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Metrological symmetries in singular quantum multi-parameter estimation
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The theoretical foundation of quantum sensing is rooted in the Cramér-Rao formalism, which establishes quanti-
tative precision bounds for a given quantum probe. In many practical scenarios, where more than one parameter
is unknown, the multi-parameter Cramér-Rao bound (CRB) applies. Since this is a matrix inequality involving
the inverse of the quantum Fisher information matrix (QFIM), the formalism breaks down when the QFIM is
singular. In this paper, we examine the physical origins of such singularities, showing that they result from
an over-parametrization on the metrological level. This is itself caused by emergent metrological symmetries,
whereby the same set of measurement outcomes are obtained for different combinations of system parame-
ters. Although the number of effective parameters is equal to the number of non-zero QFIM eigenvalues, the
Cramér-Rao formalism typically does not provide information about the effective parameter encoding. Instead,
we demonstrate through a series of concrete examples that Bayesian estimation can provide deep insights. In
particular, the metrological symmetries appear in the Bayesian posterior distribution as lines of persistent likeli-
hood running through the space of unknown parameters. These lines are contour lines of the effective parameters

which, through suitable parameter transformations, can be estimated and follow their own effective CRBs.

I. INTRODUCTION

Fundamental scientific advances are often facilitated by
breakthroughs in calibration and readout techniques that in-
crease the measurement precision of sensors. Quantum sens-
ing is a prime example in which quantum features, such as
entanglement [1-4], squeezing [5—7] and criticality [8—18],
are harnessed to enhance the precision of parameter esti-
mation well beyond the capacity of their classical counter-
parts [19-21]. Quantum sensors have now been developed
in various physical platforms such as optical setups [22-24],
ion-trap systems [25], cold Bosonic atoms [26], nitrogen va-
cancy centres [27], superconducting qubits [28, 29], nuclear
magnetic resonance systems [30], and Rydberg atomic sys-
tems [31]. More recently, nanoelectronic devices have been
put forward as a promising alternative [32, 33], since com-
plex many-body states of quantum matter can be engineered
in such systems [34, 35], including nontrivial critical points
[36, 37], that could be leveraged for sensing. Quantum sensors
are now used to search for elementary particles [38, 39], mea-
suring fundamental constants of the universe [40], developing
ultra-precise clocks [41, 42], thermometry [43-52], biologi-
cal inter-cell monitoring [53] and measuring electric [31, 54],
magnetic [55-59] or gravitational fields [60-64] with un-
precedented precision. The theoretical basis for quantum
sensing is rooted in the Cramér-Rao inequality, which estab-
lishes fundamental limits on the achievable precision of quan-
tum sensors [65, 66]. This framework provides a complete
understanding of single-parameter sensing, delivering a tight,
saturable bound on precision as well as a systematic approach
for identifying the optimal measurement basis that achieves
this bound, see Ref. [67] for a detailed review.
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However in many practical situations, there is uncertainty
in more than just one parameter, and then the multi-parameter
estimation framework must be used instead [66, 67]. This has
several important consequences that must be taken into ac-
count when designing the metrological strategy. Typically the
precision of quantum sensing for a given parameter is nega-
tively affected by uncertainty in other parameters [68]. This
is still captured by the Cramér-Rao formalism, but it becomes
considerably more complex for multi-parameter sensing. The
precision is quantified by a covariance matrix whose ele-
ments describe the interdependence of the estimated param-
eters. When the measurement setup is specified, the Cramér-
Rao formalism bounds the covariance matrix by the inverse of
the classical Fisher information matrix (CFIM), F . The low-
est possible bound is then given by optimizing over all pos-
sible measurements. The Cramér-Rao bound (CRB) is then
provided by the inverse of the quantum Fisher information
matrix (QFIM), 7. Because the CRB is a matrix inequality
that applies element-wise, the bounds for different parameters
are often not simultaneously saturable in the case of multi-
parameter estimation. This happens when the optimal mea-
surements for different parameters do not commute. This is-
sue, also known as measurement incompatibility, has recently
been the subject of intense study [69-77].

However, another (but much less well studied) aspect of
multi-parameter quantum sensing is the possibility that the
Fisher information matrices may become singular — that is,
not invertible. In fact, this scenario is not uncommon. In
such a case, the Cramér-Rao formalism breaks down and the
multi-parameter CRB, which involves the matrix inverse of
the CFIM or QFIM, becomes undefined. The CFIM can be
singular even when the QFIM is not singular. This happens
when the measurement setup is incomplete [78]. However,
this problem can in principle always be overcome by simply
changing the measurement basis, switching to POVMs, or ex-
ploiting sequential projective measurements [79].
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The singularity of the QFIM, however, presents a far more
fundamental challenge, since this implies that the CFIM must
also be singular for all possible measurement settings. We
show in this paper that the QFIM becomes singular when
even optimal measurements cannot distinguish between sys-
tems with different sets of the unknown parameters. The sta-
tistical models constructed using the measurement data are
in such cases identical, and this ambiguity spoils the stan-
dard estimation strategy. The QFIM singularity implies a
“metrological symmetry” in which the set of measurement
outcomes are asymptotically invariant to certain transforma-
tions of system parameters. This arises due to an effective
over-parametrization on the metrological level; this can hap-
pen even when the quantum state used for estimation has no
such over-parametrization. We show that the number of non-
zero eigenvalues of the QFIM is equal to the number of ef-
fective parameters, whereas the zero eigenvalues correspond
to constraints that give rise to the metrological symmetries.
However, the effective parameter encoding and the effective
CRBs for these parameters is extremely challenging or even
impossible to extract from analysis of a singular QFIM.

We therefore turn to Bayesian estimation, and show that
not only are unambiguous signatures of QFIM singularities
immediately obvious in the multinomial posterior distribu-
tion, but that detailed information about the effective parame-
ter encoding and metrological symmetries can be straightfor-
wardly read off. This information can be used to perform a
re-parameterization (which is in general a non-linear coordi-
nate transformation), for which the marginalized probability
distributions of effective parameters tend to Gaussian and fol-
low effective CRB scaling. The values of the effective param-
eters can therefore be reliably estimated within the Bayesian
strategy, even for singular multi-parameter problems.

This is illustrated in Fig. 1, where we compare the Bayesian
posterior distribution for estimation of two parameters 6; and
6, after M = 100, 300 and 1000 measurements (left to right)
for the standard non-singular case (upper panels) and a situa-
tion where the QFIM is singular (lower panels). The specific
example shown is for the Heisenberg trimer model (see Ap-
pendix A) but the qualitative behavior is very generic. In the
non-singular case, the posterior converges to a unique point
in parameter space as more data are collected, correspond-
ing to the true values of the unknown parameters. By con-
trast, for a singular system a persistent /ine of high likelihood
emerges. This line encodes the metrological symmetry: the
line passes through the true value of the parameters, but mea-
surements cannot distinguish systems with different parameter
values that lie along this line. The line itself sharpens up as
more data are collected, and converges to a contour line of the
effective parameter. The effective parameter can therefore be
estimated, with a precision that follows an effective CRB.

In this paper we examine the physical origins of QFIM sin-
gularities, discuss their connection to metrological symme-
tries, and show how Bayesian estimation can be used to un-
cover these metrological symmetries. We show through con-
crete examples that the functional dependence of effective pa-
rameters on the original parameters can be extracted, and that
these effective parameters can be reliably estimated.
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FIG. 1. Illustration contrasting Bayesian estimation for singular vs
non-singular multi-parameter metrological problems. We show typ-
ical posterior distributions after M = 100, 300 and 1000 measure-
ments, with the non-singular case (top panels) converging to a point
in the space of unknown parameters 6, and 6,; whereas in the singu-
lar case (bottom panels) the distribution converges instead to a line,
encoding an effective metrological symmetry. The example shown is
for the Heisenberg trimer, see Appendix A for further details.
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II. PARAMETER ESTIMATION

In this section, we provide a brief review of quantum esti-
mation theory. We focus on two different techniques to anal-
yse quantum sensing problems, the frequentist and Bayesian
approaches, and show how the two are connected through the
Bernstein—von Mises theorem [80, 81]. We highlight key re-
sults that will be used throughout the rest of the paper, how-
ever readers who are already familiar with these methodolo-
gies may wish to proceed directly to Sec. III.

A. Frequentist approach

The most general quantum sensing scenario arises when
there is a set of d unknown parameters g = 64,65, ...,0,) to be
estimated through suitable measurements of a quantum probe.
Information about these parameters is imprinted on the state
of the probe, described by the density matrix o (ﬁ) For a given
set of POVMs {I1;}, the uncertainty of inferring the set of pa-
rameters from M measurements on the probe is set by the
Cramér-Rao Bound (CRB) [65-67],

cOv[é’ > ﬁ?f“‘ : 1)

where Cov[g] represents the covariance matrix whose gle-
ments are given by Cov(6;, 0;)=((6,—(6;))(8;—(6;))) and F is
the CFIM whose elements are given by,

Fij=E[(00np(xc16)) (36, np(x 16)] . @

where p(xklg) denotes the probability of obtaining measure-
ment outcome x; conditioned on the parameters having a

value § through the Born rule p(xklﬁ) = Tr{Hk@(g)}.



The QFIM 7 is obtained by maximizing over all possible
POVMs. Its elements can be expressed in terms of the sym-
metric logarithmic derivative (SLD) operators as [66],
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where I; the SLD operator for parameter §;. Formally, the
SLD is implicitly defined by the solution of the self-adjoint
operator equation,

(Li6(@) + 0@)L;) . )

We note that diagonal elements of the QFIM are identical to
the single parameter QFIs, I ;i =1 (6;) while the off-diagonal
elements encode correlations between measurements. The
QFIM is a real-symmetric, positive-semidefinite matrix. Us-
ing the spectral decomposition of the density matrix @(5) =
Y.ieile) (e, elements of the QFIM can be written as,
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which for pure states ¢ =
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The fundamental attainable precision of multi-parameter
estimation is set by the quantum CRB,
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which is again a matrix inequality. Similar to single-parameter
estimation, saturation of the bound requires large datasets and
assumes local knowledge as well as unbiased estimators. The
SLD operator L; corresponds to the optimal measurement to
estimate parameter 6;. It is in general a complicated operator
and is not necessarily practical from an experimental point of
view. This can be seen from the explicit form of the SLD
operators whose matrix elements read [66],
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For pure states this reduces to L; = 2 (I ) Do, | + 10, )<pl). In
general the bounds are not simultaneously saturable for all pa-
rameters since the SLD operators L; for different parameters
6; may be incompatible [74, 76] and therefore no mutual opti-
mal measurement basis exists. This is known as measurement
incompatibility and is a key factor that potentially prevents
the ultimate precision bound in Eq. (7) from being saturated
in practice. In such scenarios, precision trade-offs are funda-
mentally unavoidable. The necessary and sufficient condition
for attainability of the quantum multi-parameter CRB is that
Tr (@[ii,ﬁj]) = 0 [66]. When this condition is not satisfied
and the issue of measurement incompatibility arises, finding
an optimal strategy becomes very challenging [76, 77, 82].

Since Eq. (3) features the anticommutator of SLDs, rather
than the commutator, we note that even when a single opti-
mal measurement basis exists for all parameters and the multi-
parameter bound is saturated, the precision of estimation for
a given parameter is still generically lower than that obtained
when performing true single-parameter estimation, due to cor-
relations encoded in the off-diagonal QFIM elements [83].

Apart from the measurement incompatibility issue, invert-
ibility of the Fisher information matrices may be a problem
for multi-parameter estimation. In the case of an invertible
QFIM but a singular CFIM, the issue is associated to incom-
pleteness of the chosen measurement setup [78]. The solution
is to extend the number of measurement outcomes through
either switching from projective measurements to POVMs or
by exploiting sequential projective measurements [79]. The
singularity of the QFIM is more dangerous as it directly im-
plies that the CFIM is necessarily singular for all choices of
the measurement setup. Indeed, the CRB is only meaningful
when the QFIM is invertible, meaning det[J] > 0. For the
two-parameter estimation problem, this requires,

det[j]EI,‘,,‘Ij,j—I,‘,jIj’i>0. ©)]

When det[j ] = 0 the quantum CRB becomes undefined and
nothing can be said about the precision of parameter estima-
tion [68, 78, 79, 83-87] of the parameters g A singular QFIM
implies a diverging variance on measurements and, therefore,
a vanishing signal-to-noise ratio for parameter estimation. In
the later sections of this paper, we discuss the situations where
the QFIM becomes singular and how information about the
system can nevertheless still be extracted in such cases.

B. Bayesian approach

Bayesian estimation theory offers a useful and versatile ap-
proach to quantum metrology [48, 88-94]. Under standard
conditions, asymptotically optimal estimators can be obtained
using Bayesian estimation in the large dataset limit, i.e. when
the number of measurements M — oo. Unknown values of
target parameters g are treated as well-defined stochastic vari-
ables. Information about this set of parameters is initially as-
sumed to follow a distribution P(§) called the prior. If no
information about the parameters is initially known, except
that they fall in some range 6; € [Himi“, 6,M%*], then the prior is
taken to be a uniform distribution P(§) = IT;(6,m — g,mim)~1,
Such a distribution indicates our limited a priori knowledge
of the parameters g. Bayesian estimation as considered here
represents a global perspective on sensing, as opposed to the
local one assumed by the frequentist approach [46, 95-100].

For a given set of M measurements, each outcome k ap-
pears ny, times such that ), n; = M. The distribution encod-
ing our updated knowledge from the observed measurement
data is determined by Bayes’ theorem,

P(in 1) P(5)
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where the posterior P (5 | {nk}) determines the remaining un-
certainty about the true parameter values and represents the
conditional distribution of the parameters 7] given the observed
measurement data {rn;}. The denominator P ({n;}) ensures nor-
malization since the posterior should represent a valid proba-
bility distribution. The likelihood function,

[

k

M!
P({mi} 1 ) o
is a multinomial distribution in the multi-parameter case, com-
puted using the measurement data {n;}. It represents the
conditional probability of obtaining a particular dataset, {n;},
given that the parameters are 6. Here, ny is the frequency of
the specific outcome , such that p;"* = ni/M is the experi-
mental likelihood that a given measurement yields outcome k.
On the other hand, p}(h =Tr [@(g)f[k] is the theoretical proba-
bility of obtaining outcome k given the parameters have value
g from a set of POVMs {I1;}. In the limit of large M, p? ap-
proaches the theoretical value of p}ch. After M measurements,
the Bayesian posterior distribution is computed via Eq. (10)
from the prior distribution and the measurement data {rn;}. The
prior is then updated, P(ﬁ) - P(ﬁ | {nk}) and a new set of
measurements can be used to further improve our knowledge
about the unknown parameters.

The Bayesian estimate 0; of parameter 6; obtained at the end
of this process, after M measurements on the system, is given
by the Bayesian average,

o= [avar(@im) .

where dV = d6,d6,...d6, is the metrological volume element
in parameter space, such that the integral runs over all un-
known parameters. Furthermore, the individual posterior dis-
tribution for parameter ; can be obtained by marginalizing the
multinomial distribution over the other unknown parameters,

(1)

PG 1 = [ avip (@) m) (12)
where dV; = dV/d6;.

For finite M the variance of the posterior is finite and gives
a measure of the precision of the Bayesian estimator 6,

2
Var(éi)zfdvefp(§| {nk})—[deGiP(§| {nk})] . (13)

The variance of the Bayesian estimator obtained in this way is
related to the CRB, as discussed in the following subsection.

C. Marrying frequentist with Bayesian:
Bernstein—von Mises theorem

For non-singular quantum multi-parameter estimation
problems, the Bernstein—von Mises theorem (BVM) theo-
rem [80, 81] ensures, through the central-limit theorem, that

the Bayesian posterior distribution Eq. (10) converges to a
multivariate Gaussign distribution, centered on the true value
of the parameters, §". The width of the Gaussian reduces as
the number of measurements M is increased. In fact, for large
M, the covariance of the posterior Gaussian i§ given by the
quantum multi-parameter CRB [80, 81], Cov[g] = [Mj ]_l.
The Bayesian strategy therefore allows the unknown param-

eters to be extracted precisely and unambiguously in the
asymptotic limit, M — oco. Specifically, for large M we have,
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The BVM therefore provides the fundamental connection be-
tween the Bayesian and frequentist approaches.

Crucially, the BVM assumes an invertible QFIM, and is in-
applicable for singular estimation problems. In the singular
case, the Bayesian posterior distribution generally will not
converge to Eq. (14). Singularities in the QFIM therefore
have deep implications for parameter estimation also in the
Bayesian scenario. However this raises the obvious question:
what does the Bayesian posterior converge to (if it does con-
verge) for problems with a singular QFIM, and what (if any-
thing) can be learned about the parameters to be estimated
from this? These questions are answered in the following.

III. MULTI-PARAMETER ESTIMATION IN
THE CONVENTIONAL (NON-SINGULAR) CASE

Before discussing singular cases and to contextualise our
results, here we review the typically-encountered scenario
of multi-parameter sensing in which the QFIM is invertible
and thus conventional sensing strategies are applicable. We
demonstrate this in the concrete setting of the XY model,
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which describes a system of N spins-%, with arbitrary cou-
plings A;; between spins i and j, and spin anisotropy 7;;, sub-
ject to a magnetic field & along the z-axis. Here &, . denote
the usual Pauli operators.

In this section we will study Hyy in a ring geometry, cor-
responding to uniform nearest-neighbour interactions 4;; = A
and y;; = 7y for adjacent spins. The system can be mapped to a
non-interacting fermionic model via the Jordan-Wigner trans-
formation, and solved exactly [101-103] by Fourier transform
(see Appendix B). We consider the (pure) ground state sensi-
tivity to parameter variations to assess metrological utility in
the multi-parameter case, employing Eq. (6) to compute the
QFIM. We illustrate our results for system size N =4, but re-
mark that the qualitative behaviour is generic and applies for
any N > 4. For N < 4, the fully-connected geometry leads to
a singularity of the QFIM, as discussed later in Sec. VIII.

Here we consider the dual estimation of the coupling A and
anisotropy 7y in the XY-model on a ring, assuming that the

} |
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FIG. 2. Multi-parameter Bayesian estimation for the non-
singular case. We consider joint estimation of A and 7y using the
ground state of the XY model on the ring geometry with N = 4 sites,
assuming that the field # = 1 is known. Multinomial posterior dis-
tributions after M = 200 and 10000 measurements are shown in
(a,b), with the white dotted lines denoting the true parameter values
at (A", ") = (0.5,0.6). Line-plots show the corresponding marginal-
ized univariate distributions for each parameter. (c) Average estimate
A (black line) and its error (blue shaded region) as a function of M,
averaged over 500 numerical experiments. Red line denotes the true
value A" = 0.5, to which the estimator correctly converges. (d) In-
verse variance of the posterior distribution for Pl (black line) vs M
compared with the scaling prediction from the CRB Eq. (7) (orange
dashed line) using the QFIM from Eq. (16). (e) Full sensitivity phase
diagram of posterior variance MVar [;l] vs A" and y". Results shown
for M = 10000. (f) Analogous sensitivity phase diagram obtained
from the CRB. The star point corresponds to the values used in (a-d).

field £ is known. The QFIM for arbitrary N follows as [68],

oy 16 sin’ (k) ny? hyd (h+ Acos k)
o4 e hyd(h+ Acosk)  A>(h+ Acosk)* )’
(16)

with momentum k = 7(2n + 1)/N forn = 0,1,2,...

N
) L?J - 1,
and dispersion ¢ = 2 \/(h + Acosk)? + A2y2 sin” k. From this

we see that det[]' rlng] > 0 for all N >4 when v, A, and h are
nonzero. The 1nvert1b111ty of the QFIM in the ring geometry
implies that the parameters A and vy are estimable by making
measurements on the system, with the optimal precision fol-
lowing the CRB, Eq. (7). The finite off-diagonal elements of
the QFIM indicate correlations between the measurement out-

come statistics for these unknown parameters.

To showcase the success of standard Bayesian estimation
for this non-singular problem, we present numerical results in
Fig. 2. Here we take a fixed known field 2 = 1 and seek to
estimate the value of the parameters g= (4,v). The true value
of these parameters is taken to be A" = 0.5 and y"* = 0.6,
arbitrarily chosen. Our observable of choice is the total mag-
netization, 62" = }; 6'2, and POVMs are constructed from its
eigenbasis. We motivate this choice of measurement by noting
that (i) for the N =4 setting considered, the total magnetization
constitutes an optimal measurement, i.e. [Lg o"‘"] 0 with 6
being either A or ; and (ii) this observable is an experimen-
tally feasible measurement. The SLDs for the two parameters
are compatible, which means that the corresponding CRBs for
each parameter can be simultaneously saturated by measuring
the magnetization. We take our initial pior to be uniform, and
sample over the range 0 < 6 < 2 for § = A or y. We update
the prior after ever 100 measurements, with the total number
of measurements being M. Experimental data are simulated
as a series of randomly-generated measurement outcomes.

Figure 2(a,b) shows the Bayesian multinomial posterior
distribution after M = 200 and 10000 measurements, with the
associated line plots being the marginalized univariate distri-
butions for each parameter following Eq. (12). Importantly,
as the number of measurements M is increased, the posterior
converges to a unique point in parameter space, correspond-
ing to the true values of the parameters to be estimated ", de-
noted by the white dotted lines. This is the behavior expected
from the BVM theorem for a non-singular system, with the
posterior converging to the multivariate Gaussian in Eq. (14).
The marginalized distributions are also seen to converge to
univariate Gaussian profiles, with a width that decreases as M
increases. As expected, the precision of parameter estimation
improves as more data are collected.

In Fig. 2(c) the estimated value (Bayesian average) of the
coupling A is plotted (black line) as a function M. This is
obtained from the full posterior distribution at a given M via
Eq. (11). Also shown as the blue shaded region is the error
(signal noise), quantified by the standard deviation of the pos-
terior. We see that A converges to the true value A" at large
M and the error decreases. Furthermore, in panel (d) we plot
the (inverse) variance from Eq. (13) (solid line), comparing
with the prediction from the CRB, Eq. (7), computed using
the QFIM from Eq. (16). The overall linear scaling of the
Bayesian estimate precision [Var()]™!, as well as the precise
rate of precision gain with M, is in exact agreement with the
CRB. This vividly demonstrates the agreement between the
frequentist and Bayesian approaches in the limit of large M.

One can repeat this numerical experiment for each combi-
nation of the true parameters gr = (A", "), each time per-
forming Bayesian estimation for A starting from a flat prior,
and computing the resulting variance of the estimators after
M measurements. For each point in the parameter space,
(A", »™), we then compare this variance with that predicted
from the CRB via the QFIM for the same M. The result-
ing ‘sensitivity phase diagrams’ are shown in Figs. 2(e,f) —
Bayesian estimate on the left, CRB prediction on the right.



For M = 10000 measurements as shown, we see excellent
quantitative agreement across the majority of the parameter
space. Here, black and blue regions denote areas of high pa-
rameter sensitivity, i.e. low variance, whereas a yellow colour
denotes a low sensitivity, i.e. large variance (note also the log-
scale). Interestingly, the agreement between the CRB predic-
tion and the Bayesian estimate deteriorates near y =0 and at
smaller values of A. This is, in fact, expected because the pre-
cision of estimation for the parameter A given by [Var(D)]™! is
proportional to the QFIM determinant within the frequentist
approach and the QFIM determinant in this case vanishes as
v,A — 0, see Appendix B. Not only is the sensitivity lower in
this region, but Bayesian estimation becomes more challeng-
ing. For any finite QFIM determinant, the Bayesian estimate
must converge with a precision given by the CRB; however
the BVM theorem [80, 81] applies only asymptotically in the
limit of large M. Our results show that when the QFIM de-
terminant is finite but small, a larger number of measurements
M is needed in practice to attain the precision bound set by
the CRB. Indeed, in regions of the phase diagram where the
QFIM determinant vanishes, the inverse cannot be computed;
then the CRB and the BVM theorem no longer apply.

IV. QFIM SINGULARITIES: METROLOGICAL
SYMMETRIES AND ZERO EIGENVALUES

In quantum sensing, measurement data are used to con-
struct statistical models from which the values of unknown
parameters are inferred. One might suppose therefore that if
different sets of parameters asymptotically yield the same sta-
tistical model, then this ambiguity could lead to a breakdown
in our ability to reliably estimate parameters from these mea-
surements. From this one might guess that when measure-
ments cannot distinguish between different sets of parameters
g and @, the QFIM becomes singular. This picture implies a
kind of ‘metrological symmetry’ in singular systems, where
the metrological outcome is invariant to the transformation
§ — @. We therefore have a redundancy in the parameter
encoding, leading to over-parametrization on the metrological
level. In such instances the number of effective parameters is
less than the number of original parameters.

A singular QFIM has zero determinant, and therefore at
least one eigenvalue must be zero, since the determinant is the
product of the eigenvalues. In fact, as shown below, when-
ever the number of effective parameters is less than the num-
ber of bare parameters, at least one zero eigenvalue is guar-
anteed, and therefore the QFIM is indeed necessarily singu-
lar. This makes the connection between metrological over-
parametrization and QFIM singularity precise.

Theorem 1. The number of non-zero QFIM eigenvalues is
equal to the number of effective parameters.

Proof. Consider a system with d bare parameters g to be esti-
mated. Since the QFIM of these bare parameters is a real sym-
metric semi-definite matrix, it can always be diagonalized,

PN
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where U is a d x d orthogonal matrix and 9 = diag(@) is
a diagonal matrix with k non-zero elements. Eigenvalue G,
is given by G, = ¥, ; UigUja X T 9.0,- Since the QFIM 7 (5)
and the transformation matrix U (5) are both functions of the
underlying parameters g, each zero ei genvalue G, = 0 consti-
tutes a constraint of the type ha(6) = 0. Since U is orthog-
onal, we have d — k such independent constraints when we
have k non-zero eigenvalues. By the implicit inverse theorem,
each constraint ha(ﬁ) = 0 can in principle be used to eliminate
a parameter from the problem, thus reducing the number of
metrological degrees of freedom by one. Therefore, the num-
ber of effective independent parameters in the problem is the
number k of non-zero eigenvalues. O

A corollary is that for k < d we have at least one zero eigen-
value and therefore the QFIM is singular.

The natural question then is: what information is contained
in the non-zero QFIM eigenvalues and their corresponding
eigenvectors? To answer this, we first consider the gen-
eral re-parametrization g - X» where each new parameter

. = fa(g) is a function f, of the original parameters g. Here
we consider a one-to-one bijective mapping with d original
parameters and d new ones. We now employ the chain rule
Oy = ( D) - (Dg, X), where V = (0y,> 0y, ...) is the gradi-
ent operator in the transformed parameter space of X» together
with Eq. (5) to write Tg,9, = Y05 Ly, 0, X (96, Xa 96, Xb)-
Therefore we can write,

I@=mMIi@m, (18)

where 1 () is the QFIM in the transformed coordinates and
M is the d x d Jacobian matrix with elements Mb, i = 0o, X0
From Eq. (17) we can then relate the QFIM eigenvalues to
elements of the QFIM in the transformed coordinates, D =
N 7 0 (MU). QFIM eigenvalues are therefore in general
complicated linear combinations of QFIM elements in trans-
formed coordinates.

A special but important case arises when the re-
parametrization g — x brings the QFIM into diagonal form.
Inverting Eq. (18) we have 7 () = (M~")T 7()M~'. However,
this expression cannot be directly compared with Eq. (17) de-
spite its structural similarity because the Jacobian M is not
typically an orthogonal matrix. Indeed, we comment here that
it is not at all obvious that a set of functions { fa(g)} can always
be found that allows for such a re-parametrization that will di-
agonalize the QFIM. That is, some multiparameter estimation
problems may be irreducibly correlated, with no representa-
tion in terms of fully independent effective parameters.

Returning now to the case of a singular QFIM, we have
k < d estimable effective parameters 9] corresponding to the
non-zero eigenvalues, and d — k > 0 metrologically “dark”
parameters A corresponding to the zero eigenvalues. Together
Q and A comprise the d transformed parameters y. It is in
general a formidable challenge when starting from the original
QFIM 1(#) to find a proper re- parametrlzatlon to the set of
effective parameters Q in terms of which 7 (Q) is diagonal.
Indeed this might not always be possible.



However the problem becomes tractable for the case of a
single effective parameter Q (that is, k = 1 with d — 1 zero
eigenvalues). In this case it can be shown that the single non-
zero QFIM eigenvalue G| is given by,

G = Iox (VeQ)?, (19)

with 7 an effective single-parameter QFI. Furthermore, we
find a condition on the corresponding QFIM eigenvector if;

satisfying 7(f)it, = Gyit,, which can be expressed,

(20)

The QFIM eigenvector is therefore related to the gradient of
the corresponding effective parameter. The effective parame-
ter can in this sense be viewed as a kind of metrological “po-
tential” that sources the QFIM eigenvector “field”. We give
examples of the relation between the effective parameter and
the corresponding QFIM eigenvector field in Appendix A.

In principle, the QFIM can be diagonalized and then
Eq. (20) can be inverted to extract the parameter encoding
for singular estimation problems; that is, the functional de-
pendence Q = f (5). However, in practice this is extremely
difficult and can only be done analytically for the simplest of
cases. On the other hand, with a knowledge of 9(5) one can
readily verify that Eq. (20) holds.

For the above case of a single effective parameter we have
d -1 > 0 “dark” parameters A corresponding to the zero
QFIM eigenvalues. These cannot be estimated. They relate
to the metrological symmetries because changing a dark pa-
rameter A j(é)) does not affect the measurement outcomes or
our statistical model on which the estimators are based.

In the following sections we present concrete examples of
such effective parameter encoding, where Eqs. (19) and (20)
can be verified explicitly. We emphasize however that analysis
on the level of the QFIM alone does not typically yield useful
information about the effective parameter encoding because
expressions like Eq. (20) cannot in practice be inverted. It be-
comes even more complicated when there are several effective
parameters. Instead, we shall see that the Bayesian approach
gives us direct access to the effective parameters, and allows
us to vividly visualize the metrological symmetries in singular
multiparameter estimation problems.

V. PHYSICAL ORIGIN OF QFIM SINGULARITIES

As discussed in the previous section, over-parametrization
leads to singularities in the QFIM and the emergence of a re-
duced set of metrological effective parameters. We now iden-
tify three main physical situations where this occurs.

1. Type 1 over-parametrization: state dependence
on effective parameters. In this type of over-
parametrization, the quantum state of the probe directly
depends on effective parameters and thus metrological
symmetries exist in the level of quantum state of the

probe. Consequently, the data coming from measure-
ments naturally reflect such symmetries and hence the
QFIM becomes singular.

2. Type 2 over-parametrization: measurement depen-
dence on effective parameters. In this case, the quan-
tum state does not show any explicit dependence on the
effective parameter, however, the optimal measurement
bases, extracted from the SLDs, show such symmetries.

3. Type 3 over-parametrization: hidden metrological
symmetries. In some instances, effective functional re-
lationships of the original parameters are not discern-
able on the level of the quantum state of the probe or
on the level of the SLDs. This can lead to highly non-
trivial effective parameters. In this case, the quantum
state and/or SLD operators can be parametrized in a
genuinely independent manner by the original parame-
ters, which nevertheless appear as indistinguishable sig-
nals in measurement data/constructed statistical model.

In the following sections, we investigate these types of
over-parametrization in detail. As theorem 1 shows, the fre-
quentist approach is useful for revealing information about the
number of effective parameters, but it fails to uncover the ex-
act functional form of the effective parameters in most prac-
tical settings. As we will see in the following sections, the
Bayesian approach provides a natural framework for identify-
ing the functional form of effective parameters and the metro-
logical symmetries, without any a priori knowledge of the
precise encoding. The encodings naturally emerge in the pos-
terior distribution, which then allows us to systematically es-
timate the values of these effective parameters through a re-
parameterization of the problem.

VI. TYPE 1 OVER-PARAMETRIZATION:
STATE DEPENDENCE ON EFFECTIVE PARAMETERS

Consider a quantum probe with the (pure or mixed) state o
which depends on the d unknown parameters to be estimated
g only through a smaller set of k < d effective parameters Q.
We focus first on the simplest case of a single effective pa-
rameter Q) = f(é) such that @(5) = 0(Q). This embodies a
symmetry on the level of the states of the system, since dif-
ferent combinations of the underlying parameters g give the
same physics provided that Q is the same. The state is in-
variant to transformations 8 — @ that leave Q unchanged.
No measurement on the system can distinguish the parame-
ters 4 from @ in this case. As an example consider a quantum
state 0(61, 6,) = 0(81/6,), which implies that the effective pa-
rameter is @ = 6;/6,. In this situation any transformation of
(61,62) — (n81,n6,) will not change the quantum state and
thus gives the same measurement statistics. It is straightfor-
ward to show that these types of symmetries directly imply a
singular QFIM. Using the definition of the QFIM elements in
Eq. (5), and the chain rule 8,0 (€2) = 0q0 (2) X 05,2, we find,

I;j=Tox(06,20,9Q) @21



with g = 3, 2 Re(er|0adle;)? /(ex + e;) an effective single-
parameter estimation QFI for the effective parameter 2. An
alternative derivation of Eq. (21) can be obtained from Eq. (8).
When $(Q) depends only on Q, we may write L; = Lo x 0p,Q
in terms of the SLD operator for the effective parameter Q. In-
terestingly, we remark that this implies that SLD operators for
different bare parameters ; and #; commute, and so the SLDs
are certainly compatible. Although systems with compatible
SLDs are often viewed as the ideal systems for multiparame-
ter estimation, they are in fact singular when the state depends
on a single effective parameter. We obtain Eq. (21) from the
second equality in Eq. (3) in this case, where now we can
express the effective single-parameter QFI in the alternative
form Iq = Tr (igaQ@(Q)).

The factorized form of Eq. (21) immediately implies that
the QFIM is singular, det [2’ ] = 0. To see this, note that
Eq. (21) can be written as

T = To x diag(V,Q) J, diag(VeQ) , (22)

where J; is the d-dimensional matrix of ones and 69 =
(09, 0p,, ...) 1s the gradient operator in parameter space. The
determinant follows as det[Z] = T 4 T1:(06,)* x det[J,]. But
since det[J;] = 0, the QFIM is singular. This applies in any
dimension d, whenever the state depends on a single effective
parameter Q. A concrete example of this for the two-level
system is provided in Appendix C.

As discussed above, a singular QFIM implies the existence
of at least one zero eigenvalue. We can straightforwardly com-
pute the eigenvalues of the QFIM by exploiting the represen-
tation Eq. (22). In this case it can be shown that the QFIM has
a single nonzero eigenvalue G| = 7o X (%Q)2 and d — 1 zero
eigenvalues. We note that the single non-zero eigenvalue of
the QFIM is related to (but not equal to) the QFI 7 for the
single effective parameter Q. The normalized QFIM eigen-
vector i) corresponding to this non-zero eigenvalue is found
from Eq. (21) to be i#; = (V¢Q)/|V,4Q), in agreement with the
general result of Eq. (20).

In the case where the state @(ﬁ) depends on k effective pa-
rameters O, with 1 < k < d, we can generalize our expres-
sion for the QFIM. First, we note the chain rule 8,@((5) =
(69@) . ((’)iﬁ) where ﬁ)g = (0q,,0q,, ...) is the gradient opera-
tor in effective parameter space. From Eq. (5) we then obtain,

A A

FTT,
5 S oo (23)
Laq,0, X diag(VeQ,) J, diag(Vel) ,

76 =

S

a,

where - (5) is the d X d QFIM in terms of the bare parame-
ters, 4 (ﬁ) is the k X k QFIM of effective parameters, and T
is a k X d transformation matrix of derivatives, with elements
f‘a,i = 0;Q,. Analysis of these expressions shows that we have
k non-zero eigenvalues and d — k zero eigenvalues, confirm-
ing the general results of the previous section. Note that with
multiple effective parameters k > 1, the non-zero eigenvalues
of the QFIM 7 (0) are typically complicated linear combina-

tions of elements of the effective QFIM 7 (ﬁ), and the effec-
tive parameter encoding is also obscure. For this, we need the
insights of Bayesian estimation.

In the following subsections, we demonstrate type 1 over-
parametrization through instructive examples. We now fo-
cus on the two-parameter estimation scenario, d = 2 with
g = (61,62), where we have a single effective parameter Q.
We present two contrasting cases, where in the first case the
effective parameter Q has an explicit, known dependence on
the underlying parameters 6, and 6,, such as through a ra-
tio, Q = 6;/6,. In the second case, we consider an implicit
dependence where the encoding function f for the effective
parameter Q = (61, 8,) is a priori unknown.

A. Explicit parameter encoding

We consider here an example in which the quantum state
used for multiparameter estimation depends explicitly on only
a single effective parameter.

We again take the XY model Eq. (15), and explore multi-
parameter estimation of the field 4 and coupling A, this time
assuming the anisotropy y is known. We present results for
estimation using the ground state in the ring geometry for N=4
spins, but note that our results are representative of any N. For
the ring geometry, elements of the QFIM are given by [68],

sring N0 16sin(k) [ R2A2 —hay?
Lo —;W(_h/wz V222 ) , (24)
with k = 7(2n + 1)/N and n = 0,1,2,....,| 5| - 1 labelling
the momentum space blocks. In this case the QFIM is seen
to be singular for all N, regardless of the values of the param-
eters 6 = (A, h). Here the QFIM singularity is a direct result
of Eq. (21), with an effective parameter Q = h/A explicitly
defined. This choice can be immediately seen by rescaling the
Hamiltonian as follows,

1([1+,y]AzAz+1 [1_,}/]A1Az+1 +Z &

(25)
The rescaled Hamiltonian A’ is dimensionless, with A be-
ing treated here as the unit of energy. Energy gaps between
states of I:I;r;g are typically of order O(1/N) and so finite-
temperature quantities involving a mixed state of the system
are sensitive to the scale 4. On the other hand, pure states
(such as the ground state) can depend on A only through the
combination Q = /A, as seen directly from Eq. (25) and can
be verified directly. It is then immediately obvious that # and
A cannot be independently estimated from pure states of the
XY model: no measurement using such a state can distinguish
between § = (4, h) and (24, 2h) for example because the ratio
of the parameters is the same in both cases, and the state only
depends on the ratio.

With y known, Eq. (25) reduces to an effective single-
parameter estimation problem for Q = h/A. Even though the
QFIM of the dual estimation problem is singular, we can de-
duce the existence of a well-defined effective single-parameter

i=1
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FIG. 3. Multinomial posterior distributions for Bayesian estima-
tion of 1 and / in the XY model. Results shown for estimation
using the ground state of the N = 4 system in the ring geometry,
whose QFIM is singular. The true values of the parameters to be es-
timated (dotted white lines) is 8% = (¥, A%) = (0.4, 0.55) and we set
y = 1. Panels (a) and (b) compare the results after M = 200 and
10000 measurements, respectively. Associated line plots show the
individual (marginalized) posteriors for each parameter.

QFI for Q, givenby Tq = 34,2 Re(er|0adle))? /(e + e;). This
follows from Eq. (21). Furthermore, we expect an effective
CRB for the precision of estimation for Q, which implies that
the variance of estimators Var(Q) = 1/(MIq) should de-
crease with the number M of measurements performed.

To showcase the power of the Bayesian approach for sin-
gular multi-parameter estimation problems, we now demon-
strate that the above conclusions can be drawn automatically,
with no a priori knowledge of the structure of the state, di-
rectly from the multinomial Bayesian posterior distribution.
In Fig. 3 we present results for multi-parameter Bayesian esti-
mation of A and 4 in the XY model, using the ground state
of the N = 4 system in the ring geometry, setting y = 1.
We take the true values of the parameters to be estimated as
gr = (A, A" = (0.4,0.55), arbitrarily chosen. For the sim-
ulation, POVMs are again constructed from the eigenbasis of
&', which constitutes the optimal measurement for both pa-
rameters. Panels (a) and (b) compare the Bayesian posterior
distributions after M = 200 and 10000 measurements.

We immediately see that the QFIM singularity shows up
in the Bayesian posterior distributions as a persistent line of
high likelihood, whose width decreases with increasing M.
Note that the individual posteriors obtained after marginaliz-
ing (shown by the line plots above and to the left of the main
panels) are distinctly non-Gaussian and have essentially no
physical interpretation. The Bayesian averages (estimated val-
ues) of the parameters obtained from these do not converge to
the true values of the parameters, shown by the dotted white
lines, and are determined only by the sampling range.

The singular lines in Fig. 3 are described by the function
f(h,2) = h/A = Q" with the constant Q = A"/A" set by the
true value of the parameters. We can therefore see directly
from the Bayesian approach that there is a single effective pa-
rameter () = /A that characterizes the metrological problem.
The true value Q can be read off from the Bayesian posterior
distributions, even though the individual values of A" and A"
remain ambiguous.

B. Implicit parameter encoding

We now consider a case where the state depends on a sin-
gle effective parameter €, but its underlying functional de-
pendence on the bare parameters Gisa priori unknown. This
implicit functional relationship will however be revealed in
the Bayesian posterior.

For this purpose, we take as our example the Heisenberg
spin-chain model. Here we will consider the dual estimation
of a coupling constant (a Hamiltonian parameter) and the tem-
perature (a non-Hamiltonian parameter). We therefore gener-
alize now to mixed states at finite temperatures. Furthermore,
we consider both the full state of the entire system as a re-
source for parameter estimation as well as the reduced state,
embodying partial accessibility to a restricted set of probe de-
grees of freedom. We shall see below that a number of non-
trivial differences arise for the Heisenberg model, but that
Bayesian estimation is able to provide detailed information
about the fundamental structure of the metrological problem.

The Heisenberg model we consider consists of a one-
dimensional chain of N spins—%, with nearest-neighbour ex-
change couplings and open boundaries,

N-1 N-1
2 _ ai il | oadoaitl | oAQaitly — S o
Hyeis = Z Ji(6 0, + 0,0y + 6.0, ) = Z Ji @i - Fisi
i=1 i=1

(26)
where o; = (6%, 67,6%) is the Pauli vector. We take chains
of even length N and focus on the case where the central two
spins are coupled by an exchange coupling K and all other
spins are coupled by J. Similar settings have been heavily
studied for metrology, including the development of impurity-
based probes [83, 104, 105], non-equilibrium quantum sen-
sors [10], optimal global thermometers [47], multi-parameter
quantum probes [106] and sequential measurement sensing
schemes [107-109]. Here we assume the system is in ther-
mal equilibrium and we focus on the joint estimation of 7 and
K (with J assumed to be known). For simplicity we will re-
strict to N = 4 spins, but remark that our results are rather
generic for larger (finite, even) N.

At finite temperatures, the full state of the system is de-
scribed by a statistical mixture, 0 = ), e, le,) {en| correspond-
ing to the thermal Gibbs state. The probabilities e, are there-
fore the normalized Boltzmann weights e, = e /T /Z, with
Z = Y, e E/T the partition function and E,, the energy of state
le,,) satisfying the Schrodinger equation Hle,) = E,le,). Infor-
mation regarding the set of parameters is typically encoded in
both the populations e, and eigenvectors |e,,) of the state 0.

We consider two settings: full accessibility to the complete
spin chain and partial accessibility to only the two central
sites. This allows us to examine how the level of access to
the system impacts multi-parameter sensitivity. The reduced
state of the central two spins is given by the partial trace,
023 = Tri4{0}. For both the full and reduced state, the QFIM
is given by Eq. (5).

In the case where we use the full state of the entire sys-
tem for metrology, the QFIM T ford=(K,T)is non-singular
at all finite temperatures 7. In this case, the standard multi-
parameter CRB scenario applies. By contrast, when the re-
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FIG. 4. Multinomial posterior distributions for Bayesian estima-
tion of 7 and K in the Heisenberg model. For dual estimation of
the temperature 7 and spin coupling K, we use either the full thermal
state of the entire system (top panels: a,b) or the reduced state of the
central two spins (bottom panels: c,d). The QFIM is singular in the
case of the reduced state. We compare M = 200 vs 10000 measure-
ments in the left and right panels, respectively. The true parameter
values are 6 = (K", T™) = (0.52,0.35), shown as the white dotted
line. Line plots show the individual (marginalized) distributions for
each parameter. Weuse N =4 and J = 1.

duced state of the central two sites is used, the QFIM is sin-
gular. This can be traced back to the relatively small local
Hilbert space of the ‘probe’ spins, and the constraints imposed
by SU (2) spin symmetry [83]. In fact, it is straightforwardly
shown that the reduced density matrix (RDM) of the cen-
tral sites 0,3 is entirely specified by the thermal expectation
value of the spin-spin correlation function between these sites,
(&2-39 = Tr{@o% -(%3 }, which controls the singlet-triplet frac-
tion. Even though the correlation function ((?2 '33> = f(K,T)
is some complicated (and a priori unknown) function of the
coupling K and temperature 7', on the level of the probe RDM
it serves as an implicit effective parameter Q = (3'2 . 3'3) and
in this case we can write 93 = 023(Q). Appendix D shows a
contour plot of Q as a function of 7" and K, and highlights the
complicated implicit parameter relationships that can emerge
in such systems.

Since the reduced thermal state depends on a single effec-
tive parameter, Eq. (21) holds and the QFIM is singular at all
temperatures. This contrasts to the results of Sec. VI A where
the singularity arises only for pure states (see Sec. X for a dis-
cussion on how the singularity is lifted at finite temperatures
in the XY model).

Another consequence of the SU(2) spin symmetry of the re-
duced state is that eigenstates of the RDM are the spin singlet
and triplet states, independently of K and 7. Consequently,
only the RDM populations have a parameter dependence, and
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the effective QFI simplifies to 7o = 3,(0ap.)*/pn. Where
pn = pn(Q) are the reduced state populations.

For the Bayesian estimation strategy we fix J = 1 and
take the true values of the parameters to be estimated as
6" = (K", T") = (0.52,0.35), arbitrarily chosen. The spin-
spin correlation 5‘2 -5"3 is our observable of choice and POVMs
are constructed from its eigenbasis. For estimation of T and
K using the thermal state of the entire system, this choice
of observable constitutes a sub-optimal measurement, i.e. the
measurement operator does not commute with individual pa-
rameter SLDs. The Fisher information matrix associated with
this particular observable is however invertible and there-
fore multi-parameter Bayesian estimation is well-defined and
should converge to the true parameter values, albeit not with
optimal precision scaling. When we instead use the reduced
thermal state of the central two ‘probe’ spins for estimation,
the spin-spin correlation &> - @3 constitutes an optimal mea-
surement for both parameters. However in this case, the corre-
sponding QFIM is singular, as noted above. Therefore we do
not expect the Bayesian posterior distribution to converge to
a unique point in parameter space. In both cases, we take our
initial prior as a uniform distribution over the range 0 < 8 < 2
for6 =T or K.

In the main panels of Fig. 4 we show the resulting multi-
nomial posterior distribution obtained after M = 200 and
M = 10000 measurements in panels (a,c) and (b,d) respec-
tively. The top row panels (a,b) are for estimation with the
(non-singular) full state; bottom row panels (c,d) are for the
(singular) reduced probe state case. White dotted lines show
the true values of the parameters. Associated line plots show
the individual (marginalized) posterior distributions for each
parameter obtained from Eq. (12).

Our simulation results in Fig. 4 show very clearly that for
the non-singular (full state) case (panels a,b) the Bayesian
posterior distribution converges to a single unique point cor-
responding to the true parameter values. However, in the sin-
gular case (reduced state) in panels (c,d) the Bayesian poste-
rior converges instead to a persistent line of high likelihood.
In this example of the Heisenberg chain model, the singular
line has a nontrivial functional dependence on the parameters
to be estimated. The marginalized distributions in this case
are non-Gaussian and lack a clear physical interpretation; the
corresponding Bayesian average does not converge to the true
values of the parameters as the number of measurements M is
increased. Importantly though, the singular line of high like-
lihood does pass through the point corresponding to the true
values of the parameters.

We see directly from the Bayesian posterior distributions
for the case of estimation with the reduced state, Fig. 4(c,d),
that measurements on the probe cannot distinguish between
different combinations of the parameters K and T that lie on
the persistent line. This indicates a metrological symmetry,
where measurements are invariant to changes in K and 7T pro-
vided Q = f(K,T) remains constant. The contour lines of
constant Q are discussed in Appendix D and are shown in
Fig. 8(b). Because the persistent line passes through the true
values of the parameters, the line is defined by the equation
Q = f(K,T) = Q" with the constant Q" = f(K", T") fixed



by the true values. This plays the role of a constraint between
the bare parameters K and 7. Even though the temperature
T and coupling constant K are manifestly independent (in the
sense that we can fix T say, and still vary K fully and freely),
they become constrained and implicitly related on the level of
the metrological statistical model. This leads to a redundancy
in the parameter encoding and hence over-parametrization. At
heart, this causes the QFIM singularity for this problem. Since
the Bayesian posterior converges to the correct contour line,
Q" can be estimated by the Bayesian strategy.

VII. TYPE 2 OVER-PARAMETRIZATION:
MEASUREMENT DEPENDENCE ON EFFECTIVE
PARAMETERS

In principle, the optimal measurements corresponding to
the SLD operators £; may depend only on the d parameters
g through a reduced set of k effective parameters Q). This can
happen even when the underlying state 0 has no such reduced
dependence (that is, the parameters g are independent on the
level of the state but not on the level of the measurements).

For simplicity we again consider the two-parameter estima-
tion case. Suppose that the SLD operators L; depend only on
the parameters 6; and 6, through the single effective parameter
Q. Thus L;(64, 6>) = L:(Q) for all i, and the measurement data
cannot distinguish between systems with parameters (61, 6,)
and (6, 8,) provided they both correspond to the same effec-
tive parameter Q. In this case one can straightforwardly show
that the QFIM is singular. This time we use Eq. (3) and the

chain rule 8y, L; (Q) = 0oL ; (Q) X 95,Q to write,
Tij= L5 x04Q 27)
where L? = —Tr [@(5)6gi j(Q)]. From this we obtain

det [2’ ] = 0. We emphasize that this parametric redundancy
on the level of measurements can happen even when the state
© does not have any such simple dependence. This can be seen
from the fact that the parametric dependence of the SLDs is
different from that of the state, see Eq. (8). Although a dis-
tinct mathematical possibility, finding an explicit example of
this type of QFIM singularity is an open problem.

VIII. TYPE 3 OVER-PARAMETRIZATION:
HIDDEN METROLOGICAL SYMMETRIES

We note that both Egs. (21) and (27) yield QFIM sin-
gularities by virtue of a factorization of the form I =
dlag(A) Jy dlag(B) where A and B are d-dimensional vectors
and J; is the d-dimensional matrix of ones. Then det[]' 1=0
since det[J;] = 0. These cases demonstrate the intimate con-
nection between QFIM singularities and the existence of ef-
fective parameters or metrological symmetries. However, we
note that there may be other situations where QFIM singular-
ities arise, but no such simple factorization is possible.

To demonstrate this third scenario, we again consider the
XY model of N spins, Eq. (15), but this time with uniform
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FIG. 5. Multinomial posterior distributions for Bayesian esti-
mation of 1 and y from the ground state of the XY model with
all-to-all coupling. Shown for M = 200 and 10000 measurements
in panels (a) and (b) respectively. White dotted lines show the true
parameter values at (1", y") = (0.5,0.6). Line-plots show the cor-
responding marginalized univariate distributions for each parameter.
Results shown for N = 4 spins and known constant field 4 = 1.

all-to-all interactions, 4;; = A/N and y;; = y/N for all i, j.
In this case we can recast Eq. (15) in terms of collective spin
operators S, = >; 0,/2. The Hamiltonian then reads,

A = 2|1+ 82+ -982+ 208 (@28)

We note that the total spin S is conserved by I:IQ?,A and that
the ground state lives in the extremal spin sector S = N/2
throughout the parameter regimes considered for this model
(h=1and A,y > 0).

In contrast to the ring-geometry, the QFIM for joint esti-
mation of A and vy is singular for the all-to-all geometry, with
det [2’ %A] = 0. In this case, there is no parametric redundancy
or single effective parameter that one can deduce directly from
the structure of the ground state or the SLD operators (this is
shown explicitly in Appendix E for the analytically tractable

= 3 case). Yet the singular QFIM implies a single zero
QFIM eigenvalue and therefore a single “hidden” metrologi-
cal effective parameter Q.

To uncover the form of this hidden effective parameter and
the nature of the metrological symmetry, we turn to Bayesian
estimation. Convergence to the true values of A and vy is
no longer guaranteed (or expected) in this situation, but we
still anticipate that useful metrological information will be ex-
tractable from the Bayesian posterior distribution. We note
that, similar to the previous cases, the SLDs also commute in
this case, implying that we we have a compatible but singular
multi-parameter estimation problem. This arises even though
the state depends separately on both parameters A and 7.

Because the QFIM is singular, the Bayesian posterior dis-
tribution is characterized by persistent regions of high likeli-
hood, rather than convergence to a unique point corresponding
to the true values of the parameters A" and y". Importantly,
we observe that these regions of high likelihood become nar-
rower with successive updates of the prior and converge to a
specific line in the space of bare parameters A and . This is
shown in Fig. 5, in which we compare the results of M = 200
and 10000 measurements in panels (a) and (b). We interpret
such persistent lines in the posterior distribution as meaning



that measurements cannot distinguish between different com-
binations of the parameters A and y along these lines — an
emergent metrological symmetry.

The individual posteriors for A and 7, obtained after
marginalizing the full multinomial distribution, are clearly
non-Gaussian — see associated lineplots in Fig. 5. Although
Bayesian estimators for the parameters can still be constructed
according to Eq. (11), inferences drawn from them are mean-
ingless because of the ambiguity along the persistent lines of
likelihood. Naive application of the Bayesian estimation strat-
egy therefore does not yield correct estimates for the unknown
parameters when the QFIM is singular.

Importantly however, note that the true values of the pa-
rameters (A", ") do lie on the singular line in the Bayesian
posterior. Therefore, although from the data we cannot de-
termine uniquely the true values of the individual parameters,
Bayesian estimation still provides useful new information. We
learn that the true values of the parameters A" and y" to be
estimated lie on a specific line f(4,y) = QY, where the con-
stant Q = f(A",y") is itself determined by the true parame-
ters. The functional form f(4,7), which embodies a kind of
metrological constraint between the individual parameters A
and y, need not be known a priori, but emerges automatically
in the Bayesian posterior distribution after repeated updates.
We emphasize that this functional relationship can be nontriv-
ial and might not be easily guessed from analysis of the bare
model or SLD operators, as in the present case.

In the specific example of the all-to-all connected XY
model, we find that the singular lines in the Bayesian pos-
terior are quite accurately described by the function f(1,y) =
A X7y = QY with the constant Q = A" x 9", and therefore
describe hyperbolic contours in the (4, y) plane. The Bayesian
posterior allows us to read off the functional dependence of the
effective parameter Q = A X y. Indeed, as shown in the next
section, the true value Q' can be estimated with a precision
that is determined by an effective CRB.

IX. EFFECTIVE CRAMER-RAO BOUND FOR
SINGULAR ESTIMATION PROBLEMS

Independently of the type of QFIM singularity or the partic-
ular model setting, we find that the Bayesian posterior distri-
bution for two-parameter estimation converges in the limit of
a large number of measurements to a /ine in parameter space,
and not a unique point as for non-singular estimation prob-
lems [110]. The functional form of this line encodes a metro-
logical symmetry: any system along this line yields asymp-
totically the same set of measurement outcomes and therefore
the same statistical model. Different systems along this line
cannot be distinguished. On the other hand, the lines perpen-
dicular to this singular line encode the metrological effective
parameter. Measurements on the system give different results
for different values of this parameter, which can therefore be
estimated via the Bayesian strategy.

In this section, we develop a formalism to systematically
identify the metrological symmetries and effective parameters
from Bayesian analysis. By performing a re-parametrization
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to new coordinates, we show that an effective CRB holds for
the single effective parameter, and demonstrate with specific
examples that the true value of this effective parameter can
indeed be reliably estimated — even though the original multi-
parameter estimation problem is singular. We emphasize that
there is in general no straightforward strategy for determining
the effective parameter encoding or metrological symmetries
just from consideration of the model or QFIM.

Understanding QFIM singularities as resulting from over-
parametrization, the multinomial Bayesian posterior should
be interpreted as a univariate Gaussian distribution when the
problem is characterized by a single effective parameter Q. In
the limit of a large number of measurements M, the Bayesian
posterior in such cases can be approximated by,

MI(Qr MI(Q - Q)2
PQ | i) ~ ,/% exp{—%}. (29)

Here the effective parameter Q = f(6;, 6,) is some function of
the original parameters 6; and 8,. The posterior distribution
in the space of these original parameters allows us to ascer-
tain the mapping between them and the effective parameter Q2
directly and without any a priori knowledge.

The individual (marginalized) posteriors for each bare pa-
rameter are not asymptotically normal — see e.g. Figs. 3 and 5.
Fundamentally this is because several combinations of #; and
6, yield the same Q. However, as we shall demonstrate explic-
itly, the posterior for the effective parameter P(Q|{rn;}) does
tend to a Gaussian, as per Eq. (29). Note that the persistent
lines of high likelihood in the Bayesian posterior are contour
lines along which the effective parameter Q is constant. If we
had chosen different values of the bare parameters, we would
get a different contour line, this time passing through the point
corresponding to the new set of true parameter values. Mea-
surements on the system along any such line must yield the
same results. Therefore the underlying statistical model is in-
variant to changes in an orthogonal, independent parameter A
describing the position along those lines. We have a depen-
dence on Q but not A. We argue that taking a linecut through
Q while keeping A constant should yield a Gaussian profile.
To obtain a properly defined marginalized distribution, one
must integrate all such orthogonal cuts along the singular line
in question. In terms of the original coordinates, this proce-
dure would typically be very cumbersome.

This motivates a generalized coordinate transformation
(01,6,) — (u,v) such that u = Q is defined as being the ef-
fective parameter on which the underlying statistical model
depends. The other parameter v = A is orthogonal to and
independent of u. Transforming the Bayesian posterior dis-
tribution to (u, v) coordinates should give perfect translational
invariance along v. Marginalizing over v gives the posterior
P(u) which should be Gaussian.

We now illustrate these concepts with simple examples
from the XY model, Eq. (15). Our results are summarized in
Fig. 6. In panel (a) we reproduce the Bayesian posterior dis-
tribution after M = 1000 measurements for dual estimation of
h and A in the XY model for N = 4 assuming a ring geometry;
and in panel (e) we show the analogous plot for estimation of
A and vy for the all-to-all geometry. In both settings a singular
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FIG. 6. Recovery of effective CRB for singular multi-parameter estimation problems using co-ordinate transformations. Results
presented for the XY model ground state with N=4 spins, showing dual estimation of g = (A, h) for the ring geometry in the top row panels
(a-d), and dual estimation of g= (4, y) for the all-to-all geometry in the bottom row panels (e-h). The QFIM in both cases is singular. The true
values of the parameters are taken to be (A", i) = (0.7,0.22) and y = 1 for panels (a-d); and (4", y"*) = (0.3,0.2) and & = 1 for panels (e-h). The
multinomial Bayesian posteriors in terms of the original parameters are presented in panels (a) and (e) for the two cases, both corresponding to
M = 1000 measurements. The blue-dashed lines show line cuts through the persistent likelihood regions which have approximately Gaussian
profiles. Panels (b) and (f) correspond to the same distributions plotted in terms of the transformed (hyperbolic) effective parameters u and v
(see text). Blue-dashed lines are the same line cuts as in (a) and (e). Panels (c,g) show the corresponding marginalized univariate distributions,
which are Gaussian, for M = 100 (blue lines) and M = 1000 measurements (red lines), and show a precision gain in the estimation of the
effective parameter as more data are collected. The inverse variance of these distributions is extracted and plotted vs M in panels (d, ) as the
solid black lines, comparing with the effective single-parameter CRB for the transformed parameters (orange-dotted line).

QFIM is captured by the Bayesian posterior through the per-
sistent lines of high likelihood. For panel (a) we deduce the
existence of an effective parameter Q2 = h/A; in panel (e) we
assign Q = A X y. The equation Q = Q" defines the singular
lines. In both cases the dependence of the effective parame-
ter Q = f(6y, 6,) on the bare parameters 8, and 8, suggests a
standard hyperbolic coordinate transformation,

]
u=1In —1,

= /6,0
0, 1% 102

(30)

For the top row panels in Fig. 6 we choose u = In Vh/1
and v = Vh X A. Measurements on the system are sensitive
to variations in u but not v. This is in fact an exact statement:
the ground state used for estimation here depends explicitly
only on u and not v. Panel (b) shows the Bayesian posterior
as a function of these transformed coordinates. The hyper-
bolic linecut at constant v is shown as the blue dashed line in
panel (a). This same cut is a straight line in panel (b). As
expected, we see perfect translational invariance along v in
panel (b). Marginalizing over v yields P(z) which we plot
vs u in panel (c), for two different values of M. Two im-
mediate observations are that the univariate distributions are
indeed Gaussian, and that their width decreases with M. We
extract the precision Var[1]™! from P(x) and plot this vs M
in panel (d). This shows perfect linear scaling with the num-
ber of measurements, consistent with an effective CRB for the

effective parameter u. To confirm this, we compute the single-
parameter QFI 7 («) for the XY model, and plot MZ (u) as the
orange-dotted line in Fig. 6(d). The exact agreement at large
M demonstrates that we do indeed have an effective CRB,
controlled by an effective single-parameter QFI, even in this
singular multi-parameter estimation problem.

We further illustrate these ideas in the bottom row panels
(e-h) of Fig. 6, for the (singular) case of multi-parameter es-
timation of A and . In this case, we choose u = In \/m
and v = /A X y. Our ansatz is that the underlying statistical
model this time depends only on v and not on u. However,
we note that this is deduced approximately from the structure
of the singular line in panel (e) — the state and SLD operators
appear to still depend on both u and v. Performing the hyper-
bolic transformation (4,y) — (u,v) and plotting the resulting
Bayesian posterior in panel (f), we see that the distribution is
indeed close to Gaussian along v and close to invariant along
u. However, this is seen to be an approximation, and there
is some small dependence on u evident from the plot. The
linecuts at constant # shown as the dashed lines in panels (e,f)
yield Gaussian profiles to a good approximation. Marginaliz-
ing over u gives the posterior P(v) plotted in panel (g). Again,
to a good approximation, these are Gaussian. Their width is
seen to decrease with increasing M as before. Plotting the
precision Var[#]~! vs M in panel (h) again shows CRB scal-
ing, set by an effective single-parameter QFI 7 (v), which we



compute directly from the bare model (orange-dotted line).
Although the true effective parameter appears not to be pre-
cisely v = yA X vy, corrections to this form are rather small.

Our results show that when the effective parameter is
known precisely, the transformation can be performed to give
an asymptotically exact univariate Gaussian distribution for
the Bayesian posterior at large M, that follows an effective
CRB. For this effective single-parameter problem, the BVM
theorem holds. Indeed, even when the effective parameter is
not known exactly, the structure of the Bayesian posterior still
allows for an approximate mapping, based on an ansatz for
the functional dependence inferred from measurement data.

We conclude from this that the fact of a singular QFIM does
not preclude Bayesian parameter estimation — rich informa-
tion can still be learned. Furthermore, data can still be col-
lected in the usual way, despite persistent lines of Bayesian
likelihood signalling estimation ambiguities: one can simply
post-process the data via appropriate parameter transforma-
tions as per Fig. 6. However, in such cases, only information
about the effective parameters, and not the bare parameters,
can be unambiguously determined.

Finally, we remark that the introduction of non-linear co-
ordinate transformations in this way for dealing with over-
parametrization may have implications in the field of dis-
tributed sensing. In such scenarios, multiple users, each with
access to only a subsystem of the probe, are involved in esti-
mation of an effective global parameter of interest. This global
effective parameter is typically a linear combination of local
parameters that affects the quantum state of the probe locally
[111-114]. As with the transformations illustrated in this sec-
tion, it may be possible to generalize this to non-linear param-
eter encodings.

X. LIFTING QFIM SINGULARITIES THROUGH
THERMAL FLUCTUATIONS

As discussed in the previous sections, QFIM singularities
are a direct consequence of over-parametrization, which in
turn leads to the emergence of metrological symmetries. To
lift the QFIM singularity, one has to break the metrologi-
cal symmetries. One route is to do this by adding external
(known) controls on the system. As an example, in Ref. [83]
the singularity is lifted by applying an external local field.
When singularities arise due to partial accessibility of a probe,
another approach to lift singularities is to simply expand the
support of the reduced state used for estimation. This was
illustrated in Fig. 4 for the Heisenberg chain model.

In this section, we present an alternative. We show below
that thermal fluctuations, which are typically considered as
having a destructive effect on quantum resources, can often
be leveraged to lift QFIM singularities. Therefore, perhaps
counterintuitively, metrological utility is actually enhanced at
elevated temperatures in such systems. It was recently demon-
strated that, under certain circumstances, small temperature
fluctuations can enhance the QFI for single-parameter esti-
mation [115, 116], and our findings extend this to the multi-
parameter context. In fact, another way of viewing our result
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FIG. 7. Multi-parameter estimation at finite temperatures. For
the XY model on the ring geometry, we compute the determinant of
the QFIM for joint estimation of A and v at finite 7. (a) Metrolog-
ical phase diagram, showing det[] 1y] as a function of y and T on a
log colourscale. (b) det[f/l,y] vs T for y = 0, 0.1 and 0.5, showing
low-temperature suppression near the singular point at y = T = 0.
Throughout we use N =4 and set 2 = 1 and A = 0.6.

is that the existence of QFIM singularities causes a suppres-
sion of the low-temperature metrological precision. There-
fore, even for non-singular systems, the existence of a singular
point nearby in the phase diagram can cause partial suppres-
sion of sensitivity, and these are precisely the systems where
thermal fluctuations can boost quantum sensing.

We illustrate these concepts by considering the simultane-
ous estimation of the anisotropy vy and coupling 4 in the XY
model for N = 4 spins on the ring geometry, see Eq. (15). As
before, we assume the field is known and set 7 = 1. When any
pure state of the system is used for sensing, the QFIM is sin-
gular when y = 0 (see Appendix B and Eq. (B3)). However,
the QFIM of the thermal state at finite 7 is non-singular.

On the other hand, at sufficiently low temperatures 7 <« A
the system is described by its ground state, where A is the en-
ergy gap between the ground and first-excited state. The ther-
mal population of excited states is exponentially suppressed
in this limit, and so one expects the QFIM to be determined
by Eq. (6) for the ground state. This is demonstrated explic-



itly in Appendix F, where the QFIM for a general thermal
state is shown to be continuously connected to the ground
state QFIM by taking the limit 7 — 0. This implies that the
determinant of the QFIM (and hence the overall precision of
multi-parameter estimation which is proportional to the deter-
minant) continuously vanishes as T — 0 for singular systems.
In fact, the existence of a singularity in the ground state QFIM
can be shown to produce an exponentially-strong suppression
at small finite temperatures, det[J] ~ ¢™2/7.

This is demonstrated in Fig. 7 where we compute the QFIM
determinant det[ ] E;g] for joint estimation of A and y in the XY
model on the ring geometry. In panel (a) we show the metro-
logical phase diagram as a function of y and T for representa-
tive A = 0.6 and i = 1. The QFIM singularity is seen as a low-
temperature suppression of the determinant near y = 0 (note
the log colourscale). This is because the pure state QFIM for
the ground state at y = 0 is singular and so det[J jf;g] =0at
v = T = 0. However, the broader influence of this singular
point in the phase diagram is clearly evident. By continuity,
the low-temperature properties of systems with small finite y
also show a low-temperature suppression of the QFIM deter-
minant, although not all the way to zero. This is shown more
clearly by the line plots in Fig. 7(b).

In the opposite limit, 7 — oo, the thermal state becomes
maximally mixed and no information about the parameters is
encoded. Therefore the QFIM determinant vanishes (for all
values of y or 1). As a consequence, the QFIM determinant
must peak at finite 7', indicating that optimal sensitivity is in-
deed found at intermediate temperatures.

We conclude that, in the XY model, at all finite temperatures
the QFIM singularity is lifted. This means that the QFIM is
invertible, the CRB holds, and the BVM theorem implies that
Bayesian estimation will converge to a unique point in param-
eter space, corresponding to the true values of the parameters
to be estimated. However, we note that close to a singular-
ity, when the QFIM determinant is finite but small, the rate of
convergence will be extremely slow, and long-lived signatures
of the singular lines in the Bayesian posterior distributions are
expected (albeit that these must eventually evaporate).

We therefore emphasize that the fundamental categoriza-
tion of the ground state QFIM as singular or non-singular is
highly important. Indeed, as shown in Fig. 7, it is also use-
ful to know when a system is close to, but not at, a point in
the phase diagram where the ground state QFIM is singular.
This points to metrological maps of the ground state QFIM
determinant as being a particularly useful diagnostic tool.

Finally, we note that some systems may be singular also
at finite temperatures — see for example the singular reduced
thermal state of the Heisenberg chain in Sec. VI B. This under-
lines the importance of determining the physical origin of the
QFIM singularity, and whether metrological symmetries exist
only at the level of pure states, or survive for mixed states. We
have provided examples of both in this paper.
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XI. CONCLUSIONS

Quantum sensing lies at the foundation of all emerging
quantum technologies, with applications spanning from de-
vice calibration and readout optimization to the estimation
of fundamental constants of the universe, as well as the
precise measurement of external electromagnetic or gravita-
tional fields. The Cramér-Rao formalism provides theoretical
bounds on achievable precisions for a given quantum probe.
For single-parameter quantum sensing, in which all properties
of a system are assumed to be known except for the one pa-
rameter being estimated, this formalism provides a full char-
acterization. It gives a tight bound for the ultimate obtainable
precision and a systematic strategy to achieve it. In the case of
multi-parameter quantum sensing however, the situation be-
comes far more complex because the Cramér-Rao approach
involves a matrix inequality, which features the inverse of the
CFIM for a given measurement, or the inverse of the QFIM for
an optimized measurement. Two major issues therefore arise
when applying the Cramér-Rao formalism to multi-parameter
problems. First, the bound given by the QFIM is in general no
longer tight due to the well-studied measurement incompati-
bility issue. Second, the Fisher information matrix might be
singular and thus its inverse does not exist. In many cases,
the CFIM for a particular measurement might be singular,
even though the QFIM for the optimal measurement is invert-
ible. In such a scenario, the CFIM singularity is related to
incomplete measurement outcomes and can be overcome by
adopting a better measurement strategy. The QFIM singular-
ity, however, is more consequential as it directly implies the
singularity of the CFIM for all possible measurements.

In this paper, we develop a framework to understand the
different types of QFIM singularities and their physical ori-
gin. Furthermore, we show how Bayesian estimation can pro-
vide detailed and highly non-trivial information about singular
multi-parameter problems, including on the effective param-
eter encoding and the existence of metrological symmetries.
Utilizing this information, which requires no a priori knowl-
edge of the system, we demonstrate that a well-defined and
non-singular estimation problem can be obtained by suitable
re-parametrization (which is in general a non-linear coordi-
nate transformation). The effective parameters can then be es-
timated with a precision that follows from an effective CRB.

We show that the key to understanding QFIM singulari-
ties is an intrinsic over-parametrization on the metrological
level. This is related to the emergence of metrological sym-
metries: systems with different parameters cannot be distin-
guished by measurements on the system and asymptotically
yield the same statistical model from which inferences about
the parameters are made. Such an over-parametrization can
arise when the quantum state or the optimal measurement op-
erators depend on the d bare parameters to be estimated, 5,

only through a reduced set of k < d effective parameters, Q.
However, singularities can also result from “hidden” effective
parameters that are not apparent on the level of the state or
measurement operators. In all cases, the metrological over-
parametrization and hence the QFIM singularity is signalled
by one or more zero eigenvalues of the QFIM. The number



of non-zero eigenvalues is the number of effective parameters
which can be estimated.

Although analysis of the QFIM itself does not typically
yield information about the functional dependence of the ef-
fective parameters or the nature of the metrological symme-
tries in singular systems, this information is readily accessible
from the Bayesian posterior distribution. Indeed, we note that
this information can be extracted by post-processing the data:
the standard Bayesian strategy in terms of the original param-
eters can still be used without modification for the purposes
of data collection and the experimental protocol.

We also point out that metrological ‘phase diagrams’ of
the QFIM determinant are particularly useful diagnostic tools.
The topology of these phase diagrams is controlled by the sin-
gular systems with zero determinant, and understanding when
the ground state of a system is singular can be rather informa-
tive. In particular, we find that the measurement precision for
non-singular systems is strongly affected by singular points
nearby in the phase diagram.

We believe that our results offer an insight into the funda-
mental origin of metrological singularities, and our approach
for identifying effective parameters and metrological symme-
tries through Bayesian analysis provides a systematic route to
estimation even when the standard frequentist approach fails.
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Appendix A: Illustrative example — Heisenberg trimer

Here we provide a simple but nontrivial example of a QFIM
singularity, results for which we presented for illustrative pur-
poses in Fig. 1. We consider a triangular arrangement of three
exchange-coupled spins-2, which admits an exact solution for
the QFIM. Our model reads,

K§1 ‘§2 +J(§] '§3 +§2 S)g)
Eo+ IS + Lk - DSE .

q

(AL)

where on the second line we used §'tm = §1 +§2 +§3 and §12 =
S\ +85. Here Eg = —3J — 3K is an irrelevant constant. Since
[I:I’S)l%)t] = [I:I’S)lzz] = [[-A],S‘Z 1= [§t§t,§122] = [S)l%)t’SAtzot] =0,

tot

all eigenstates |S o, S 12, S5, of H are uniquely identified by
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the quantum numbers S, S12 and S§,. The energies of
these states are determined just by S and S 1, according to
Eq. (A1), Es,.s,, = Eo+5JS 0t(S 1o+ D+3(K=D)S 12(S 12+1).
We therefore have a 2-fold degenerate doublet state with
S12 = 0 and energy Eyp0 = —%K, a 2-fold degenerate dou-
blet state with S|, = 1 and energy E;pp; = }TK — J, and
a 4-fold degenerate quartet state with S, = 1 and energy
Esp) = $K + $J. The thermal weights (density matrix prob-
abilities) are given by pg s, = e Eswsin/T |7 with partition
function Z = 2eE120/T 4 2e7E121/T 4 4eEsr2i/T - Since the
symmetry quantum numbers fully determine all states, the ba-
sis is fixed. The (thermal state) QFIM then follows as [66],
Iij = 20ip120 0jP1720)/P120 + 2(0ip1/2,1 0jp1/2.1)/ P1j2.1 +
4(0ip3/2,1 0jp3/2,1)/ p3/2,1- The QFIM for two-parameter esti-
mation of any pair (K, T) or (K, J) or (J, T) is nonsingular.

We now consider the reduced state of spins 1 and 2 af-
ter tracing out spin 3. This is trivially computed because by
SU(2) spin symmetry, the reduced states can be labelled by
their spin S |, but the original full states are also labelled by
S 2. It is straightforwardly shown that for the reduced states
we have a 3-fold degenerate triplet with S, = 1 and prob-
ability prled = %pl/z,l + %P3/2,1 as well as a unique singlet
S12 = 0 with probability pff? = 2p;/20. The QFIM for the
reduced (thermal) state is then jjfj.d = 3(0;p" 9;p" N/ ptt +
0; pged 0; pffd) / pffd. With this, it follows that the reduced state
QFIM is singular for any 7, with det[7™4] = 0.

This can be understood as an example of singularity due to
state dependence on an effective implicit parameter. The re-
duced density matrix 0.q(2) is controlled entirely by the ther-
mal expectation value Q = (§ 5) = 6psince 3pi+prd = 1.
Thus from Eq. (21) we immediately conclude that the QFIM
is singular. In this case, the result follows because the reduced
state only depends on J, K and T through the effective pa-
rameter Q = Q(J, K, T). Measurements on the system cannot
distinguish between different parameter combinations of J, K
and T if they give the same value of Q.

In the context of Bayesian estimation, the posterior will
therefore converge to a contour line of constant Q, passing
through the true parameter values. In the Heisenberg trimer
example, we can find an expression for these contour lines
analytically, K = T1In[(2 — Q)e™/?T(2 + 3//?T)/Q]. These
contour lines are plotted in Fig. 8(a). Overlaid on the figure as
the red arrows is the QFIM eigenvector field corresponding to
the single non-zero QFIM eigenvalue, confirming Eq. (20).

In the lower panels of Fig. 1 we consider multiparameter
Bayesian estimation using the (singular) reduced state of the
Heisenberg trimer model, for the unknown parameters 6; = K
and 6, = T, showing results for the Bayesian posterior of the
temperature estimator after M = 100, 300 and 1000 mea-
surements with representative J = 1. The true value of the
parameters is 7% = 1 and K" = 0.5 which yields Q" ~ 1.4.
The Bayesian posterior is indeed found to converge precisely
to our exact expression for the contour line corresponding to
Q =~ 1.4. This shows vividly that the effective metrological
symmetries revealed by the Bayesian estimation strategy can
be highly nontrivial and have complicated functional depen-
dences on the underlying system parameters.



*«—(b)-— - = ‘1 R N e \_/'/\ ~ N
7
++++++ - oW W WA RN %N
257 o o
..(_‘_‘.“‘.Jv-.\\\,\\\\,\
! -
_,.;".‘._&\\\x\\\“s\
7
201 YL )L AR N \/\ ~ ¥
!
_,ﬁ-ﬁ\;i-\\\/\\\/\\\/{
|__15_-._‘.\f'\\\/\ \\/\ \ Y\ N

!
05T L

0.0

FIG. 8. (a) Contour lines of constant Q = (§ 122> for the Heisenberg
trimer model considered in Fig. 1. (b) Contour lines of constant Q =
(32 ~33) for the Heisenberg chain model with N = 4 sites considered
in Sec. VIB. We set J = 1 in both cases. All Bayesian posterior lines
in the singular scenario must converge to one of these contour lines.
Overlaid as the red arrows in both cases are the eigenvector fields
corresponding to the single non-zero QFIM eigenvalue.

In the upper panels of Fig. 1, we show a non-singular ex-
ample for comparison. Here the singularity of the Heisenberg
trimer reduced state is lifted by application of a Zeeman field
BS?,, which breaks the S, = 1 multiplet degeneracy of the
reduced state. In this case the BVM theorem holds and we ex-
pect to see convergence of the Bayesian posterior to a unique
point. This is confirmed by our results for B = 1.

Appendix B: Solution of the XY model on the ring geometry

We consider here the XY model Eq. 15 on the ring ge-
ometry. In this case the system can be mapped to a non-
interacting fermionic model via the Jordan-Wigner transfor-
mation. The model is then Fourier transformed to momen-
tum space and solved exactly [101-103] using fermionic two-
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component spinors ¥, = (ék, ¢t k),

Ay =2% [(h+ Adcosk) &, + (yAsink) ] ¥, ,  (BI)

which decouples the Hamiltonian as Ays® = Y00 VI ALY,
Solving the eigenvalue problem for Eq. (B1) yields the disper-

sion for each band, € = +2 \/ (h + Acosk)* + 22y2sin* k. In
each momentum sector k, the ground state energy is € and the

% |0y + sin % [1);
with tan 6 = — hiy;c]g Sk 7 The full ground state for an N -31te Sys-
tem is therefore given as the tensor product of those in each

momentum-space block, [ygs)y = ®k>0 [WGs k-
For joint estimation of A and y the QFIM for arbitrary N

can be found analytically,

corresponding ground state is [gs ), = cos %

ey 16 sin’ (k) 2y hyA(h+ A cos k)
A T L (g)t \hyd(h+ dcosk) A (h+Adcosk)?)
(B2)

with k = 7(2n + 1)/N and n = 0,1,2,...,| 5| - 1 labelling
the momentum space blocks. From this, we can construct the
determinant of the QFIM, which takes a simple analytic form
for N = 4 spins,
2,2 74
det [ 777%] = Sy A ;. (B3
T (AR AR [y - 12+ [+ 11 2

We deduce that the QFIM for the XY model on the ring ge-
ometry for joint estimation of A and y is singular only when
h, vy and/or A are zero.

Appendix C: When is the pure-state QFIM of the
two-level system singular?

Consider the most general pure state for a two-level system,

) = cos[p(6)110) + sin[ p(@)] explig(@)]I1) (C1)

where p(é) and q(ﬁ) are arbitrary real functions of the parame-

ters § = (01, 6,,065,...) to be estimated. Elements of the QFIM
from Eq. (6) in this case are simply given by,

T:j = 404, p(8)0,p(0) + 06,9(0)5,q(@) sin*[2p@)] . (C2)

From this we first note that estimation of d = 3 or more
parameters with a two-level system is impossible. This is
a special case of the result in [78], and here one can verify
that det[Z] = 0 irrespective of the functions p(ﬁ) and q(é))
for d > 3. For the two-parameter estimation problem where
g = (61,6,) we can ask: when is the QFIM of this pure state
singular? Assuming finite real functions p and g, it is straight-
forward to show that the determinant of the QFIM for the state
Eq. (C1) is exactly zero if and only if,

(P q)g = 90, p()39,q(F) — 35, p()Fp,q@) =0 . (C3)

If the state depends only on a single function of the bare
parameters (6}, 6,) then this implies from Eq. (C1) that p(Q)



and ¢(Q) are both functions of Q. In this case the QFIM is
clearly always singular from the condition Eq. (C3) (and in
agreement with Eq. (21)).

Note however that the QFIM can also be singular even with
different functions p(g) and q(ﬁ), such that the state depends
separately on both parameters 6; and 6, and not just on a sin-
gle function (6, 8,). In such a case, the Bayesian posterior
distribution can still reveal the hidden metrological symmetry
encoded in an effective parameter (6, 6,).

Finally, we comment that for mixed states of the two-level
system, the conditions for QFIM singularity are more in-
scrutable. However, the Bayesian approach can still yield
useful information for singular mixed states (except for
maximally-mixed states which contain no information about
the underlying parameters).

Appendix D: Contour plots of constant O
in the Heisenberg chain model

In Sec. VIB we consider the Heisenberg spin chain model
with N = 4 sites. The reduced state of the central two spins
has a singular QFIM. However, unlike the Heisenberg trimer
example considered above, in this case there is no analytic
expression for the state, QFIM, or contour lines of the corre-
lator Q = (3'2 ~3'3) which controls the reduced density matrix.
The lines of likelihood in the Bayesian posterior must still
converge to a contour line of constant Q. These are numer-
ically computed for the Heisenberg chain model and shown in
Fig. 8(b). Bayesian estimation can therefore still be used to
uncover the state dependence on Q and the underlying depen-
dence of Q on the system parameters, as shown in Fig. 4.

Overlaid on Fig. 8(b) as the red arrows is the QFIM eigen-
vector field corresponding to the single non-zero QFIM eigen-
value, confirming Eq. (20).

Appendix E: XY model QFIM for N =3

For N = 3 the ring and all-to-all geometries of the XY
model are of course equivalent. The corresponding QFIM for
estimation of the parameters A and y can be computed exactly,
and is given by,

Iy, =

1 ( 12y*h>  6yhA(2h — /l)) E1)

x \6yhA(2h — 2) 3222 - 2h)?

where y = [(3y? + 1) A% + 4h* — 41212, Clearly the QFIM is
singular since its determinant exactly vanishes for all values
of A, y and h. The QFIM has only one non-zero eigenvalue,

3(4n2 (2 + 22) - 4% + %)
G, = ; (E2)
((3y2 + 1) A2 + 412 — 4hA)

18

with corresponding eigenvector given by,
AQ2h=2)
zyh,li%§§§z+l
u = | (E3)

222h-12 1
Py

The eigenvector corresponding to the zero eigenvalue G, = 0
is given by,

2yh

242
AA=2h) [ 1
A=(A-2hy
1y = | (E4)

42n2

2(1-2h2 +1

where we see that the effective parameter encoding and func-
tional dependence is not obvious on the level of the QFIM.

Appendix F: Recovery of pure-state QFIM in the limit 7 — 0

Elements of the QFIM for general mixed states are given by
Eq. (5), whereas for pure states the QFIM elements are given
by Eq. (6). When ¢ = 9(T') describes a thermal state, the well-
controlled T — 0 (zero temperature) limit of Eq. (5) should
yield Eq. (6) for the ground state, with 0 = |ygs){¥gs|- This
is important to establish continuity between idealized results
for pure states and those for general thermal states. We show
that explicitly here.

For a thermal state 0 we use the spectral decomposition
0 = X jejlej)ejl, where the probabilities e; are the normal-
ized Boltzmann weights e; = e 5T /Z, with Z = 2 e EilT
the partition function and E; the energy of state |e;) satisfying
the Schrodinger equation I:IIej) = Ejlej).

When the spectrum of the density matrix is strictly non-
degenerate, we may employ the standard results for the deriva-

tives of an eigensystem, dye; = (ejld lej) and |d.ej) =
Dz j % X |e;) to write Eq. (5) in the alternative form [66],

2
€n —€n
2 )" O Re (e ldren) Djenlen)

e, +

A (0ien)(0jen)
Ii,j = Z Tj + 4

(F1)

Defining now the ground state |ygs) as the state with lowest
energy Egs, we specify all energies with respect to the ground
state, E ;i = Ej — Egs, and factorize the partition function as
Z=etos/TxZwhereZ =Y, ¢ EilT The thermal weights can
then be expressed as e; = e%//T /Z. This rewriting simplifies
taking the 7 — 0 limit since the factors ¢ 5T tend to either 0
or 1 in a well-behaved fashion. Specifically, e EosIT 5 1 for
the ground state with Egs = 0, and e~ Eex/T 5 0 for all excited
states with Eg, > 0. Therefore Z — 1 as T — 0 and so the
thermal weights egs — 1 and egx — 0.
The first term in Eq. (F1) can be expanded as,

Z (0ien)(0;en) _ diegsdjecs N Z 0jegx0jerx (F2)

€n €GSs €Ex

n Ex



The first term for the ground state tends to 0 as T — 0 because
the ground state thermal weights tend to 1 independently of
the parameters, and hence the derivatives on the numerator
vanish. Although the excited state weights all tend to O as
T — 0 and become parameter independent, the second term
in Eq. (F2) is more subtle due to the vanishing weight on
the denominator. We therefore use L'Hopital’s rule to write
limr_o (diegxdjerx)/eex = limy_o Or(d;egxd;jerx)/Oregx.
Analysis of the latter shows that the sum over excited state
contributions vanishes term by term as 7 — 0.

This leaves only the second term in Eq. (F1). We distin-
guish two cases for the coefficient,

2 2 2
(en - em) _ z (en - em) +2 2 (eGS - en)
n¥m €n t €m neEx €nt em n e Ex €Gs t én
m € Ex

noting that n and m cannot both be ground states because of
the condition n # m (and assuming a non-degenerate spec-
trum). For the first term, we must use L’Hopital’s rule again,
limzr_, (en — em)2/(en +epn) = lim7_, aT(en - em)z/aT(en +
en) = 0, so this contribution vanishes. For the second term
(egs — erx)*/(ecs + epx) > las T — 0.

Thus as T — 0 we can write Eq. (F1) as,

A

I,‘J' =4Re

Z (enl0iegs)(0jegslen)|

ne€Ex

= 4Re {Z(ajeGslenxenWieGS) —(0jegslegs){easldiecs)

= 4Re|(djeas|dieas) — (0jeasleasMeasldieas) |
(F3)

where in the middle line we extended the sum over all states,
and on the last line we used the resolution of the identity 1 =
. len)(en]. The result is precisely that for pure states, Eq. (6).
Therefore, we conclude that if the QFIM is singular for the
ground state (meaning that the pure-state QFIM determinant
computed using the ground state is zero) then the QFIM of the
thermal state will also vanish continuously in the 7 — 0 limit.
In most standard cases, even when the QFIM is singular for all
pure states, the thermal state QFIM will be non-singular. Our
result shows that in such a case raising the temperature will lift
the singularity. Therefore metrological sensitivity is enhanced
by increasing the temperature. This is illustrated in Sec. X.
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