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Kondo blockade due to quantum interference
in single-molecule junctions
Andrew K. Mitchell1,2, Kim G.L. Pedersen3, Per Hedegård4 & Jens Paaske5

Molecular electronics offers unique scientific and technological possibilities, resulting from

both the nanometre scale of the devices and their reproducible chemical complexity. Two

fundamental yet different effects, with no classical analogue, have been demonstrated

experimentally in single-molecule junctions: quantum interference due to competing electron

transport pathways, and the Kondo effect due to entanglement from strong electronic

interactions. Here we unify these phenomena, showing that transport through a

spin-degenerate molecule can be either enhanced or blocked by Kondo correlations,

depending on molecular structure, contacting geometry and applied gate voltages. An exact

framework is developed, in terms of which the quantum interference properties of interacting

molecular junctions can be systematically studied and understood. We prove that an

exact Kondo-mediated conductance node results from destructive interference in exchange-

cotunneling. Nonstandard temperature dependences and gate-tunable conductance peaks/

nodes are demonstrated for prototypical molecular junctions, illustrating the intricate

interplay of quantum effects beyond the single-orbital paradigm.
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P
erhaps the most important feature of nanoscale
devices built from single molecules is the potential to
exploit exotic quantum mechanical effects that have no

classical analogue. A prominent example is quantum interference
(QI), which has already been demonstrated in a number of
different molecular devices1–9. QI manifests as strong variations
in the conductance with changes in molecular conformation,
contacting or conjugation pathways or simply by tuning the
back-gate voltage in a three-terminal setup. Another famous
quantum phenomenon, relevant to single-molecule junctions
with a spin-degenerate ground state, is the Kondo effect10–16,
which gives rise to a dramatic conductance enhancement below
a characteristic Kondo temperature, TK. Strong electronic
interactions in the molecule cause it to bind strongly to a large
Kondo cloud17,18 of conduction electrons when contacted to
source and drain leads. A hallmark of the Kondo effect is the
proliferation of spin flips as electrons tunnel coherently through
the molecule, ultimately screening its spin by formation of
a many-body singlet19. In this article, we uncover the intricate
interplay of these two quantum effects, finding that the combined
effect of QI and Kondo physics has highly non-trivial conseque-
nces for conductance through single-molecule junctions, and can
even lead to an entirely new phenomenon—the Kondo blockade.

The Kondo effect is also routinely observed in semiconductor
and nanotube quantum dot devices20–24, which are regarded as
lead-coupled artificial atoms25 and as such are often well described
in terms of a single active interacting quantum orbital, tunnel-
coupled to a single channel of conduction electrons comprising
both source and drain leads. This Anderson impurity model (AIM)
is by now rather well understood19, and a quantitative description
of the Kondo peak in single quantum dots can be achieved within
linear response using non-perturbative methods such as the
numerical renormalization group (NRG)26,27. In particular, the
conductance is a universal function of T/TK, meaning that data for
different systems collapse to the same curve when rescaled in terms
of their respective Kondo temperatures20–23. Indeed, even for multi-
orbital molecular junctions, experimental conductance lineshapes
have in some cases been successfully fit to the theoretical form of
the AIM, suggesting that an effective single-orbital, single-channel
description is valid at low temperatures15,16. However, some mole-
cular junctions14,28,29 apparently manifest nonuniversal behaviour
and unconventional gate voltage dependences of conductance and
TK, hinting at new physics beyond the standard single-orbital
paradigm.

The breakdown of the AIM is well-known in the context of
coupled quantum dot devices30–44, which can be viewed as simple
artificial molecular junctions due to their multi-orbital structure
and the coupling to distinct source and drain channels. Already
the extension to two or three orbital systems has lead to the
discovery of striking phenomena such as the ferromagnetic
Kondo effect31–33 corresponding to a sign change of the exchange
coupling, and multistage35,36 or frustrated37–44 screening.

In the following, we argue that a similar kind of multi-channel,
multi-orbital Kondo physics accounts for the behaviour of real
molecular junctions, and can be understood as a many-body
QI effect characteristic of the orbital complexity and strong
electronic correlations in molecules. On entirely general grounds,
we construct an effective model describing off-resonant conduc-
tance through single-molecule junctions with a spin-degenerate
ground state, taking into account both interactions leading to
Kondo physics, and orbital structure leading to QI. The physics of
this generalized two-channel Kondo (2CK) model (including both
potential scattering and exchange-cotunneling) is discussed in
relation to the local density of states and observable conductance.
We demonstrate how renormalized Kondo resonant conductance
evolves into a novel Kondo blockade regime of suppressed

conductance due to QI (Fig. 1). As an illustration, we consider
two simple relevant molecular examples, whose properties can be
tuned between these limits using gate voltages to provide
functionality as an efficient QI-effect transistor.

Results
Models and mappings. The Hamiltonian describing single-
molecule junctions can be decomposed as,

H¼HmolþHgþHleadsþHhyb: ð1Þ

Here Hmol describes the isolated molecule, and contains all
information about its electronic structure and chemistry. The
first-principles characterization of molecules is itself a formidable
problem when electron–electron interactions are taken into
account. In practice however, the relevant molecular degrees of
freedom associated with electronic transport are often effectively
decoupled. This is the case for many conjugated organic
molecules, where the extended p system can be treated separately
in terms of an extended Hubbard model45. Reduced multi-orbital
models have also been formulated using ab initio methods46–49.

The leads are modelled as non-interacting conduction
electrons with Hleads¼

P
ask Ekcwaskcask where cwask creates an

electron in lead a¼ s, d (source, drain) with momentum
(or other orbital quantum number) k, and spin s¼m, k. The
dispersion Ek corresponds approximately to a flat density of states
rðEÞ¼r0y D� Ej jð Þ, inside a band of width 2D.

The molecule is coupled to the leads via Hhyb¼
P

as
ðtadw

iascasþH:c:Þ, where cas¼t� 1
a

P
k takcask is the localized

orbital in lead a at the junction, and dias is a specific frontier
orbital ia of the molecule, determined by the contacting geometry.
The molecule-lead hybridization is local, and specified by
Ga¼pr0 taj j2.

The number of electrons on the molecule, N¼h
P

is dw
isdisi, is

controlled by a gate voltage, incorporated in the model by
Hg¼� eVg

P
is dw

isdis which shifts the energy of all molecular
orbitals. Deep inside the Coulomb diamond10, a substantial
charging energy, EC, must be overcome to either add or remove
electrons from the molecule. Provided Gs;d � EC the
Hamiltonian (1) can therefore be projected onto the subspace
with a fixed number of electrons on the molecule. In general
this requires full diagonalization of the isolated Hmol in the

Source
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Kondo resonance

Kondo blockade
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b

Figure 1 | Interplay between quantum interference and electronic

interactions in single molecule junctions. (a) Enhanced Kondo resonant

conductance; (b) Kondo blockade, where conductance precisely vanishes.

Tuning between a,b by applying a back-gate voltage allows efficient

manipulation of the tunnelling current.
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many-particle basis. Charging a neutral/spinless molecule by
applying a back-gate voltage to add or remove an electron
typically yields a net spin-1

2 state. For odd-integer N , we therefore
assume that the molecule hosts a spin-1

2 degree of freedom,
S. Higher-spin molecules can arise, but are not considered here
(the generalization is straightforward). To second-order in the
molecule-lead coupling Hhyb, we then obtain50 an effective model
of generalized 2CK form, H2CK¼HleadsþHex, where

Hex¼
X
aa0ss0

1
2 Jaa0S � sss0 þWaa0dss0
� �

cyasca0s0 : ð2Þ

Here s denotes the vector of Pauli matrices. The form of Hex is
guaranteed by spin-rotation invariance and Hermiticity. Further
details of the 2CK mapping are provided in Methods. The
cotunneling amplitudes form matrices in source-drain space,

J¼ Jss Jsd

Jsd Jdd

� �
W¼ Wss Wsd

Wsd Wdd

� �
; ð3Þ

and are referred to as respectively exchange, and potential
scattering terms. These 2CK parameters depend on the specifics
of molecular structure and contacting geometry in a complicated
way, and must be derived from first-principles calculations for the
isolated molecule. This generalized 2CK model hosts a rich range
of physics; the non-Fermi liquid critical point38 is merely a single
point in its parameter space. Furthermore, any conducting
molecular junction must have a Fermi liquid ground state,
as demonstrated below.

Any off-resonant molecule hosting a net spin-1
2 is described by

the above generalized 2CK model at low temperatures T � EC.
The physics is robust due to the large charging energy deep
in a Coulomb diamond (charge fluctuations only dominate at the
very edge of the Coulomb diamond29). In fact, the physics of the
effective model can be regarded as exact in the renormalization
group (RG) sense, despite the perturbative derivation of
equation (2). Corrections to Hex obtained in higher-order
perturbation theory are formally RG irrelevant, and can be
safely neglected because they get smaller and asymptotically
vanish on decreasing the temperature. They cannot affect the
underlying physics; only the emergent energy scales can be
modified (this effect is also small, since the corrections are
suppressed by EC).

Experimentally relevant physical observables such as conduc-
tance can therefore be accurately extracted from the solution of
the effective 2CK model (Methods). This requires sophisticated
many-body techniques such as NRG, which theoretically
‘attach’ the source and drain leads non-perturbatively26,27.
All microscopic details of a real molecular junction are encoded
in the 2CK parameters J and W, which serve as input for the
NRG calculations. In particular, destructive QI produces
nodes (zeros) in these parameters. Furthermore, QI nodes can
be simply accessed by tuning the back-gate voltage Vg, as was
shown recently in ref. 45 for the case of conjugated organic
molecules.

Importantly, two different types of QI can arise in molecular
junctions due to the electronic interactions. The QI can either be
of standard potential scattering type (zeros in elements of W)
or of exchange type (zeros in elements of J). Potential scattering
QI is analogous to that observed in non-interacting systems
described by molecular orbitals. For interacting systems such as
molecular junctions (which typically have large charging
energies10), potential scattering QI can similarly be understood
in terms of extended Feynman–Dyson orbitals, which are the
generalization of molecular orbitals in the many-particle basis.
Information on the real-space character of these orbitals, and
how QI relates to molecular structure, can be extracted from the
2CK mapping. By contrast, exchange QI has no single-particle

analogue, and cannot arise in non-interacting systems. Indeed,
interactions are a basic requirement for the molecule to host
a spin-1

2 via Coulomb blockade. The spin wavefunction is again
characterized by the Feynman–Dyson orbitals; depending on
the molecule in question, the spin can be delocalized over the
entire molecule.

In the following we uncover the effect of this QI on
Kondo physics, highlighting two distinct scenarios for the
resulting conductance—Kondo resonance and Kondo blockade.
We then go on to show that this physics is indeed realized in
simple examples of molecular junctions, and can be manipulated
with gate voltages.

Emergent decoupling. The generalized 2CK model can be
simplified by diagonalizing the exchange term in equation (2) via
the unitary transformation ca0s¼Ua0acas such that

UyJU¼ Je 0
0 Jo

� �
; Je=o¼Jþ � d ð4Þ

where J�¼ 1
2 Jss� Jddð Þ and d2¼J2

� þ J2
sd. Note that W is not

generally diagonalized by this transformation. The ‘odd’ channel
decouples (Jo¼ 0) if and only if J2

sd¼JssJdd, as is the case when
starting with a single-orbital Anderson model (see Supplementary
Note 1). By contrast, real multi-orbital molecules couple to both
even and odd channels (electronic propagation through the entire
molecule yields J2

sd � JssJdd when off resonance).
However, electronic interactions play a key role here: the

exchange couplings become renormalized as the temperature is
reduced. A simple perturbative RG treatment hints at flow toward
a two-channel strong-coupling state, since both Je and Jo initially
grow. But the true low-temperature physics is much more
complex, as seen in Fig. 2 from the imaginary part of the
scattering T-matrix taa(o,T)¼ �pr0ImTaa(o,T) obtained by
NRG for the generalized 2CK model and plotted as a function of
excitation energy o at T¼ 0 (see Methods). The molecule spin is
ultimately always Kondo-screened by conduction electrons in the
more strongly coupled even channel since Je4Jo for any finite d.
Indeed, any real molecular junction will inevitably have some
degree of asymmetry in the source/drain coupling J� , so that
dZJ� is always finite in practice. At particle–hole
(ph) symmetry, the Friedel sum rule19 then guarantees that
tee(0, 0)¼ 1, characteristic of the Kondo effect. On the other
hand, Kondo correlations with the less strongly coupled odd
channel are cut off on the scale of TK, and therefore too(0, 0)¼ 0
(consistent with the optical theorem). These analytic predictions
are verified by NRG results in the centre panels of Fig. 2.

In all cases the odd channel decouples on the lowest energy/
temperature scales, and the problem becomes effectively
single-channel. This is an emergent phenomenon driven by
interactions, not a property of the bare model. Despite
the emergent decoupling of the odd channel, the Kondo effect
always involves conduction electrons in both source and
drain leads for any finite Jsd. From the transformation defined
in equation (4), the T-matrix in the physical basis can be
expressed as taaðo;TÞ¼jUa;ej2teeðo;TÞþ jUa;oj2tooðo;TÞ, such
that taað0; 0Þ¼jUa;ej2 at ph symmetry—see left panels of Fig. 2.

Although the physics at T¼ 0 is effectively single-channel, the
full temperature dependence is highly non-trivial due to the
competing involvement of the odd channel (only for the
oversimplified single-orbital AIM is the odd channel strictly
decoupled for all T). The universal physics of the AIM is lost for
d¼ 1

2 Je� Joð Þ 6¼ Jþ (or equivalently J2
sd 6¼ JssJdd): conductance

lineshapes no longer exhibit scaling collapse in terms
of T/TK. Indeed, Kondo screening by the even channel occurs
on the scale Te

K�D exp � 1=r0Je½ �, and hence depends on d. The
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Kondo temperature itself can therefore acquire an unconven-
tional gate voltage dependence, beyond the AIM paradigm.

For even smaller d, the Kondo effect occurs as a two-step
process, with even and odd channels competing to screen the
molecule spin. As in this case JeEJo, a frustration of Kondo
screening sets in on the scale Te

K � To
K 	 T2CK

K . The incipient
frustration for T �T2CK

K results in only partial screening
(the molecule is overscreened, producing non-Fermi liquid
signatures38,40–42,51). The frustration is relieved on the much
smaller scale38 T
 �D r0dð Þ2. The even channel eventually ‘wins’
for T � T
 and fully Kondo-screens the molecule spin, while
the odd channel decouples. This dramatic breakdown of the
single-orbital AIM paradigm is shown in Fig. 2, with the degree of
even/odd frustration increasing from top to bottom. In practice,
such frustration arises in a nearly symmetrical junction
(small J� ), tuning in the vicinity of a QI node in Jsd such that
the perturbation strength d is reduced. The first signatures
of frustration appear in conductance when T*tTe

K. Only
when J� ¼ Jsd¼ 0, such that d¼ 0, does the frustration persist
down to T¼ 0; we do not consider this unrealistic scenario in the
present work.

In real-space, the entanglement between the molecule and the
leads is characterized by the Kondo cloud18—a large spatial

region of extent xK�‘ vF=kBTe
K penetrating both source and

drain leads (vF is the Fermi velocity). In the right panels of Fig. 2
we illustrate this for the case where the leads are 1D quantum
wires; the real-space physics is then directly related to the
T-matrix plotted in the left panels, as shown in ref. 17. Note that
if the source/drain leads are 1D quantum wires, then the
even/odd leads are also 1D quantum wires as depicted. For small
d (lower panels) we have instead a Kondo frustration cloud. The
frustration is only relieved at longer length scales x
 �‘ vF=kBT
,
beyond which the odd channel decouples.

Conductance. The current through a molecular junction
is mediated by the cross terms coupling source and drain leads;
the exchange and potential scattering terms Jsd and Wsd constitute
two distinct conductance mechanisms. At high temperatures,
the overall conductance can be understood from a simple
leading-order perturbative treatment using Fermi’s golden
rule and is simply additive45, G=G0� 2pr0ð Þ2 W2

sdþ 3J2
sd

� �
, with

G0¼ 2e2h� 1. However, at lower temperatures, electronic
interactions lead to strong renormalization effects and rather
surprising Kondo physics. Non-perturbative methods such as
NRG must therefore be used to calculate the full temperature-
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Figure 2 | Decoupling and frustration due to the Kondo effect in molecular junctions. (a–f) Imaginary part of the T-matrix, characterizing the effective

energy-dependent exchange, in the physical basis of source (blue) and drain (red) leads at T¼0 for the effective 2CK model. taa(o, 0) is related to the

renormalized density of states in lead a at the junction. We take a representative molecule-lead coupling Jþ ¼0.2D with small but finite source/drain

coupling asymmetry J� ¼ 10�4D, and consider the effect of reducing the exchange-cotunneling Jsd from a–f. Physically, this could be achieved by

gate-tuning in the vicinity of a QI node. The frustration of Kondo screening is always eventually relieved on the lowest energy scales, below

TFL � minðTe
K; T
Þ, because dZJ� is always finite in any realistic setting. (g–l) Corresponding T-matrix in the even/odd (blue/red) lead basis.

(m–r) Real-space competition between even/odd (blue/red) conduction electron channels, illustrated for the case where the leads are 1D quantum wires.

The Kondo cloud (yellow) corresponds to the spatial region of high molecule-lead entanglement. For small dt10� 3D one has a ‘Kondo frustration cloud’

embodying incipient overscreening17.
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dependence of conductance, as described in Methods. Note that
conductance through a molecular junction cannot be obtained
simply from the T-matrix (except at T¼ 0).

The QI aspect of the problem is entirely encoded in the
effective 2CK parameters, providing an enormous conceptual
simplification. In particular, we identify two limiting QI scenarios
relevant for conductance: Wsd¼ 0 or Jsd¼ 0. Exact analytic
results, supported by NRG, show that the Kondo effect survives
QI in the case of Wsd¼ 0 to give enhanced conductance at low
temperatures (Figs 1a and 3), while a Kondo-mediated QI node in
the total conductance is found for Jsd¼ 0, a Kondo blockade
(Figs 1b and 4). We demonstrate explicitly that this remarkable
interplay between QI and the Kondo effect arises in two simple
conjugated organic molecules on tuning gate voltages in Fig. 5.

Kondo resonance. First we focus on conductance mediated
exclusively by the exchange cotunneling term Jsd, tuning to a
potential scattering QI node W¼ 0. Even though the bare Jsd is
typically small, it gets renormalized by the Kondo effect and
becomes large at low temperatures. The Kondo effect therefore
involves both source and drain leads (Fig. 2), leading to Kondo-
enhanced conductance.

As shown in Supplementary Note 2, the fact that the odd
channel decouples asymptotically implies the following exact
result for the linear conductance,

GðT¼0Þ¼4G0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tssð0; 0Þtddð0; 0Þ

p
¼G0

4J2
sd

4J2
sdþ Jss� Jddð Þ2

:
ð5Þ

Note that any finite interlead coupling Jsd yields unitarity
conductance G¼G0 at T¼ 0 in the symmetric case Jss¼ Jdd.
The analytic result is confirmed by NRG in Fig. 3a, and
further holds for all T � TK;T
. Equation (5) is an exact
generalization of the standard single-orbital AIM result,
Gð0Þ=G0¼4JssJdd= Jssþ Jddð Þ2	 4GsGd= GsþGdð Þ2, and reduces
to it when J2

sd¼JssJdd.
The full temperature-dependence of conductance can also be

studied with NRG. In all cases, we find Fermi-liquid behaviour
GðTÞ�Gð0Þ� T=TFLð Þ2 at the lowest temperatures T � TFL,
with TFL¼ min Te

K;T

� �

(although TFL itself may have
a nontrivial gate dependence). At large d � Jþ T
 � Te

K

� �
,

the behaviour of the single-channel AIM20,52 is essentially
recovered for the entire crossover (see red line, Fig. 3b).
However, the universality of the AIM is lost for smaller d due

to the competing involvement of the odd screening channel.
In fact, for T
 � Te

K, appreciable conductance only sets in
around T �T
 (rather than Te

K), and the entire conductance
crossover becomes a universal function of T/T*—different in
form from that of the AIM (see black line, Fig. 3b). The formation
of the Kondo state is reflected in conductance by the following
limiting behaviour,

GðTÞ �T�TFL ln� 2 T=Te
K

		 		 : T
 � Te
K;

T=T
ð Þ�1 : T
 � Te
K:



ð6Þ

Furthermore, the abelian bosonization methods of refs 53–55 can
be applied to single-molecule junctions in the limit T
 � Te

K to
obtain an exact analytic expression for the full conductance
crossover (Supplementary Note 3),

G T;Vsdð Þ=G0¼
T


2pT
Rec1

1
2
þ T


2pT
þ i

eVsd

2pkBT

� �
; ð7Þ

where c1 is the trigamma function. Remarkably, this result also
holds away from thermal equilibrium, at finite bias Vsd � Te

K.
Within linear response, equation (7) is confirmed explicitly by
comparison to NRG data in Fig. 3b, while Fig. 3c shows the
nonequilibrium predictions. The condition T
 � Te

K pertains to
nearly symmetric junctions, tuned near a QI node in Jsd.
Equation (7) should be regarded as a limiting scenario:
conductance lineshapes for real single-molecule junctions will
typically interpolate between the red and black lines of Fig. 3b.

Kondo blockade. At a QI node in the exchange-cotunneling
Jsd¼ 0, conductance through a single-molecule junction is
mediated solely by Wsd. In this case, the molecule spin is fully
Kondo screened by either the source or drain lead (whichever is
more strongly coupled). Only in the special but unrealistic case
Jss¼ Jdd and Jsd¼ 0 does the frustration persist down to T¼ 0. For
concreteness we now assume ph symmetry Wss¼Wdd¼ 0, and
Jss4Jdd such that the even conduction electron channel is simply
the source lead. The drain lead therefore decouples on the scale of
Ts

K. As shown in Supplementary Note 4, one can then prove that,

GðT¼0Þ¼G0 2pr0Wsdð Þ2 1� tssð0; 0Þ½ �¼0; ð8Þ

where tss(o, T) is the T-matrix of the source lead. The Kondo
effect with the source lead, characterized by tss(0, 0)¼ 1, therefore
exactly blocks current flowing from source to drain. This is an
emergent effect of interactions—at high temperatures T � TK

a cb
1 NRG

Vsd = 0

Eq. 5
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Figure 3 | Kondo resonant conductance near a potential scattering quantum interference node. (a) Zero-temperature linear conductance G(0)

as a function of derived 2CK parameters Jss, Jdd and Jsd at Wss¼Wdd¼Wsd¼0. (b) Limiting universal conductance curves G(T/TK) and G(T/T*) in the

single-channel regime (large d, red line) and the frustrated two-channel regime (small d, black line and points), respectively. (c) Exact non-equilibrium

conductance G(T, Vsd) as a function of bias voltage Vsd at various temperatures in the frustrated regime of small d, from equation (7).
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when tssE0, conductance is finite and the perturbative result is
recovered, Gpert/G0E(2pr0Wsd)2.

The zero-temperature conductance node arising for Jsd¼ 0 can
be understood physically, as a depletion of the local source-lead
density of states at the junction, due to the Kondo effect.
Conductance vanishes because locally, no source-lead states are
available from which electrons can tunnel into the drain lead.
From a real-space perspective17, one can think of the Kondo
cloud in the source lead as being impenetrable to electronic
tunnelling at low energies. The effect of this Kondo blockade is
demonstrated in Fig. 4, where full NRG calculations for the
conductance are shown for Jsd¼ 0. The conductance crossover as
a function of temperature is entirely characteristic of the
Kondo effect; G(T)/Gpert is a universal function of T/TK.
At low temperatures, a node in Jsd thus implies an overall
conductance node, even though Wsd remains finite.

The Kondo blockade will be most cleanly observed in real
single-molecule junctions that have strong molecule-lead
hybridization and do not have a nearby Kondo resonance.
In addition to the large Kondo temperature, the perturbative
cotunneling conductance observed at high temperatures T � TK
is also larger in this case, thereby increasing the contrast of the
blockade on lowering the temperature.

We emphasize that the Kondo blockade is unrelated to the Fano
effect34,56,57, which arises due to QI in the hybridization rather
than intrinsic QI in the interacting molecule itself (Supplementary
Note 4). Unlike the Kondo blockade, the Fano effect is essentially a
single-channel phenomenon that does not necessitate interactions,
and different (asymmetric) lineshapes result.

Gate-tunable QI in Kondo-active molecules. In real molecular
junctions, the two conductance mechanisms discussed separately
above (due to finite exchange Jsd and potential scattering Wsd),
are typically both operative. Their mutual effect can be compli-
cated due to renormalization from cross-terms proportional to
Wsd Jsd. However, as the gate voltage Vg is tuned, both Kondo
resonant and Kondo blockade regimes are often accessible due to
QI nodes45 in either Jsd or Wsd. In practice, we observe that

overall conductance nodes can also be shifted away from
the nodes in Jsd by marginal potential scattering Wss and Wdd

(not considered above). We speculate that the conductance nodes
are topological and cannot be removed by potential scattering—
only shifted to a different gate voltage. Precisely at the node, the
low-temperature physics is universal and therefore common to all
such off-resonant spin-1

2 molecules.
To demonstrate the gate-tunable interplay between QI and the

Kondo effect in single-molecule junctions, we now consider two
simple conjugated organic molecules as examples. Following
ref. 45, exact diagonalization of the Pariser–Parr–Pople (PPP)
model58 for the sp2-hybridized p system of the molecule allows
the effective 2CK model parameters to be extracted as a function
of applied gate voltage (Supplementary Note 5). The 2CK model
is then solved using NRG26,27, and the conductance is calculated
numerically-exactly as a function of temperature. These steps are
described in detail in Methods.

Figure 5 shows the conductance G(T) for junctions spanned by
respectively a benzyl, (a) and an isoprene-like molecule (d), as a
function of rescaled temperature T/TK at different gate voltages.
Both systems exhibit Kondo resonant and Kondo blockade
physics. In panel (a), a pronounced Kondo blockade appears near
Vg¼ 0, corresponding to the midpoint of the Coulomb diamond.
Finite conductance at higher temperatures due to cotunneling
Wsd is blocked at low temperatures by the Kondo effect. On
increasing the gate voltage, we find numerically that Gð0Þ� eV2

g ,
with conductance enhancement due to renormalized Jsd (Fig. 5b).
The overall conductance in this case remains rather small for all
eVg analysed. We also note that the Kondo temperature varies as
ln TK=D� eV2

g , Fig. 5c. This gate evolution of TK could be
considered as conventional from the single-orbital AIM perspec-
tive10, but the conductance itself is blockaded rather than
enhanced by Kondo correlations.

However, richer physics can be accessed in junction (d). The
crossovers of G(T) show perfect Kondo resonant conductance at
finite eVg¼ 2.4 eV, reaching the unitarity limit G(0)¼ 2e2h� 1.
But increasing the gate voltage slightly to Vg¼ 2.625 eV yields
almost perfect Kondo blockade, with G(0)C0 (note the log scale).
The full crossovers are entirely characteristic of the underlying
correlated electron physics. Panel (e) shows the evolution of G(0)
as a function of gate voltage at T¼ 0 (and in practice for all
T � TK), which exhibits nontrivial behaviour due to the
interplay between QI and the Kondo effect. The rapid switching
between Kondo resonant and Kondo blockade conductance
with applied gate voltage might make such systems candidates for
QI-effect transistors, or other technological applications.

Finally, in panel (f), we show that the Kondo temperature
also displays an unconventional gate-dependence, with TK

increasing as one moves in towards eVg¼ 0, analogous to the
effect observed experimentally in ref. 28. The Kondo temperature
remains finite for all eVg, but takes its minimum value at the
Kondo resonance peak. In practice, the Kondo temperature can
vary widely from system to system because it depends sensitively
(exponentially) on the molecule-lead hybridization. However,
Kondo temperatures up to around 30 K are commonly observed
in real single-molecule junctions10.

We did not attempt an ab initio calculation of the absolute
Kondo temperatures, but note that the effective bandwidth cutoff
D in the effective 2CK model is essentially set by the large
charging energy of the molecule. For the PPP models used for the
conjugated hydrocarbons in Fig. 5, this in turn is set by the onsite
Coulomb repulsion, taken to be 11 eV within the standard Ohno
parametrization58. With this identification, we have TK� 10 K for
the specific example shown in panel (a) at the Kondo blockade,
and 0.1 K in (d). We emphasize that the Kondo blockade arises on
similar temperature scales to that of the standard Kondo effect in

Kondo 
blockade
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Figure 4 | Kondo blockaded conductance near a quantum interference

node in the exchange cotunneling. NRG results for the conductance

G(T) as a function of rescaled temperature T/TK at Jsd¼0 for various Wsd,

showing in all cases an overall conductance node G(0)¼0. Plotted

for Jss¼0.25D, Jdd¼0.2D and Wss¼Wdd¼0. Dotted lines show the

high-temperature perturbative expectation.
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molecules, and therefore signatures should generally be
observable at experimental base temperatures on gate tuning to
a QI node.

The stark difference in transport properties of the two
molecular junctions shown in Fig. 5 is due to differences in their
QI characteristics—specifically the number and position of QI
nodes in the effective 2CK parameters (Supplementary Note 5).
In turn, this is related to the underlying molecular structure
and contacting geometry, as explored for these alternant
hydrocarbons in ref. 45. Both molecules exhibit a Kondo
blockade due to a node in Jsd, but this arises at eVg¼ 0 for the
benzyl radical in (a–c), whereas there are two nodes at finite
±eVg for the isoprene-like molecule in (d–f). In general, Jsd has
an odd(even) number of nodes as a function of gate in
odd-membered alternant molecules if the source and drain
electrodes are connected to sites of the molecule on different
sublattices(the same sublattice) of the bipartite p system.
The strong Kondo resonance arising at eVg¼ 2.4 eV for the
isoprene-like molecule is a consequence of the parity symmetry
with respect to the contacting geometry, such that JssEJdd

(equation (5)). By contrast, there is no such symmetry for the
benzyl molecule and Jdd happens to dominate.

Although we have exemplified the gate-tunable interplay
between QI and Kondo effect with these conjugated hydrocarbon
moieties, we emphasize that a Kondo blockade should be found in
any off-resonant spin-1

2 molecule with intramolecular interactions
and sufficient orbital complexity to produce a QI node in the
exchange cotunneling.

Discussion
Transport through spinful Coulomb-blockaded single-molecule
junctions requires a description beyond the standard single-orbital
Anderson paradigm. The relevant model is instead a generalized

two-channel Kondo model, to which real molecular junctions can
be exactly mapped. Experimental data for individual molecular
junctions can be understood within this framework, avoiding the
need for a statistical interpretation.

Quantum interference can be classified as being of either
exchange or potential scattering type. Although these distinct
conductance mechanisms are simply additive at high energies,
where standard perturbation theory holds, the low-temperature
behaviour is much richer due to electron–electron interactions
which drive the Kondo effect. We show that the Kondo effect
survives a quantum interference node in the potential scattering
to give enhanced conductance, while a novel Kondo blockade
arises in the case of an exchange cotunneling node, entirely
blocking the current through the junction. This rich physics is
tunable by applying a back-gate voltage, as demonstrated
explicitly for two simple conjugated organic molecules, opening
up the possibility of efficient Kondo-mediated quantum
interference effect transistors.

The theoretical framework we present can be used to
systematically study candidate molecules and help optimize the
type and location of anchor groups for particular applications.
Quantum chemistry techniques could be used to accomplish the
Kondo model mapping for larger molecules. The effect of
vibrations and dissipation (relevant at higher energies5) could
also be taken into account within generalized Anderson–Holstein
or Bose–Fermi Kondo models27.

Methods
Schrieffer-Wolff transformation. We derive the effective Kondo model
describing off-resonant single-molecule junctions by projecting out high-energy
molecular charge fluctuations from the full lead-coupled system. This is equivalent
to a two-channel generalization of the standard Schrieffer–Wolff transformation19.
That is, projecting onto the subspace of Hilbert space where the number, N, of
electrons on the molecule is fixed. The effective Hamiltonian in this subspace has
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was calculated with NRG. (a,d) Conductance G(T) as a function of rescaled temperature T/TK for various gate voltages eVg. (a) shows Kondo blockade

G(0)¼0 at eVg¼0 and Kondo enhanced conductance for Vg

		 		40. (d) shows Kondo blockade at eVg¼ 2.625 eV and perfect (unitarity) Kondo resonance

at eVg¼ 2.4 eV. (b,e) G(0) as a function of gate voltage eVg at T¼0; (c,f) Corresponding Kondo temperatures. Note the sensitive gate dependence of

G(0) in (e), and the corresponding unconventional non-monotonic gate dependence of the Kondo temperature in (f).
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the form

Heff ðEÞ¼P Hleads þHmol þHg þHhybQ E�QHQð Þ� 1QHhyb
� �

P; ð9Þ

where P is a projection operator onto the N-electron subspace of the molecule,
while Q¼ I� P projects onto the orthogonal complement. These subspaces are
connected by Hhyb, and the resolvent operator (E�QHQ)� 1 determines the
propagation of excited states at energy E. Note that PHleads P¼Hleads since P acts
only on the molecular degrees of freedom, and P(HmolþHg)P is merely a constant
and dropped in the following. For the isolated molecule, HmoljCN

n i¼EN
n jCN

n i,
where jCN

n i denotes the n’th N-electron many-body eigenstate with energy
EN

n , and EN
0 is the ground state energy. jCN

n i spans the entire molecule and
generally has weight on all atomic/molecular basis orbitals in Hmol. So far the
treatment is exact.

To second order in Hhyb, Equation (9) reduces to the effective Hamiltonian

Heff¼Hleads þ PHhybQ EN
0 �Q Hmol þHg

� �
Q

� �� 1
QHhybP: ð10Þ

Virtual processes involving a given excited state jCN � 1
n i contribute to

Equation (10) with weight controlled by the energy denominator
hCN � 1

n jEN
0 �QðHmol þHgÞQjCN � 1

n i¼EN
0 � EN � 1

n � eVg, which must be negative
to ensure stability of the N-electron ground state (including the electrostatic shift
from the backgate described by Hg). The perturbative expansion in Hhyb is
controlled by a large energy denominator, and therefore use of Equation (10) is
justified deep inside the N-electron Coulomb diamond. Inserting the tunnelling
Hamiltonian, Hhyb¼

P
askðtakdw

iascask þH:c:Þ, one arrives at the effective
Hamiltonian Heff¼Hleads þHex, with

Hex¼
X
a0k0s0
aks

ta0k0 t


akc
y
aksca0k0s0

X
m0 ;m

CN
m0

		 

Aa0a
s0s;m0m CN

m

� 		
¼
X
a0s0
as

ta0 t


acyasca0s0

X
m0 ;m

CN
m0

		 

Aa0a
s0s;m0m CN

m

� 		; ð11Þ

where the last line follows from the definition of local lead-electron operators
cas¼t� 1

a

P
k takcaks, with t2

a¼
P

k jtakj2. Here m and m0 label (degenerate)
molecular ground states with energy EN

0 . For odd N, the molecule often carries
a net spin-1

2, and so m and m0 are simply the projections Sz¼ � 1
2. The spin density

need not be spatially localized. We now focus on this standard case, although the
generalization to arbitrary spin is straightforward when the molecular ground state
for a given N is more than two-fold degenerate.

The cotunneling amplitudes can be decomposed as,

Aa0a
s0s;m0m¼ha0a

s0s;m0m þ pa
0a

s0s;m0m ð12Þ

where the contributions from hole and particle propagation are given respectively
by,

ha0a
s0s;m0mðVgÞ¼

X
n

CN
m0

� 		dyia0 s0 CN � 1
n

		 

CN � 1

n

� 		dias CN
m

		 

eVg � EN

0 þEN � 1
n � i0þ

; ð13Þ

pa
0a
s0s;m0mðVgÞ¼

X
n

CN
m0

� 		dias CN þ 1
n

		 

CN þ 1

n

� 		dyia0 s0 CN
m

		 

eVg þEN

0 �EN þ 1
n þ i0þ

: ð14Þ

The matrix elements in the numerators (referred to as Feynman-Dyson orbitals)
constitute a correlated generalization of molecular orbitals, and are computed in
the many-particle molecular eigenstate basis.

Since the total Hamiltonian must preserve its original spin-rotational
invariance, the cotunneling amplitude must take the form

Aa0a
s0s;m0m¼1

4Jaa0 sss0 � smm0 þWaa0dss0dmm0 : ð15Þ

This leads to the desired effective 2CK model (equation (2) of subsection ‘Models
and mappings’):

H2CK¼Hleads þ
X
a0s0
as

1
2Ja0aS � ss0s þWa0ads0s
� �

c
y
a0s0 cas: ð16Þ

The 2CK model parameters themselves are obtained from traces with Pauli
matrices

Jaa0 ¼ta0 t


a

X
ss0 ;mm0

ti
s0sAa0a

s0s;m0mt
i
m0m for i¼x; y; z; ð17Þ

Waa0 ¼ ta0 t


a

X
ss0 ;mm0

Aa0a
ss;mm ð18Þ

which, by spin-rotation invariance, further simplify to

Jaa0 ¼2ta0 t


aAa0a
"#;#"¼2ta0 t



a

X
m

Aa0a
"";mmt

z
mm ð19Þ

Waa0 ¼4ta0 t


aAa0a
"";"" � 2Aa0a

"#;#"¼2ta0 t


a

X
m

Aa0a
"";mm ð20Þ

such that in practice only two matrix elements are needed to obtain the exchange
couplings Jaa0 and the potential scattering amplitudes Waa0 .

Equations (13) and (14) therefore encode all the properties of the single-
molecule junction inside an N-electron Coulomb diamond. The exchange and
potential scattering terms in the 2CK model are determined by the amplitudes A
which, from equation (12), have contributions from both particle (p) and hole (h)
processes (that is, processes involving virtual states with Nþ 1 or N� 1 electrons
on the molecule). In particular, note that all quantum interference effects are
entirely encoded in the effective parameters Jaa0 and Waa0—quantum interference
nodes arise if and only if molecular states are connected by particle and hole
processes with equal but opposite amplitudes. As discussed in ref. 45, the
appearance of such nodes can be understood in terms of the properties of the
underlying Feynman–Dyson orbitals.

We emphasize that the effective 2CK model is totally general, applying for any
molecule with a two-fold spin-degenerate ground state, at temperatures less than
the molecule charging energy so that charge fluctuations on the molecule are frozen
(typically the charging energy is large when deep inside a Coulomb diamond, and
therefore the molecule is off-resonant). The 2CK model parameters can be
obtained purely from a knowledge of the isolated molecule, and can therefore be
calculated in practice using a number of established techniques (exact
diagonalization, configuration interaction and so on). The low-temperature
properties of the resulting 2CK model are however deeply nontrivial, requiring
sophisticated many-body methods to ‘attach the leads’ and account for
nonperturbative renormalization effects. In the present work, we do this second
step using the numerical renormalization group27.

An advantage of the effective theory is that it can also be analysed exactly on an
abstract level (independently of any specific realization). This allows us to identify
all the possible scenarios that could in principle arise in molecular junctions. The
basic physics is arguably obfuscated rather than clarified by the complexity of a full
microscopic description: a brute-force method (even if that were possible) may not
yield new conceptual understanding or provide general predictions beyond a case-
by-case basis.

2CK parameters for the molecules presented in Fig. 5 were obtained following
ref. 45; see Supplementary Figs 1 and 2.

Exact diagonalization of Hmol. In this work, we model the isolated molecule by a
semi-empirical Pariser-Parr-Pople Hamiltonian59,60 for the molecular p-system:

Ĥmol¼
X

i;jh i

X
s¼"=#

tijd
y
isdjs þH:c:

� �
þ
X

i

U ni" � 1
2

� �
ni# � 1

2

� �
þ 1

2

X
i 6¼ j

Vij ni � 1ð Þ nj � 1
� �

:

ð21Þ
The operator dw

is creates an electron with spin s on the pz-orbital ij i, nis¼dw
isdis

and ni¼ni" þ ni# . The Coulomb interaction is given by the Ohno parametrization58

Vij¼U=ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~rij

		 		2U2=207:3 eV
q

Þ, where ~rij

		 		 is the real-space distance between

two pz-orbitals ij i and jj i measured in Ångström. For sp2 hybridized carbon, the
nearest neighbour overlap, tij, is tE� 2.4 eV, and UE11.26 eV (ref. 61).

For suitably small molecules, equation (21) can be solved using exact
diagonalization (exploiting overall conserved charge and spin) to provide the
many-particle eigenstates jCN

n i and eigenenergies EN
n . For larger molecules,

approximate methods can also be used, provided interactions are accounted for on
some level. Any molecule can be addressed within our framework, provided the
eigenstates and eigenenergies of the isolated molecule can be determined.

Importantly, the perturbed two-channel Kondo model derived in the previous
section remains the generic Hamiltonian of interest to describe such off-resonant
junctions. The diagonalization of equation (21) is required only to obtain the
parameters J and W, which are then used in subsequent numerical renormalization
group calculations to treat the coupling to source and drain leads. Note that the
calculation of physical quantities such as conductance at lower temperatures
necessitates an explicit and nonperturbative treatment of the leads, and cannot be
achieved with single-particle methods or exact diagonalization alone.

However, once the generic physics of the underlying 2CK model is understood
(a key goal of this paper), the transport properties and quantum interference effects of
specific molecular junctions can already be rationalized and predicted from their 2CK
parameters. The suitability of candidate molecules and the positions of anchor groups
can therefore be efficiently assessed, opening up the possibility of rational device design.

Calculation of conductance. The key experimental quantity of interest for single-
molecule junction devices is the differential conductance G T;Vsdð Þ¼d Isdh i=dVsd.
In this section we recap the generic framework for exact calculations of the linear
response conductance G(T)	G(T, Vsd-0) through a molecule, taking fully into
account renormalization effects due to electronic interactions. We then describe
how the NRG27 can be used to accurately obtain G(T) for a given system described
by the effective model, equation (16).

To simulate the experimental protocol, we add a time-dependent bias term to
the Hamiltonian, H¼H2CKþH0(t), with

H0ðtÞ¼ eVsd

2
cosðotÞ N̂s� N̂d

� �
; ð22Þ

where N̂a¼
P

k;s cwakscaks is the total number operator for lead a. We focus on

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15210

8 NATURE COMMUNICATIONS | 8:15210 | DOI: 10.1038/ncomms15210 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


the serial ac and dc conductance at t¼ 0, after the system has reached an oscillating
steady state. In the zero-bias limit Vsd-0, the exact serial ac conductance at linear
response follows from the Kubo formula62,

Gacðo;TÞ¼ e2

h
� � 2p‘ 2 Im Kðo;TÞ

‘o

� �
; ð23Þ

where K(o, T) is the Fourier transform of the retarded current–current correlator,

Kðt;TÞ¼ iyðtÞ ÔðtÞ; Ôð0Þ
h iD E

T
; ð24Þ

where Ô¼1
2

_Ns � _Nd
� �

and _Na¼ d
dtN̂a . The dc conductance is then simply,

GðTÞ¼ lim
o!0

Gacðo;TÞ: ð25Þ

In practice, NRG is used to obtain K(o, T) numerically. The full density matrix
NRG method63, established on the complete Anders–Schiller basis64, provides
essentially exact access to such dynamical correlation functions at any temperature
T and energy scale o. We use _Na¼i Ĥ; N̂a

� �
to find an expression for the current

operator amenable for treatment with NRG:

iÔ¼ JsdS � ssd þWsd

X
s

cysscds

 !
�H:c:; ð26Þ

where sab¼1
2

P
ss0 cwasrss0 cbs0 .

As the ground state of any conducting molecular junction must be a Fermi
liquid, the system can be viewed as a renormalized non-interacting system at T¼ 0
(ref. 65). The zero-bias dc conductance at T¼ 0 can therefore also be obtained from
a Landauer–Büttiker treatment,

GðT¼0Þ¼ 2e2

h
�4~Gs

~Gd Gsd o¼0;T¼0ð Þj j2; ð27Þ

in terms of the full retarded electronic Green’s function Gabðo;TÞ$
FT � iyðtÞ

hfcasðtÞ; cwbsð0ÞgiT , which must be calculated non-perturbatively in the presence of
the interacting molecule. Here ~Ga¼1= pr0ð Þ. Note that equation (27) applies to
Fermi liquid systems only at T¼ 0 and in the dc limit. The full temperature
dependence of G(T) must be obtained from the Kubo formula.

In practice, Gsd o;Tð Þ is obtained from the T-matrix equation19, which
describes electronic scattering in the leads due to the molecule,

Gabðo;TÞ¼Gð0ÞðoÞdabþ Gð0ÞðoÞ
h i2

� Wab þTabðo;TÞ
� �

; ð28Þ

where Gð0ÞðoÞ is the free retarded lead electron Green’s function when the
molecule is disconnected, such that ImGð0ÞðoÞ¼� prðoÞ, and r(0)¼ r0.

Within NRG, the T-matrix can be calculated directly51 as the retarded
correlator Tabðo;TÞ$FT � iyðtÞhfaaðtÞ; awbð0ÞgiT . For the present problem,
the composite operators,

aa¼
X
g

Wagcg" þ 1
2Jag cg"S

z þ cg#S
�� �� �

; ð29Þ

follow from equation (16) using equations of motion methods. In subsection
‘Emergent decoupling’ we also present NRG results for the spectrum of the
T-matrix, defined as

tabðo;TÞ¼� pr0Im Tabðo;TÞ: ð30Þ

Note that the simple Landauer form of the Meir–Wingreen formula66, which
relates the conductance through an interacting region to a generalized transmission
function, applies only in the special case of proportionate couplings. In single-
molecule junctions, the various molecular degrees of freedom couple differently to
source and drain leads (which are spatially separated), and therefore this standard
form of the Meir–Wingreen formula cannot be used, and one has to resort to using
full Keldysh Green’s functions (or the methods described above for linear
response). The exception is when the molecule is a single orbital—this artificial
limit is considered in Supplementary Note 1.

For the NRG calculations, even/odd conduction electron baths were discretized
logarithmically using L¼ 2, and Ns¼ 15,000 states were retained at each step of the
iterative procedure. Total charge and spin projection quantum numbers were
exploited to block-diagonalize the NRG Hamiltonians, and the results of Nz¼ 2
calculations were averaged. 2CK model parameters for the molecules presented in
Fig. 5 are discussed in Supplementary Note 5.

Data availability. The data supporting our findings are available from the
corresponding author on reasonable request.
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Supplementary Information
Supplementary Note 1: Single-orbital Anderson model limit

Single molecule junctions that exhibit a zero-bias conductance peak attributed to the

Kondo effect are typically modeled using the single-orbital Anderson model,1

Hmol → HAIM =
∑
σ

ε d†σdσ + U d†↑d↑d
†
↓d↓ , (1)

and where Hhyb =
∑

ασ(tαd
†
σcασ+H.c.). This highly simplified model, which entirely neglects

the orbital/spatial structure of the molecule, yields a very particular form of the effective

Kondo model, Eq. (16), upon Schrieffer-Wolff transformation. For any U and ε, one obtains

J2
sd = JssJdd and W 2

sd = WssWdd, meaning that in the even/odd orbital basis (cf. Eq. (4)

of subsection ‘Emergent decoupling’), a standard single-channel Kondo model results. The

odd channel is strictly decoupled (Jo = 0) on the level of the bare Hamiltonian, and no

multi-channel effects can manifest. This has significant consequences for the physics of a

single-orbital model – for example the Kondo temperatures and conductance lineshapes must

take a particular form.

The Kondo temperature associated with the single-orbital Anderson model follows from

perturbative scaling as,1

TK ∼ (ΓU)1/2 exp[πε(ε+ U)/ΓU ] (2)

with Γ = Γs + Γd and Γα = πρ0t
2
α. In the presence of the gate described by Hg, one

has ε → ε − eVg, yielding the standard quadratic dependence on applied gate, lnTK/D ∼

(ε − eVg)(ε − eVg + U). However, note that this behaviour is not necessarily expected in

the case of real single-molecule junctions, since nontrivial gate dependences arise in the

generic multi-orbital case (as shown explicitly in subsection ‘Gate-tunable QI in Kondo-

active molecules’ for the isoprene junction).

Zero-bias conductance through a single Anderson orbital can be obtained from the Meir-

Wingreen formula,8

G(T ) =
2e2

h
G0

∫
dω

(
−∂f
∂ω

)
tee(ω, T ) , (3)

where f denotes the Fermi function and tee(ω, T ) = −πρ0Im Tee(ω, T ) is the spectrum of

the even channel T-matrix. For a single Anderson impurity, Tee(ω, T ) = (t2s + t2d)Gimp(ω, T ),

1



with Gimp(ω, T ) = 〈〈dσ; d†σ〉〉 the full retarded impurity Green’s function. The simple form

of Supplementary Equation 3 applies in the case of proportionate couplings,8 automatically

fulfilled in the single-orbital case. The source/drain asymmetry factor is given by

G0 =
4ΓsΓd

(Γs + Γd)2
≡ 4t2s t

2
d

(t2s + t2d)2
≡ 4JssJdd

(Jss + Jdd)2
, (4)

which is maximal, G0 = 1, for equal couplings ts = td.

The universal form of tee(ω, T ) in the Kondo regime gives the universal temperature-

dependence of conductance9 often successfully fit to experimental data.10,11 Importantly, at

particle-hole symmetry U = −2ε, the Friedel sum rule1 pins the T-matrix to tee(0, 0) = 1

– meaning that G(0) = (2e2h−1)G0 – characteristic of the Kondo resonance. Note that in

this case, the potential scattering terms vanish exactly.1 This is in fact a consequence of

destructive quantum interference between particle and hole processes;2 conductance is due

to the Kondo exchange-cotunneling term alone.

It is instructive to derive the Meir-Wingreen formula Supplementary Equation 3 from the

general Kubo formula Eq. (23), since the subsequent generalization to the two-channel case

(Sec. S6) provides novel results of relevance to single-molecule junctions. The key step here

relies on the fact that the odd conduction electron channel decouples in the single-orbital

Anderson model. First, note that the correlator K(ω, T ) = 1
22
〈〈Ṅs − Ṅd; Ṅs − Ṅd〉〉 can be

written as K(ω, T ) = 1
(t2s+t

2
d)

2 〈〈t2dṄs − t2sṄd; t2dṄs − t2sṄd〉〉 by current conservation. Using

Ṅα = i[Ĥ, N̂α] with Supplementary Equation 1 we then obtain,

K(ω, T ) = −
(

tstd
t2s+t

2
d

)2∑
σ,σ′

〈〈f †oσdσ − d†σfoσ ; f †oσ′dσ′ − d†σfoσ〉〉 , (5)

where foσ = (t2s + t2d)−1/2[tdcsσ− tscdσ] is the local odd-channel conduction electron operator.

Since the odd channel is strictly decoupled from the rest of the system (impurity and even

channel), K(t, T ) factorizes as,

K(t, T ) = −iθ(t)
(

tstd
t2s + t2d

)2∑
σ,σ′[

〈dσ(t)d†σ′(0)〉sys × 〈f †oσ(t)foσ′(0)〉odd + 〈d†σ(t)dσ′(0)〉sys × 〈foσ(t)f †oσ′(0)〉odd

−〈dσ(0)d†σ′(t)〉sys × 〈f †oσ(0)foσ′(t)〉odd + 〈d†σ(0)dσ′(t)〉sys × 〈foσ(0)f †oσ′(t)〉odd
] (6)
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Some lengthy algebra then yields the following result,

Im K(ω, T ) =

(
2t2s t

2
d

t2s + t2d

)∫ ∞
−∞

dω′ Im Gimp(ω′, T )× [ρ(ω′−ω)f(ω′−ω)−ρ(ω′+ω)f(ω′+ω)] .

(7)

In Eq. (23), this gives the ac conductance in terms of the retarded impurity Green function

Gimp(ω, T ), consistent with the findings of Refs. 7 and 12. Taking the limit ω → 0 (and

assuming flat conduction bands as usual), one recovers the dc conductance in the form of

Supplementary Equation 3.

Note, however, that for real molecular junctions involving multiple orbitals where the

two-channel description Eq. (16)instead holds, K(t, T ) cannot be factorized as in Supple-

mentary Equation 6. In general, both even and odd channels remain coupled to the molecule,

and the total conductance then also involves a contribution from the odd channel, requiring

to go beyond Supplementary Equation 3.

Supplementary Note 2: Generalized Kondo resonance and derivation of Eq. (5)

We now consider the generalized 2CK model describing off-resonant single-molecule junc-

tions, Eq. (16), focusing on the particle-hole (ph) symmetric case with W = 0. Quantum

interference effects give rise to such a potential scattering node, and can in principle be real-

ized in any given system by tuning gate voltages. Generically, the junction is still conducting

due to the exchange-cotunneling term, since Jsd 6= 0. The full conductance lineshape G(T ),

must be obtained numerically from NRG. However, the conductance in the low-temperature

limit G(T � TK) ' G(0) can be obtained analytically, as shown below.

Combining Eq. (27)and Eq. (28), and noting that Γ̃α = 1/(πρ0) and G(0)(0) = −iπρ0, we

have,

G(0) =
2e2

h
× |2πρ0Tsd(0, 0)|2 . (8)

In the even/odd orbital basis (Eq. (4) of subsection ‘Emergent decoupling’), Tsd(ω, T ) =

UseU
∗
deTee(ω, T )+UsoU

∗
doToo(ω, T ), in terms of the T-matrices of the even/odd channels. Im-

portantly, as shown in subsection ‘Emergent decoupling’, the odd channel decouples asymp-

totically. The molecule undergoes a Kondo effect with the even channel since Je > Jo; this
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cuts off the RG flow with the odd channel and effectively disconnects it. This is an emergent

low-energy phenomenon, not a property of the bare system. In all cases, therefore, we have

Too(0, 0) = 0, meaning that,

G(0) =
2e2

h
× |2πρ0 UseU

∗
deTee(0, 0)|2 . (9)

Furthermore, at ph symmetry, iπρ0Tee(0, 0) = tee(0, 0) = 1 due to the Kondo effect, and so

G(0) =
2e2

h
× |2UseU

∗
de|2 =

2e2

h
× 4J2

sd

4J2
sd + (Jss − Jdd)2

. (10)

Supplementary Equation 10 generalizes the Meir-Wingreen result for the single-orbital An-

derson model, Supplementary Equation 4, to the generic multi-orbital (molecular junction)

case, and reduces to it when J2
sd = JssJdd.

Supplementary Note 3: Non-equilibrium conductance and derivation of Eq. (7)

In the special case Je = Jo, the effective 2CK model Eq. (16), is precisely at a frustrated

quantum critical point.13,14 In practice, Je = Jo requires both Jsd = 0 and Jss = Jdd,

and is therefore not expected to be relevant to real molecular junction systems. How-

ever, δ = 1
2
(Je − Jo) could still be small, especially near a quantum interference node in

Jsd. When δ2 = J2
sd + J2

− < TK, 2CK quantum critical fluctuations control the junction

conductance. Interestingly, exact analytic results can be obtained in this special regime,

including the non-linear conductance away from thermal equilibrium. Similar calculations

have been performed for the two-impurity Kondo model in Supplementary Reference 15 and

for charge-Kondo quantum dot devices in Supplementary Reference 16.

The source of the exact results is the Emery-Kivelson solution17 of the regular 2CK model

at the Toulouse point.18 By using bosonization methods, Supplementary Reference 17 showed

that a spin-anisotropic generalization of the 2CK model drastically simplifies to a Majorana

resonant level at a special point in parameter space – the Toulouse point (analogous to a

similar spin-anisotropic point for the single-channel Kondo problem18). In Supplementary

Reference 19 Schiller and Hershfield then obtained the nonequilibrium serial conductance at

this Toulouse point, exploiting the fact that the effective Majorana resonant level model is

non-interacting and exactly solvable.
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Of course, physical systems are not near the Toulouse point, and therefore conductance

lineshapes are in general different from those obtained using the Emery-Kivelson solution.

Importantly, however, the 2CK critical point has an emergent spin isotropy.14 This means

that properties of the critical point are independent of any spin-anisotropy in the bare model.

Exploiting the RG principle that the flow from high to low energies has no memory, one

can argue that subsequent low-energy crossovers (due to perturbations to the critical point

δ 6= 0), are also independent of spin-anisotropy in the bare model. In particular, the same

low-energy crossover must occur in the physical spin-isotropic model as at the Toulouse

point. Therefore the Toulouse limit solution can be used for the low-temperature crossover

– provided there is good scale separation T ∗ � TK (where T ∗ ∼ δ2 is the Fermi liquid

crossover scale14 generated by relevant perturbations Jsd and/or J−).

Following Supplementary Reference 19, we obtain Eq. (7) of subsection ‘Kondo reso-

nance’. The precise quantitative agreement between the predicted G(T ) at linear response

and NRG results (see Figure 3b) validate the above lines of argumentation.

Supplementary Note 4: Kondo blockade and derivation of Eq. (8)

We now consider the case of a quantum interference node Jsd = 0. Conductance through

the molecular junction is mediated only by Wsd (for simplicity, we again take the ph-

symmetric case Wss = Wdd = 0). In general, Jss 6= Jdd, meaning that a Kondo effect

will develop with the more strongly coupled lead. For concreteness, we take now Jss > Jdd.

The drain lead therefore decouples for T � TK. As shown below, this produces an exact

node in the total conductance G(T = 0) = 0. The perturbative result for the conductance

G(T � TK) ∼ W 2
sd, valid at high temperatures, is quenched at low temperatures due to

interactions and the Kondo effect.

First, note that the local retarded electron Green’s function of the more strongly coupled

lead vanishes at T = ω = 0 due to the Kondo effect, Gss(0, 0) = 0. This follows from the

T-matrix equation, Eq. (28), using G(0)(0) = −iπρ0 and iπρ0Tss(0, 0) = tss(0, 0) = 1,

Gss(0, 0) = −iπρ0[1− iπρ0Tss(0, 0)] = 0 . (11)

This depletion of the lead electron density at the molecule is due to the Kondo effect, and

arises only for T � TK. The conductance through the molecule is therefore blocked because
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there are no available source lead states to facilitate transport. Formally, this is proved from

the optical theorem, assuming that the low-energy physics can be understood in terms of

a renormalized non-interacting system: the conductance (at T = 0) is then related to the

total reflectance G(0) = (2e2h−1)[1− |r|2], where6 r = 1− 2Γ̃sGss(0, 0).

Alternatively, we can use the Kubo formula, Eq. (23)-Eq. (5)to obtain an expression

for the conductance without resorting to Fermi liquid theory. In this regime with Jsd = 0

but Wsd 6= 0, we have iΩ̂ = Wsd

∑
σ(c†sσcdσ − H.c.). Since at T = 0 the drain channel is

decoupled, K(t, T ) factorizes as in Supplementary Equation 6. Following the same steps as

in Sec. S4, we finally obtain G(0) in terms of the retarded electron Green’s function Gss(0, 0),

G(0) =
2e2

h
× 4iπρ0W

2
sdGss(0, 0) =

2e2

h
× (2πρ0Wsd)2[1− tss(0, 0)] = 0 . (12)

The total conductance at T = 0 therefore exactly vanishes since tss(0, 0) = 1. Note also that

the high-temperature perturbative result is precisely recovered if one sets tss = 0.

One might wonder whether the suppression of conductance due to quantum interference

in Kondo-active molecular junctions is related to the Fano effect20–22 observed e.g. in STM

experiments of single magnetic impurities on metallic surfaces. In fact the mechanisms are

very different – the Kondo blockade arising here is a novel phenomenon. The Fano effect

arises simply because electronic tunneling in an STM experiment can take two pathways –

either into a magnetic impurity, or directly into the host metal. The quantum interference is

completely on the level of the effective hybridization and is a non-interacting effect. There

is no intrinsic quantum interference on the interacting impurity. In the Fano effect, the

effective Kondo model must always have Jsd > 0, and the Kondo effect therefore involves

conduction electrons in both the host metal and the STM tip. Furthermore, the problem

can always be cast in terms of a single effective channel with asymmetric density of states,

yielding asymmetric lineshapes. Note that one also obtains Fano-like lineshapes for trivial

resonant level defects with no interactions.

By contrast, there is no direct source-drain conductance pathway in single-molecule junc-

tion devices – cotunneling proceeds only throughs the molecule, and Jsd = 0 arises due to

intrinsic quantum interference (i.e., a characteristic property of the isolated molecule and

its contacting geometry). The Kondo blockade is an exact conductance node of the strongly

6



interacting system at T = 0, which arises because the molecule is asymptotically bound to

only one of the two leads – its Kondo cloud is impenetrable at low energies to cotunneling

embodied by Wsd. At higher temperatures, the conductance G(T ) ∼ W 2
sd is ‘blind’ to the

quantum interference node in Jsd; the Kondo blockade arises entirely from the interplay

between intrinsic molecular quantum interference and Kondo physics. The Kondo blockade

lineshape is particle-hole symmetric and a universal function of T/TK.

In the context of double quantum dots realizing a side-coupled two-impurity Kondo

model, conductance can also be suppressed.22 However, this arises because two spin-1
2

quantum impurities are successively screened by a single conduction electron channel in a

two-stage process. This mechanism is not related to the Kondo blockade, which involves

a net spin-1
2

molecule and single-stage Kondo screening by two conduction electron channels.

Supplementary Note 5: Cotunneling amplitudes

The benzyl radical in Figure 5(a) of subsection ‘Gate-tunable QI in Kondo-active

molecules’ comprises 7 carbons in a planar arrangement, all sp2 hybridized [formally (λ3-

methyl)-2λ2, 5λ3-benzene], while the isoprene-like molecule in Figure 5(d) involves 5 sp2 hy-

bridized carbons [formally 2-(λ3-methyl)-4λ3-buta-1,3-diene]. The extended π system of each

is described by the Pariser-Parr-Pople model, using the standard Ohno parametrization.4

As input to the NRG calculations, we computed the effective 2CK model parameters from

Eq. (19)and Eq. (20)as a function of gate voltage eVg. These are shown in Supplementary

Figures 1 and 2.
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Supplementary Figure 1. Effective 2CK parameters for the benzyl molecule.

(a,b) Dimensionless exchange coupling Jαα′/(tαtα′); (c,d) dimensionless potential scattering

Wαα′/(tαtα′). A linear(logarithmic) scale is used for panels a & c (b & d). Computed for ts = td.

Note that Jsd has a single node at eVg = 0.

8



-3 -2 -1 0 1 2 310-4

10-3

10-2

10-1

100

101

102

-3 -2 -1 0 1 2 3
-0.2

-0.1

0

0.1

0.2

-3 -2 -1 0 1 2 310-4

10-3

10-2

10-1

100

101

-3 -2 -1 0 1 2 3
-0.2

-0.1

0

0.1

0.2a b

c d

102

Supplementary Figure 2. Effective 2CK parameters for the isoprene-like molecule.

(a,b) Dimensionless exchange coupling Jαα′/(tαtα′); (c,d) dimensionless potential scattering

Wαα′/(tαtα′). A linear(logarithmic) scale is used for panels a & c (b & d). Computed for

ts = 6.17td. Note that Jsd has two nodes at finite gate voltage.
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