG results for the molecule contribution to the
entropy Smol as a function of temperature T for the 5-site
system tuned to the critical point at t′ = t′c, for different
interaction strengths U/t in panels (a), (b), and (c). As usual
we set t = 0.5 and the conduction electron bandwidth is D =
1. In each case, the molecule-lead hybridization V is varied,
showing that the many-body QI-driven 2CK critical point
with finite residual (T = 0) entropy Smol = 1

2
ln(2) can be

realized in all cases. The 2CK Kondo temperature TK is seen
to depend sensitively on V (see Fig. 2 of the main paper);
but we note that a remarkably large TK ∼ 10−2U can be
achieved in all cases, where no incipient local moment regime
is observed and RG flow proceeds directly to the 2CK fixed
point. For the black, red, blue, green and magenta lines we
have V = 0.03, 0.04, 0.05, 0.06, 0.08 for U/t = 0.1 in panel
(a); V = 0.1, 0.125, 0.15, 0.2, 0.3 for U/t = 1 in panel (b);
and V = 0.3, 0.4, 0.5, 0.6, 0.75 for U/t = 10 in panel (c). The
magenta lines show the maximum possible TK achievable for
each ratio of U/t.

large V which yields the largest 2CK Kondo tempera-
ture TK, while the black lines are for smaller V where
the corresponding TK is then smaller.

Interestingly, we find that for all U/t considered, we
can access the QI-2CK effect for any V . The hallmark of
the 2CK effect is the residual (T = 0) molecule entropy
of 1

2 ln(2) [15], which we here see in all cases. For smaller
V the Kondo scale TK is small and we have a window
over which the molecule entropy is ln(2). This corre-
sponds to the local moment regime where the molecule
hosts an essentially free spin-doublet state (this is the
ground molecule doublet state that we project onto us-
ing the SWT). However, the most remarkable observation
from our NRG results is that large TK can be realized by
tuning V . The largest TK possible for each U/t is in

FIG. S-4. To confirm that the many-body QI-driven critical
point in the 5-site molecular junction indeed realizes the clas-
sic 2CK critical point of the pure 2CK model, we show the
‘impurity’ entropy Simp(T ) vs T/TK (top panel) and the T = 0
scattering t-matrix t(ω) vs ω/TK (bottom panel) rescaled in
terms of the Kondo temperature TK in the universal regime
where TK itself is ≪ U,D, t. Full NRG results for the molec-
ular junction (black solid lines) are compared with those for
the pure 2CK model (dashed red lines), and agree perfectly.
Shown for U/t = 10, t = 0.5, D = 1, V = 0.3, Vg = 0, t′ = t′c.

fact of order 10−2U , which is a high-energy scale when
compared with the usual exponentially-small Kondo tem-
peratures [3] found in regular single molecule junctions
or semiconductor quantum dot devices. This is promis-
ing for experimental realization at accessible temperature
scales. Finally, we note that as U → 0, the maximum TK
also vanishes, meaning that as the non-interacting limit
is approached, the 2CK effect also disappears. For typ-
ical interaction strengths in molecules or quantum dots,
however, we expect the QI-2CK effect to be accessible at
unusually high temperatures.

In Fig. S-4 we confirm the SWT prediction that at
the critical point of our 5-site molecule we realize the
standard 2CK effect. For this, we select a molecule real-
ization in the universal regime with a small TK. When
scaled in terms of TK, physical observables should col-
lapse to a universal curve characteristic of the pure 2CK
model. The top panel of Fig. S-4 shows NRG results for
the entropy, rescaled in terms of T/TK (black solid line),
compared with standard results for the pure 2CK model.
In the lower panel we show the energy-resolved conduc-
tion electron scattering t-matrix t(ω) at T = 0 vs ω/TK
for the molecule, compared with universal results of the
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FIG. S-5. NRG results for the Fermi liquid crossover in the 5-
site molecular junction near the QI-2CK critical point, with t′

successively approaching the critical point at t′c. Main panel
shows the entropy crossover, in which the critical 1

2
ln(2) en-

tropy is quenched below T ∗. Inset shows the dependence of
T ∗ itself on the perturbation |t′c−t′|. Dashed line fit shows the
robust power-law behavior T ∗ ∼ |t′c − t′|2. We take U/t = 10,
V = 0.75, t = 0.5, D = 1 and Vg = 0.

pure 2CK model. Both agree perfectly in the universal
regime considered. On the other hand, we note that the
standard 2CK model presupposes the existence of an ‘im-
purity’ spin- 12 degree of freedom. Our results show that
for larger V , the molecule hosts a 2CK critical regime
that is not contained within the pure 2CK model since
there is no incipient local moment regime.

S-VI. FL CROSSOVER

Having established that the 2CK critical point is acces-
sible in molecular junctions by exploiting the many-body
QI effect, we now wish to study in more detail the vicin-
ity of the critical point and the relevant perturbations
that drive the system along the NFL-FL crossover to-
wards the stable fully-Kondo-screened ground state. We
consider here two perturbations that destabilize the 2CK
critical point in our 5-site molecular junction: deviations
in the couplings away from t′ = t′c (see Fig. S-5) and
deviations in the gate voltage away from particle hole
symmetry at Vg = 0 (see Fig. S-6).

When the perturbations are sufficiently small, the RG
flow for the system proceeds first to the 2CK critical point
(with characteristic 1

2 ln(2) entropy) on the scale of TK,
and then it flows away from the critical fixed point and
towards the FL ground state (with zero entropy) on the
emergent low-energy scale T ∗ [15–17]. For good scale sep-
aration T ∗ ≪ TK we expect a simple power-law depen-
dence of the T ∗ scale on the strength of the destabilizing
perturbation. The power-laws reflect the scaling dimen-
sion of the leading RG relevant operators at the fixed

FIG. S-6. NRG results for the Fermi liquid crossover in the 5-
site molecular junction, with t′ = t′c but varying the gate volt-
age Vg to destabilize the QI-driven 2CK critical point. Main
panel shows the temperature-dependence of the entropy for
each gate voltage setting. Inset shows the resulting crossover
scale T ∗ as a function of Vg, demonstrating with the black
dashed line the power-law behavior T ∗ ∼ |Vg|4. We take
U/t = 10, V = 0.75, t = 0.5, D = 1.

point induced by the perturbation, and are a character-
istic fingerprint of the critical fixed point. In the present
context of the generalized 2CK model, we expect [15]
T ∗ ∼ aJ2

sd + bW 2
sd. But Jsd and Wsd themselves depend

on t′ and Vg. In Fig. S-5 we show that finite |t′− t′c| does
indeed generate a finite FL scale T ∗ and corresponding
entropy crossover to a fully Kondo screened state. The
inset shows specifically that

T ∗ ∼ |t′ − t′c|2 : Vg = 0 (S-40)

Likewise in In Fig. S-6 we see that the FL crossover is
also generated by finite Vg even at t′ = t′c with,

T ∗ ∼ |Vg|4 : t′ = t′c (S-41)

The difference is because although Jsd depends quadrat-
ically on both t′ and Vg, the critical value of t′ is at a
finite value t′c while the critical value of Vg is at Vg = 0.
Finally, we comment on the robustness of the QI-2CK

effect to changes in the molecule-lead couplings. The
2CK critical point is destabilized by anisotropy in the
channel couplings, and we find,

T ∗ ∼ |Vc − VL/VR|2 , (S-42)

where Vc is the ratio VL/VR at the critical point.

S-VII. VIBRATIONS

Vibrational effects can play a role in real molecular
junctions [18] due to electron-phonon coupling. In fact,
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in some cases, molecular vibrations can quench single-
particle QI [19]. However, vibrational effects are ex-
pected to become less pronounced at low temperatures
where 2CK criticality is predicted.

On a theoretical level, the effect of vibrations can be
incorporated via a generalized Anderson-Holstein model
[20], which includes a coupling between the electrons
and bosonic degrees of freedom. A modified version of
the Schrieffer-Wolff transformation can still be devised
in such a case to obtain an effective Kondo-type model,
as worked out for the simplest molecular transistors in
Ref. [21]. However, at weak electron-phonon coupling
and low temperatures, we expect many-body QI to sur-
vive and the critical 2CK couplings to be simply renor-
malized. We leave a full treatment of such effects for
future work.

Interestingly, Ref. [22] showed that electron-phonon
coupling due to vibrations in a model of a C60 molec-
ular junction can stabilize the 2CK effect. Other re-
ports on phonon-assisted 2CK effect can be found in e.g.
Refs. [23, 24].

Finally, we note that vibrational effects are far less im-
portant in artificial molecular junctions formed in semi-
conductor quantum dot devices.

S-VIII. ML OPTIMIZATION AND
GRADIENT DESCENT

Although we were able to identify conditions for the
QI-2CK effect in molecular junctions in the preceding
sections using a combination of symmetry arguments
and an observation about the SWT for odd chains,
a more systematic approach is required for inverse
design in general. Indeed, even with the topology of
the model Eq. S-7 set, some fine-tuning of the ratio
t′/t is still required. On the level of the SWT, one
can fix all parameters except t′ and then use a simple
root-finding algorithm to determine the value of t′ that
yields jsd = 0. The critical value of t′ so determined
will however only be an approximation to the true value
of t′c found in full NRG calculations, since the SWT is
of course only a perturbative approximation (albeit a
rather good one). For the QI-2CK problem, one can
again fix all parameters except t′ and run the NRG
multiple times, varying t′, and search for the critical
value t′c that minimizes the FL scale T ∗. With only
a single parameter to optimize, such a search is very
fast and efficient, requiring only a handful of ‘function
evaluations’ to converge exponentially quickly towards
the critical point (here ‘function evaluation’ means
either doing the SWT mapping numerically to find jsd
or performing an NRG run to determine the T ∗ scale).
Furthermore, the SWT result provides a good starting
point guess for the NRG calculation.

However, inverse design of molecular junctions is in
general much more complicated than the simplest con-

strained single-parameter optimization described above.
We illustrate this in the main paper with the example of
unconstrained optimization of the 4-site molecular clus-
ter, demonstrating that machine learning (ML) method-
ologies can be applied to the numerical SWT calcula-
tion to realize the QI-2CK condition. We envision that
this approach will be useful beyond the specific exam-
ple of the 2CK problem, and will be applicable to the
inverse design of molecular junctions for functionalities
such as switching, rectification, thermoelectric proper-
ties etc, where the desired low-energy effective model pa-
rameters are known, but the optimal parent microscopic
systems to realize them have yet to be identified.

A. Inverse design using SWT

For molecular junctions, we imagine fixing the lead
and hybridization Hamiltonians, and searching through
the large configuration space of molecular structures that
yield the desired effective model parameters from the
SWT. For demonstration here we do not yet consider
realistic molecules whose structure and chemistry are de-
termined from ab initio methods or from experimental
analysis, but rather simply take the parameters of our
generalized Ĥmol molecular model to be freely tunable.
Consider an abstract model for the isolated molecule of
the form,

Ĥmol =
∑
i

θiĥi (S-43)

with coupling constants θi (which we assemble into a vec-

tor θ⃗) and operators ĥi that are defined on the molecule
Hilbert space. Provided that the molecule ground state
over the range of gate voltages of interest is a unique spin-
double state, we can apply the numerical SWT prescrip-
tion described above in Sec. S-II. The desired effective
model parameters are obtained by evaluating Eqs. S-18-
S-20 and S-25-S-27.
The desired functionality of the molecular junction

places conditions on the effective model parameters jαβ
and wαβ . We encode these into a loss function L(θ⃗) =
f(jss, jdd, jsd, wss, wdd, wsd) where f is some objective
function to be minimized that defines the optimization

landscape, whereas jαβ , wαβ depend implicitly on θ⃗
through the SWT calculation. Despite the typically high
complexity of Ĥmol, the ML optimization of the molecule
can be done efficiently by gradient descent (GD). This in-

volves calculating the derivative of the loss function ∇⃗θL
with respect to the optimization parameters θ⃗ and taking
a finite step in the direction of the gradient vector from an

initial guess θ⃗0 to a new guess θ⃗1 such that L(θ⃗1) < L(θ⃗0).
This is repeated iteratively until convergence within some
tolerance to the minimum in L, whence we have obtained
the optimal set of coupling constants θ⃗. We note however
that care must be taken since the optimization landscape
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may contain many local minima or indeed degenerate
global minima.

To make this more concrete, consider the generalized
4-site molecule model, Eq. S-8, with Um ≡ U = 1. We
will treat the set of single-particle coupling constants tmn
and the overall gate voltage Vg as free tuning parameters

that comprise the vector θ⃗ to be optimized. Focusing
on the QI-2CK effect, we demand a spin-doublet ground
state giving an effective model for which jsd = 0 and
wsd = 0, as well as jss = jdd > 0. A simple starting
point for the loss function is,

L(θ⃗) = a(jsd)
2+b(wsd)

2+c(jss−jdd)2+d
∑
α

(|jαα|−jαα)

(S-44)
where a, b, c, d are optimization hyperparameters that af-
fect the optimization landscape and hence the learning
curve. We also add a term that punishes gate voltages
close to the Coulomb blockade steps, since the SWT
breaks down in these regimes and the effective param-
eters jαβ and wαβ spuriously diverge. In practice, in a
given iteration of the optimization procedure we fix a
set of tmn and scan over the entire gate voltage range
to identify regions with a spin-doublet ground state, and
find the minimum of L for that gate sweep. Designing
a good loss function is the art behind any complex opti-
mization procedure.

In order to perform the GD, we would like the analytic
gradient of the loss function. A numerical evaluation is
costly when the number of parameters to be optimized
is large, and finite-difference methods are inaccurate in
practice. Although the analytic gradient with respect to
the effective model parameters jαβ and wαβ is trivial, the
desired gradient with respect to the bare model parame-

ters θ⃗ is much more challenging. The key step is to work
out the derivative of the particle and hole tunneling am-
plitudes in Eqs. S-25, S-26 with respect to a given tuning
parameter θi.

An important implication of our SWT formulation is
that the only non-trivial information needed to compute
the gradient of the loss function analytically is the deriva-

tive of the ground eigenstate ∂θiU⃗gs and the derivative of
the ground state energy ∂θiEgs. Suppressing indices to
simplify the notation in the following, from Eq. S-25,

∂θip =
(
∂θiU⃗gs

)†
M+U⃗gs + U⃗†

gsM+

(
∂θiU⃗gs

)
+ U⃗†

gs

(
∂θiM+

)
U⃗gs

(S-45)

and similarly for ∂θih. Then from Eq. S-27 it follows,

∂θiM± =

X†
± [EgsI −Hϕ]

−1 [
hiϕ − ∂θiEgsI

]
[EgsI −Hϕ]

−1 X±
(S-46)

where hiϕ = ϕ⃗†ĥi ϕ⃗ such that Hϕ =
∑
i θih

i
ϕ. Note that

X±, Hϕ and hiϕ are all evaluated in the product basis and

are therefore independent of the optimization procedure.

Only ∂θiU⃗gs and ∂θiEgs must be recomputed at each new
optimization step. For the latter, we may simply use the
Hellmann–Feynman theorem,

∂θiEgs = ⟨ψgs|ĥi|ψgs⟩ , (S-47)

whereas the former follows from a standard result in non-
degenerate perturbation theory [25],

∂θiU⃗gs = ϕ⃗ †
gs

∑
j ̸=gs

⟨ψj |ĥi|ψgs⟩
Egs − Ej

|ψj⟩ , (S-48)

where the sum runs over states in the ground quantum
number subspace (N, σ) of the isolated molecule only.
These expressions allow us to compute accurately and

cheaply the analytic gradient of the effective model pa-
rameters from the SWT, and hence the analytic gradient
of any optimization loss function that depends on them.
In turn, we may perform GD optimization of our effective
model efficiently.
In the main text we demonstrate this with the example

of a 4-site molecular cluster given by Eq. S-8 using the
loss function Eq. S-44. Starting from a random guess

for the parameters θ⃗0, we rapidly converge to a solution
satisfying the QI-2CK conditions, as shown in Fig. 5 of
the main paper. The parameters used in Fig. 5 resulting
from our optimization procedure are t11 ≃ 0.697, t22 ≃
0.642, t33 ≃ 0.480, t44 ≃ 0.253, Vg = 0.42, t12 ≃
0.102, t13 ≃ 0.053, t14 ≃ 0.1, t23 ≃ 0.109, t24 ≃
0.046, t34 ≃ 0.169.

B. Inverse design using NRG

A more sophisticated treatment is provided using NRG
which is a non-perturbative method [9], and does not rely
on the faithful derivation of a low-energy effective model
[6], but can work directly with the bare model (at least
for modest molecular complexity [5]). Inverse design of
molecular junctions using NRG affords the possibility of
engineering loss functions for the optimization that work
directly with the physical observables of interest.

For example, in the present case of the QI-2CK effect,
the quantum critical point is associated with a vanishing
T ∗ scale. This scale can be read off from the temper-
ature dependence of the entropy, as shown in the main
paper and in Figs. S-5, S-6. Defining T ∗ through the
relation Smol(T = T ∗) = ln(2)/4 and a loss function

L(θ⃗) = T ∗ allows us to use ML methodologies to opti-

mize the model parameters θ⃗ to minimize T ∗ by calcu-
lation of the molecule entropy. This is the approach we
adopt in this work to find the critical value of t′ in the
5-site system. However, alternative approaches can be
used. Fig. 4 of the main paper shows that the QI-2CK
critical point is also associated with a conductance node
at T = 0. Therefore an alternative loss function might

be L(θ⃗) = Gc(T = 0).
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A numerical (finite-difference) approximation to the
gradient of the chosen loss function can be computed
by running several standard NRG runs. NRG can then
be integrated within a standard GD routine for inverse
design model optimization. For constrained models with
only a few optimization parameters, this might be suffi-
cient.

However, for more complex problems (especially those
for which each NRG run is computationally expensive
and optimization efficiency is thus a priority), it is
clearly advantageous to have the analytic gradient of the
loss function from the NRG calculation. This is more
challenging than for the SWT calculation because the
NRG algorithm itself is much more complex. Also the
loss function might comprise physical observables rather
than simply effective model parameters. Fortunately
this problem has been overcome recently by using dif-
ferentiable programming techniques [26] with the NRG
method. This ‘automatic differentiable NRG’ method al-
lows exact gradients of NRG observables to be calculated
quickly and efficiently [27]. This brings inverse design of
molecular junctions using an NRG solver within reach.

S-IX. NON-INTERACTING LIMIT

To better understand the QI-2CK critical point of the
5-site molecular junction studied above, here we consider
the non-interacting U → 0 limit of the model,

Hmol =t
∑
σ

(
d†1σd2σ + d†2σd3σ + d†3σd4σ + d†4σd5σ +H.c.

)
+ t′

∑
σ

(
d†1σd4σ + d†2σd5σ +H.c.

)
Hhyb =V

∑
σ

(
c†sσd1σ + c†dσd5σ +H.c.

)
(S-49)

which possesses sd-symmetry and particle-hole symme-
try. Since U = 0 the σ =↑ and ↓ sectors are completely
independent and can be treated separately. The two sec-
tors are identical due to SU(2) spin symmetry. Here we
focus on the σ =↑ sector for concreteness.
The first question is: what is the analogue of the QI-

2CK critical point when U = 0? The answer is provided
by the SWT calculations shown in Fig. 2 of the main
paper. For small but finite U/t we see that the critical
value of t′ tends to the value of t. This is supported by
full NRG calculations. Thus, we deduce that t′/t → 1
as U/t → 0. Below, we therefore examine Eq. S-49 in
the vicinity of the point t′/t = 1. Indeed, we find that
t′/t = 1 is a special point.
We start by performing a rotation to an even/odd or-

bital basis, viz:

d1eoσ
= 1√

2
[d1σ ± d5σ] (S-50)

d2eoσ
= 1√

2
[d2σ ± d4σ] (S-51)

ce
oσ

= 1√
2
[csσ ± cdσ] . (S-52)

FIG. S-7. Transmission function τ(ω) for the 5-site molecular
junction in the non-interacting (U = 0) limit, plotted for t = 1
and Γs = Γd = 0.1 for different t′. From Eq. S-55 the T = 0
series conductance Gc(0) = 2e2/h takes the maximum value
for a single electron transistor for any t′ ̸= t, but precisely
vanishes due to a single-particle QI node at t′ = t.

In this basis, the model exactly decouples into even and
odd sectors,

Hmol =
∑
σ

[
(t+ t′)d†1eσd2eσ +

√
2td†2eσd3σ +H.c.

]
+ (t− t′)

∑
σ

[
d†1oσd2oσ +H.c.

]
Hhyb =V

∑
σ

(
c†eσd1eσ + c†oσd1oσ +H.c.

)
(S-53)

Importantly, we see that the orbital d2oσ exactly decou-
ples from the rest of the system when t′ = t, and sits at
zero energy. This directly implies that the T = 0 con-
tribution from the molecule to the total entropy of the
system is Smol(0) = ln(4) at this special point, since all
other molecule degrees of freedom are screened by the
leads.

By contrast, we know from our NRG results at small
but finite U/t where the critical point arises at t′ ≃ t that
the T = 0 residual molecule entropy is 1

2 ln(2). The crit-
ical point is therefore a genuine non-Fermi liquid (NFL)
in the sense that it is not adiabatically connected to the
non-interacting limit. However, the energy scale TK cor-
responding to the formation of the NFL state also van-
ishes as U/t → 0 as argued above. We speculate that
it is the decoupled single-particle state d2oσ of the non-
interacting molecule that seeds the NFL state when in-
teractions are turned on.

Finally, we consider dynamical properties of the U = 0
molecule. The molecule Green’s functions of the lead-



13

coupled system can be simply determined,

GU=0
mol (ω) =


ω+ + iΓ − t 0 − t′ 0

−t ω+ − t 0 −t′
0 −t ω+ −t 0
−t′ 0 −t ω+ −t
0 −t′ 0 −t ω+ + iΓ


−1

(S-54)

where [Gmol]ij = ⟨⟨diσ; d
†
jσ⟩⟩, ω+ = ω + i0+ and Γ =

πV 2ρ0, with ρ0 the lead density of states (we have as-
sumed the wide-flat-band limit for simplicity).

Of particular interest is the through-molecule Green’s
function that connects the source and drain leads,
G15(ω), since this controls series transport in the non-
interacting limit via the Landauer formula [13, 28],

Gc(T ) =

(
2e2

h

)∫
dω

−∂f(ω)
∂ω

× τ(ω) , (S-55)

where Gc(T ) is the series electrical conductance dIsd/dVb
resulting when a current Isd flows due to a bias volt-
age Vb between source and drain leads in linear response,
and f(ω) = 1/[1 + exp(ω/T )] is the equilibrium fermi
function. The transmission function τ(ω) is related to
the molecule Green’s functions via τ(ω) = |2ΓG15(ω)|2.
Therefore, the T = 0 conductance follows as Gc(0) =
(2e2/h)×|2ΓG15(0)|2 and depends on the fermi level be-
havior of the through-molecule Green’s function G15(0).
Analysis of Eq. S-54 shows that,

2ΓGU=0
15 (ω → 0) =

{
−i : t′ ̸= t

0 : t′ = t
(S-56)

The full energy-dependence of the transmission function
is shown in Fig. S-7, and establishes that for t′ ̸= t a nar-
row peak pinned at the fermi energy to τ(0) = 1 collapses
at t′ = t. Thus the T = 0 conductance Gc(0) = 2e2/h for
any t′ ̸= t but has an exact conductance node Gc(0) = 0
for t′ = t. This is a result of the single-particle QI in the
system at t′ = t, giving rise to destructively interfering
paths through the molecule. We note that in the inter-
acting case U > 0 the T = 0 conductance also saturates
to its maximum Gc(0) = 2e2/h away from the QI-2CK
critical point t′ ̸= t′c, but series conductance vanishes
Gc(0) = 0 at the critical point t′ = t′c. However, in this
case the conductance node is a true many-body QI effect.

S-X. CANDIDATE MOLECULES FOR QI-2CK

In the main text of the paper, the focus was on identi-
fying the simplest model systems to realize the QI-2CK
effect. Leveraging parity (mirror) symmetry and particle-
hole symmetry, we found a simple 5-site Anderson-type
model with a single tuning parameter. Relaxing the sym-
metry constraints yielded a solution with only 4 sites, but
at the expense of fine-tuning of more parameters.

As emphasized in the main text, these toy models are
not intended to be descriptions of any realistic molecule,

but rather they are instructive examples of structural mo-
tifs containing the necessary orbital complexity for many-
body QI. However, in the context of realizing nontrivial
many-body physics in semiconductor quantum dot de-
vices, we note that simpler structures are desirable, and
fine-tuning can be performed in situ [29].

For single-molecule junctions, many-body methods [4]
can be interfaced with ab initio techniques [30] and the
inverse design methodology presented here, to search for
realistic molecules exhibiting the QI-2CK effect. This is
beyond the scope of the present work, but here we pro-
pose some candidate molecules, based on simple design
principles learned from our study of the toy models.

From the previous sections, we found that the fol-
lowing ingredients in a microscopic model will lead to
many-body QI of the right type to produce 2CK physics:
particle-hole symmetry, such that (i) ϵj = −Uj/2 on
all sites and (ii) no odd-membered loops in the tunnel-
coupling geometry. This guarantees a half-filling condi-
tion and hence a net spin S = 1/2 ground state, as well
as Wsd = 0. To get Jsd = 0 as well, we need (iii) at
least two distinct paths through the molecule connecting
source and drain leads, with different odd numbers of
sites (for example, one path with 3 sites between source
and drain, and another with 5 sites); and (iv) a means
of tuning the relative importance of these paths (for ex-
ample, different hoppings t along one path and t′ along
another, or different onsite potentials etc). Mirror sym-
metry is not required if one can tune the molecule-lead
couplings.

We also found that the non-interacting limit can pro-
vide useful insights. The QI-2CK effect in the many-body
(U > 0) case features a conductance node, which appears
to be continuously connected to a conductance node due
to single-particle QI in the non-interacting (U = 0) limit.
For U > 0 we have a residual finite entropy at the 2CK
critical point due to a decoupled Majorana degree of free-
dom; in the U = 0 limit we also have a finite T = 0
entropy, due to a decoupled effective fermionic degree of
freedom. These features provide a good starting point
guide to search for real molecules that might exhibit QI-
2CK.

In Fig. S-8 we consider three such candidate molecular
junctions, whose parent molecules are fairly standard and
commercially available. We acknowledge but do not ad-
dress here the practical challenges associated with joining
the molecules to the leads in the correct geometry. We do
not attempt a first-principles type study, but simply take
a non-interacting tight-binding model for each, assuming
equal nearest-neighbour tunneling matrix elements t ≡ 1.
The leads are connected to the sites indicated, and for
the purpose of demonstration we set Γs = Γd = 0.1t.
The proposed structures fulfil the above design criteria.

In Fig. S-8 panel (a) we consider a molecular junc-
tion whose parent molecule is 1-phenylethen-1-ol. Un-
der the tight-binding assumption, the conductance fol-
lows from the transmission function τ(ω) using Eq. S-55.
The transmission function is plotted on the right as a
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FIG. S-8. Non-interacting limit of candidate molecular junctions to realize the QI-2CK effect. The through-molecule trans-
mission functions plotted on the right correspond in each case to the junction illustrated on the left. Parent molecule for each
junction is (a) 1-phenylethen-1-ol; (b) bicyclo[3.1.1]heptan-3-ol; (c) adamantane-1,3-diol. See text for details.
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t
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extended Hubbard model

many-body
QI node

FIG. S-9. Hubbard model for candidate molecule (a), with asymmetric ring tunnelings t and t′ as indicated (left). Numerical
SWT calculation of Jsd (right) shows a many-body QI node as a function of tuning t′/t, where Jsd = 0. At this point the
QI-2CK effect would be expected at low temperatures. See text for details.

function of frequency ω. As desired, we see that τ(0) = 0
and hence the conductance Gc(0) = 0. At the single-
particle level we also have a decoupled effective degree of
freedom with zero energy eigenvalue.

In panel (b) we consider a junction with parent
molecule bicyclo[3.1.1]heptan-3-ol, whereas in panel (c)
we consider an adamantane-1,3-diol. Again in both cases,
we have a vanishing transmission function at the Fermi
level, and an effective decoupled degree of freedom.

Having identified plausible structures based on the
non-interacting limit, we now take molecule (a) and for-
mulate a simple Hubbard (PPP) type model. We do this
by introducing a finite local U = 1 on all sites (and there-
fore set ϵ = −0.5 on all sites to ensure particle-hole sym-
metry). We find that the ground state is, as desired, a net
spin S = 1/2 doublet state, and perform numerically the
SWT to obtain the generalized 2CK model, Eq. 2. As ex-
pected, Wsd = 0 automatically by symmetry. However,
even though the U = 0 structure with equal couplings
had a T = 0 conductance node, for U > 0 we have a
finite Jsd indicating finite conductance. Therefore the
unperturbed structure does not realize 2CK. This is the
same story as for the 5-site toy model structure in the
main text: one has to fine-tune the many-body QI in
the interacting case to achieve QI-2CK via the vanishing
Jsd = 0. We do that here by introducing different tun-
neling matrix elements t and t′ around the benzene ring,
as illustrated in Fig. S-9. In practice, this perturbation
might be achievable by differential gating or functional-
ization of certain sites around the ring. We now repeat
the SWT and plot Jsd as a function of t′/t, see right
plot in Fig. S-9. As hoped for, we do find a sweet spot
where many-body QI effects produce an exact node in
Jsd. At this point, the molecular junction will exhibit
low-temperature 2CK physics.

Naturally, these calculations are simplistic, but they
gesture towards the kind of simulations that would be
possible for real molecules using ab initio methods.

S-XI. OUTLOOK: THREE-CHANNEL
KONDO EFFECT

Finally, we touch briefly on an outlook towards re-
alizing other kinds of physics by exploiting many-body
QI effects. One such simple extension is to the three-
channel Kondo (3CK) model. This was realized in hybrid
metal-semiconductor island nanostructure experiments
in Ref. [31], but we note here that 3CK can also be found
in simple few-orbital structures, precisely analogous to
the 2CK effect found in Fig. 1 of the main text. The de-
sign principle is to find a structure with an odd number of
interacting sites at particle-hole symmetry, with no odd
loops, where there are two routes connecting each pair
of leads – one comprising 3 sites and the other with 5
sites. For the two-lead setup, Eq. S-7 realizes the 2CK
model in the simplest 5-site structure upon fine-tuning
the ratio t′/t. Generalizing this to a three-lead setup,
the simplest structure has 7 interacting sites. We have
Ĥ = Ĥmol + Ĥleads + Ĥhyb where,

Ĥmol =U
(
n̂0↑ − 1

2

) (
n̂0↓ − 1

2

)
+ U

∑
α=1,2,3

∑
n=1,2

(
n̂αn↑ − 1

2

) (
n̂αn↓ − 1

2

)
+ t

∑
α,σ

(
d†0σdα1σ + d†α1σdα2σ +H.c.

)
+ t′

∑
σ

(
d†12σd21σ + d†22σd31σ + d†32σd11σ +H.c.

)
(S-57)

where α = 1, 2, 3 runs over the three ‘branches’. Ĥleads

is given by Eq. S-3, generalized to three leads. Each lead
is coupled to the end of each branch,

Ĥhyb = V
∑
α,σ

(
d†α2σcασ +H.c.

)
. (S-58)

The setup is illustrated in Fig. S-10.
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FIG. S-10. Proposed 7-site structure to realize the 3CK effect
using many-body QI.

The SWT yields a model of the same form as Eq. 2
of the main text, except now α = 1, 2, 3 and β = 1, 2, 3
run over the three channel indices. Note that by the
three-fold symmetry of the structure we automatically
have equal diagonal elements Jαα ≡ J > 0. The QI-3CK
effect arises when all off-diagonal Jα̸=β and Wα̸=β ele-
ments vanish. Due to the particle-hole symmetry inher-
ent to this model, the latter are strictly zero. Therefore
we just require many-body QI effects to kill off the Jα ̸=β
terms. The same arguments used for the QI-2CK effect
show that this can be achieved for 3CK by again tuning
the ratio t′/t.
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