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Motivation:  molecular electronics
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Extreme miniaturization    //    Quantum advantage 



Single-molecule transistors
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Modelling and simulation
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Song et al.,
Nature 2009
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Standard methodology
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Ab initio methods to treat 
molecular junction

Fit to extended Hubbard model 
of active orbitals

Map to quantum impurity model 
using Perturbation Theory

Solve using quantum many-body 
computational techniques



Example: benzene transistor
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Example: benzene transistor
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Example: benzene transistor
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Problems with traditional approach
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Indirect:  two-stage mapping 
assumes separation of scales

Perturbative:  assumes large-U 
limit and neglects renormalization

Complexity:  need to “solve” the 
molecule exactly

Observables:  physical quantities 
might not match



Machine learning effective models
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Goal: 

find the simplest model 
that captures physical 
phenomena of interest 
using tools from ML



What is a good effective model?
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Simpler description

Describes low-energy properties



RG-derivable models
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Iftikhar et al, Nature 526, 233 (2015) Phys. Rev. B 84, 125130 (2011)



Density Matrix Spectrum
Low-temperature thermodynamics and emergent 
energy scales guaranteed by matching the 
spectrum of density matrix:

𝑞bare(𝐸) 𝑞eff(𝐸)

𝑞 𝐸 = exp −𝛽𝐸 𝜌 𝐸

𝜌bare(𝐸) 𝜌eff(𝐸)
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Partition Function

Optimized effective models therefore have the same 
partition function as the bare model

BUT: Two totally different, arbitrary and unrelated, 
models may “accidentally” have the same Z…

𝒁 = ∫ 𝒅𝑬 𝒒 𝑬

Optimize an effective model on the level of the 
partition function such that:  Zeff=Zbare



RG-derivable Minimal Models

Partition function is preserved under RG flow!

→Consider only effective models 
that are “RG-derivable” from 
the microscopic model (use prior 
knowledge to limit search)

→Consider “Minimal Models” 
involving RG relevant and 
marginal terms only (ensures 
search convexity)



Partition function optimization
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Effective model:

Optimization loss function:

Gradient:

𝐿𝑍 = log 𝑍eff − log 𝑍bare
2

𝜕𝐿𝑍
𝜕𝜃𝑖

∼ log 𝑍eff − log 𝑍bare × ෠ℎ𝑖 eff

෡𝐻eff =෍
𝑖
𝜃𝑖 ෠ℎ𝑖

expectation value of
operators appearing in 
effective Hamiltonian



Anderson to Kondo mapping

Quantum impurity model: Anderson 

Minimal effective model: Kondo

Optimize Zeff=Zbare to find 

෡𝐻bare = ෡𝐻bath + 𝜖𝑑 𝑑↑
†𝑑↑ + 𝑑↓

†𝑑↓ + 𝑈𝑑↑
†𝑑↑ 𝑑↓

†𝑑↓ +෍
𝑘,𝜎

𝑉𝑘 𝑑𝜎
†𝑐𝑘𝜎 + 𝑐𝑘𝜎

† 𝑑𝜎

෡𝐻eff = ෡𝐻bath + 𝐽 ෡𝑺𝑑 ⋅ ෡𝑺𝑐

𝑱 ≡ 𝑱(𝝐𝒅, 𝑼, 𝑽)
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Anderson to Kondo mapping

Keeping only RG relevant terms 
in the effective model ensures 
a single solution
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Anderson to Kondo mapping

Optimization of effective 
model can be done at high 
temperatures (converges rapidly 
for T<U). Do NOT need T<<TK
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Anderson to Kondo mapping

perturbative result 
(Schrieffer-Wolff)



Anderson to Kondo mapping

result from model
machine learning



Effective model for Benzene junction

result from 
model machine 
learning

See talk by

Sudeshna Sen:

session R21



Limitations of Z-optimization

Must use prior knowledge of form of effective model

Only works for “minimal models”

Solutions may not be unique for more general models
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Observable mismatch?!

U

AIM→Kondo

Observables in minimal effective models MAY NOT AGREE
with those of the bare model!

Must keep higher-order 
terms (RG marginal and 
RG irrelevant terms) to 
reproduce observables!



Generative machine learning
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෡𝐻eff {𝜃} = σ𝑖 𝜃𝑖 ෠ℎ𝑖 ො𝜌eff 𝜃; 𝒙 =
1

𝒵
𝑒−𝛽[

෡𝐻bath+෡𝐻hyb+෡𝑯𝒆𝒇𝒇 𝜽 ]

෡𝐻bare ො𝜌bare 𝒙 =
1

𝒵
𝑒−𝛽[

෡𝐻bath+෡𝐻hyb+෡𝑯𝒊𝒎𝒑]

Compare density matrices



Generative machine learning
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𝜑 𝜉 = න𝑑𝒙 𝑝 𝜉; 𝒙 log 𝑝 𝜉; 𝒙 𝑝 𝜉; 𝒙 =
1

𝒵
𝑒−𝛽 ෡𝐻eff( 𝜉 )

𝑝 𝜉0; 𝒙 =
1

𝒵
𝑒−𝛽 ෡𝐻bare

Shun-ichi Amari. Manifold, 2016



Generative machine learning
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Optimize effective model parameters
by minimizing KL divergence using gradient descent

𝐷𝐾𝐿 𝜉0: 𝜉 = න𝑑𝒙𝑝 𝜉0; 𝒙 log
𝑝 𝜉0; 𝒙

𝑝 𝜉; 𝒙



Generative machine learning
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Need to represent the thermal density matrix as a 
classical probability distribution:

Expand the partition function:

K. Haule, PRB
75, 155113 (2007)



Generative machine learning
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P(x) is an energy-based distribution!

Gradient descent:

Observable matching optimization!

𝜕𝑖𝐷𝐾𝐿 𝑃bare, : 𝑃eff ≃ ෠𝑄෠ℎ𝑖 ෠𝑄 bare
− ෠ℎ𝑖 eff

෡𝐻eff {𝜃} = σ𝑖 𝜃𝑖 ෠ℎ𝑖



Anderson to Kondo mapping
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Anderson to Extended Kondo mapping
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Conclusion and outlook
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Complex microscopic models of single-molecule junctions
can be mapped to simplified quantum impurity models 
using machine learning techniques

Classical energy-based distribution obtained by 
expanding the partition function

Minimizing the KL divergence gives a stringent condition 
on matching observables; strictly convex optimization!


