Generative Model Learning
for molecular electronics

»

Andrew Mitchell RISH

with Jonas Rigo and Sudeshna Sen EE%%&E”

An Chombhairle um

University College Dublin Thaighde in Erinn




PHYSICAL REVIEW B 101, 241105(R) (2020)

Rapid Communications

Machine learning effective models for quantum systems

Jonas B. Rigo® and Andrew K. Mitchell ®”
School of Physics, University College Dublin, Belfield, Dublin 4, Ireland

(Received 1 November 2019: revised manuscript received 18 May 2020; accepted 26 May 2020;
published 5 June 2020)

Generative Model Learning For quantum impurity systems

Jonas B. Rigo® and Andrew K. Mitchelll
School of Physics, Universily College Dublin, Belficld, Dublin 4, Ireland

The use of single-molecule transistors in nanoclectronics devices requires a deep understanding of
the generalized ‘quantum impurity’ models deseribing them. Microscopic models comprise molecular
orbital complexity and strong eleciron interactions while also treating explicitly conduction electrons
in the external circuit. No single theoretical method can ireat the low-temperature physies of such
systems exactly. To overcome this problem, we use a generative machine learning approach Lo
formulate elfective models that are simple enough to be treated exacily by methods such as the
numerical renormalization group, but still capiure all observables of interest of the physical system.



Motivation: molecular electronics

Extreme miniaturization //  Quantum advantage
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Single-molecule transistors

by
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Modelling and simulation

Retain Retain
only low effective
energy spin local
orbitals moment

Song et al.,
Nature 2009
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Standard methodology

O Ab initio methods to treat
molecular junction

¥

Fit to extended Hubbard model
of active orbitals
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Map to quantum impurity model
using Perturbation Theory

¥

Solve using quantum many-body
computational techniques
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Example. benzene transistor

Hsmy = Hieads + Hmol + Huyb
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Example: benzene transistor
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Example: benzene transistor

Temperature, T/D
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Problems with traditional approach

S : :
Skl X Indirect: two-stage mapping
e h o 8 assumes separation of scales

Perturbative: assumes Iar?e-l.[
limit and neglects renormalization

Complexity: need to “solve” the
molecule exactly

Observables: physical quantities
might not match

X X X
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Machine learning effective models

find the simplest model

\ \ that captures physical
\ N \ phenomena of interest
Y using tools from ML
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What is a good effective model?

\/ Simpler description

\/ Describes low-energy properties
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RG-derivable models
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Iftikhar et al, Nature 526, 233 (2015) Phys. Rev. B 84, 125130 (2011)
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Density Matrix Spectrum

Low-temperature thermodynamics and emergent
energy scales guaranteed by matching the
spectrum of density matrix: q(E) = exp[—BE] p(E)
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pbarle (E) Ipeff(E) (bare (E) Qeff(E)
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Partition Function

Optimized effective models therefore have the same
partition function as the bare model

Z = | dE q(E)

\/ Optimize an effective model on the level of the
partition function such that: Z=2.

BUT: Two totally different, arbitrary and unrelated,
models may “accidentally” have the same Z.



RG-derivable Minimal Models

Partition function is preserved under RG flow!

- Consider only effective models
that are "RG-derivable” from
the microscopic model (use prior
knowledge to limit search)

- Consider “"Minimal Models”
involving RG relevant and
marginal terms only (ensures
search convexity)
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Partition function optimization

Effective model:

Hegr = Z_Hi h;
l

Optimization loss function:
Ly = [log(zeff) — log(Zbare)]Z

Gradient: expectation value of
operators appearing in

dL effective Hamiltonian
3 HZ_ ~ [log(Zesr) — log(Zpare)] "
l
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Anderson to Kondo mapping

Quantum impurity model: Anderson

Avare = Aoan +€a (dfdy +dfd, ) +vafa, afa, + zkgv,{ (dfcio + cipds )

Minimal effective model: Kondo
Hefr = Hpaen +J Sq - S

Optimize Z =2, to find J = J(€4,U,V)
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Anderson to Kondo mapping

1.0
g Zx |
O =z Keeping only RG relevant terms
A in the effective model ensures
0.6 a single solution
10~ 10°
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Anderson to Kondo mapping
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Optimization of effective 0.6-
model can be done at high '
temperatures (converges rapidly 0.4-
for T<U). Do NOT need T<<T
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Anderson to Kondo mapping

1.5

perturbative result
(Schrieffer-Wolff)




Anderson to Kondo mapping

1.5

result from model
machine learning
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Effective model for Benzene junction

See talk by
Sudeshna Sen:
session R21

Benzene
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Limitations of Z-optimization

Must use prior knowledge of form of effective model
Only works for "minimal models”

Solutions may not be unique for more general models
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Observable mismatch?!

Observables in minimal effective models MAY NOT AGREE

with those of the bare modell

1.0 -
<Sd'SO>K AIM->Kondo
(Sd-So)a
0.5
Must keep higher-order
terms (R6 marginal and
RG irrelevant terms) to 0.0

reproduce observables!
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Generative machine learning

Compare density matrices

1 =S A~ ~~
H N — —pbl|H +H +H;
bare - pbare (x) — Z e ,8[ bath hyb lmp]

—~ ~ 1 . . _
H.({6}) = X; 0;h; - Desr(0; x) = Ee—.3[Hbath+th|o+Hef,f({6’})]
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Generative machine learning
0(6) = | dx p(s; Dloglp (€ )

D& €]

YL p(é, x) = %e‘ﬁﬁeff({f})

S Shun-ichi Amari. Manifold, 2016
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Generative machine learning

Optimize effective model parameters
by minimizing KL divergence using gradient descent

p(&o; x)
p(&; x)

Dipléo: €] = fdxp(fo;x)log[
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Generative machine learning

Need to represent the thermal density matrix as a
classical probability distribution: P(z) = (Zvam/Z)w(x)

Expand the partition function:

Z = Zpath / dr w(x)
w(x) = det(AF))A®) exp[—_ﬁ(ﬁimp)x]

K. Haule, PRB
75, 155113 (2007)
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Generative machine learning

P(x) is an energy-based distribution!

Gradient descent:
Hec({63) = X, 0:h,
P(x) = (Zvatn/Z)w(x)
0; D1 [Ppares : Pese] = (Qh;Q )bare (h; >eff

Observable matching optimization!
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Anderson to Kondo mapping

Hp = ﬁbath—l-%Ud(ﬁ-d— +VZ (dl Cog‘l‘(’ogdg)

$

I;Teﬂ — ﬁbath + Jgd . g[} + %DTD ('ﬁ{} — 1)2
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Anderson to Extended Kondo mapping
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Conclusion and outlook

Complex microscopic models of single-molecule junctions

can be mapped to simplified quantum impurity models
using machine learning techniques

Classical energy-based distribution obtained by
expanding the partition function

Minimizing the KL divergence gives a stringent condition
on matching observables; strictly convex optimization!
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