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Exercise 2: Perturbative (Poor Man’s) Scaling

The Kondo model (KM) describes a single spin- 12 impurity, exchange coupled locally to conduction electrons,

H =
∑
k,σ

εkc
†
kσckσ +

∑
k,k′

Jkk′S · skk′ , (1)

where S is a spin- 12 operator for the impurity and skk′ =
∑
σ,σ′ c

†
kσ~σσσ′ck′σ is the conduction electron spin density

(here ~σ is a vector of Pauli matrices). For simplicity, we take a conduction band with constant density of states
ρ(ω) = ρ0θ(D − |ω|) within a band of half-width D.

We imagine dividing up the conduction band as depicted in Fig. 1(a). It consists of a lower band edge (LBE),
defined within −D < ω < −D + δD; an upper band edge (UBE), defined within D − δD < ω < D; and the bulk,
defined for −D + δD < ω < D − δD. The number of states in each band edge is therefore ρ0δD.

Just as with the Schrieffer-Wolff transformation, we can derive an effective low-energy model by perturbatively
eliminating virtual excitations. Here, the excitations are to the band edges: the effective model then involves a reduced
bandwidth, with D̃ = D− δD, and a renormalized coupling J̃kk′ that incorporates the effect of those excitations. The
perturbative scaling technique then examines the flow of J̃kk′ with D̃.

The part of the Hamiltonian describing scattering to the band edges is partitioned as δH = H0 + H1, where

H0 =
∑
k,σ εkc

†
kσckσ is the full conduction electron Hamiltonian, and H1 = H1a +H1b, with

H1a =
∑

k∈bulk

∑
q∈BE

1
2Jqk

[
S+c†q↓ck↑ + S−c†q↑ck↓ + Sz

(
c†q↑ck↑ − c

†
q↓ck↓

)]
, (2a)

H1b =
∑

k∈bulk

∑
q∈BE

1
2Jkq

[
S+c†k↓cq↑ + S−c†k↑cq↓ + Sz

(
c†k↑cq↑ − c

†
k↓cq↓

)]
. (2b)

We now define a projector, 1̂b =
∑
φ,ψ |φ〉|ψ〉〈ψ|〈φ|, for electronic states |ψ〉 =

∏
k |ψk〉θ(D̃ − |εk|) in the bulk (and

where |φ〉 lives in the impurity subspace). At low temperatures, we assume that the LBE is completely filled, while

the UBE is completely empty. This makes a connection between the temperature T and the reduced bandwidth D̃.
The correction due to band-edge excitations is then given to second order in H1 by,

δHeff = 1̂b
[
H1a(E0 −H0)−1H1b +H1b(E0 −H0)−1H1a

]
1̂b (3)

Consider just the processes where the impurity spin is flipped from down to up (the amplitude of the other processes
is the same by SU(2) spin symmetry), and evaluate Eq. 3. The structure of δHeff should be the same as the bare
Hamiltonian, Eq. 1. This allows you to identify the correction to the Kondo coupling, δJ . Express it in terms of δD.

Let δD → dD and δJ → dJ and solve the resulting differential equation. What happens to the renormalized J̃
as the bandwidth D̃ is reduced (this corresponds to reducing the temperature)? Show that the Kondo temperature
TK = D exp(−1/ρ0J) is a scaling invariant of the RG trajectory.

FIG. 1. (a) Conduction band divided into band edges and bulk. (b) Second-order diagrams eliminating band edge excitations.


