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Quantum systems used for metrology can offer enhanced precision over their classical counterparts.
The design of quantum sensors can be optimized by maximizing the quantum Fisher information
(QFI), which characterizes the precision of parameter estimation for an ideal measurement. Here
we consider the response of a quantum system as a means to estimate the strength of an external
perturbation that has been switched on slowly. General expressions for the QFI are derived, which
also hold for interacting many-body systems in the thermodynamic limit at finite temperatures, and
can be related to linear-response transport coefficients. For quantum dot nanoelectronics devices,
we show that electron interactions can lead to exponential scaling of the QFI with system size,
highlighting that quantum resources can be utilized in the full Fock space. The precision estimation
of voltages and fields can also be achieved by practical global measurements, such as the electric
current, making quantum circuits good candidates for metrological applications.

Parameter estimation is a key part of any experiment,
both in terms of calibration and readout; and the tech-
nological applications of devices for precision sensing are
diverse. Scientific discoveries in the modern era have long
been driven by our ability to make ever more precise
measurements, from the Michelson–Morley interferome-
ter to LIGO [1]. In the context of new quantum tech-
nologies such as NISQ devices [2], or other experiments
on quantum systems, parameter estimation techniques
may themselves be inherently quantum [3, 4]. Indeed,
the use of quantum systems as sensors can provide an
advantage in terms of precision over classical counter-
parts [5–8]. Atomic, molecular and optical systems have
been widely studied in this regard [5, 9–16].

In this work we explore nanoelectronics devices [17–19]
as an alternative and promising platform for quantum
sensing. The charge or electrical current through a con-
tacted nanostructure can be accurately measured in an
external circuit, and can depend sensitively on voltages,
fields, and temperature [20]. Entanglement and quantum
many-body effects arising from electron interactions such
as Coulomb blockade [21, 22], Kondo effect [17, 23–25]
and quantum criticality [26–29] observed in such devices
may be a useful resource for sensing. They are also ap-
pealing from a practical perspective, since sophisticated
quantum devices can now be fabricated in commercial-
process semiconductor technologies [30–33].

We consider a general scenario in which the response of
a quantum system to an external perturbation is used to
estimate the strength of this perturbation. We focus on
the case of a perturbation that is switched on slowly. Un-
der the adiabatic approximation we obtain exact expres-
sions for the quantum Fisher information (QFI) [3, 4],
which characterizes the maximum precision of parame-
ter estimation attainable by making measurements on
the system, see Fig. 1(a). We then apply this to mod-
els of quantum dot (QD) nanoelectronics circuits [17],
Fig. 1(b), and compare with the estimated precision for

a current measurement in such devices.

Intuitively, the more sensitive the state of a system ρ̂λ
is to changes in the external perturbation λ, the more
information about the perturbation that can be gained
from measurements on the system. For a given number
N of independent measurements, the precision of esti-
mation for λ is characterized by its statistical variance
Var(λ) = E[(λest − λ)2], which for unbiased estimators
is controlled by the QFI FQ[λ] through the Cramér-Rao
bound (CRB) [34] NVar(λ) ≥ 1/FQ[λ]. The QFI cor-
responds to the optimal measurement and is therefore
the best-case scenario against which any practical mea-
surement scheme should be compared. The design of ad-
vanced quantum sensors therefore necessitates the char-
acterization and optimization of the QFI.

We take an arbitrary system Ĥ0, initially at thermal
equilibrium, to which we adiabatically introduce a small
perturbation λÂ. Our main result is an expression for
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FIG. 1. Adiabatic quantum sensing paradigm. (a) A system
is subject to a perturbation λ that was switched on slowly.
Measurements of the system response yield statistics on the
estimator for λ whose variance is constrained by the QFI Eq. 1
via the CRB. (b) A typical nanoelectronics setup in which an
electrical current I flows through a quantum dot due to a bias
voltage Vb between source and drain leads in a field B.
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the QFI for estimation of the parameter λ,

FQ[λ] = 2
∑

n ̸=m

(p0n − p0m)2

p0n + p0m

|⟨n0|Â|m0⟩|2
(E0

n − E0
m)2

, (1a)

= − 2

π

∫
dω

tanh(ω/2T )

ω3
χ(ω) , (1b)

where Ĥ0|n0⟩ = E0
n|n0⟩ and the density matrix ρ̂0 =∑

n p
0
n|n0⟩⟨n0| characterizes the unperturbed state of the

system at inverse temperature β ≡ 1/T , with p0n =
exp(−βE0

n)/Z0 and Z0 =
∑

m exp(−βE0
m). Eq. 1a ex-

presses the QFI for a small dc perturbation λÂ in terms
of properties of the unperturbed system Ĥ0. The Kubo
formula [35] allows us to write this in Eq. 1b in terms
of the dynamical linear-response transport coefficient
χ(ω) = d

dλ ⟨Ȧ⟩|λ→0, with Ȧ = d
dt Â the current induced

by a small ac perturbation λ cos(ωt)Â [36]. Eq. 1b imme-
diately implies that the optimal measurement on a quan-
tum system yields perfect metrological sensitivity due to
a diverging QFI when the ω → 0 dc conductance is finite.
Derivation via adiabatic gauge potential.– The adiabatic
switch-on of the operator Â can be viewed as a smooth
time-dependent perturbation Ĥ1(t) = γ(t)Â subject to
boundary conditions γ → 0 as t → −∞ and γ = λ at
t = 0, see Fig. 1(a). We therefore label Ĥγ = Ĥ0+γ(t)Â
by the running value of γ at time t. The instantaneous
spectral decomposition reads Ĥγ =

∑
n E

γ
n|nγ⟩⟨nγ |. For

adiabatic evolution [36], states stay in these instanta-
neous eigenstates and so

ρ̂γ =
∑

n

p0n|nγ⟩⟨nγ | = Ûγ ρ̂0Û
†
γ . (2)

The second equality follows from the relation,

∂γ |nγ⟩ = iĜγ |nγ⟩ , (3)

where the generator Ĝγ of the adiabatic evolution is
known as the adiabatic gauge potential [37, 38]. Since

|nγ+dγ⟩ = eidγĜγ |nγ⟩ it follows that |nγ⟩ ≃ Ûγ |n0⟩ with

Ûγ = eiγĜ0 when γ is small. The QFI for estimating λ
from a state transformed by Eq. 2 is then [4, 36],

FQ[λ] = 2
∑

n ̸=m

(p0n − p0m)2

p0n + p0m
|⟨m0|Ĝ0|n0⟩|2 ≡ Var(Ĝ0) .

(4)
To find the relation between Ĝ0 and the physi-
cal perturbation Â, we note that ∂γ⟨mγ |Ĥγ |nγ⟩ =

i (Eγ
m − Eγ

n) ⟨mγ |Ĝγ |nγ⟩+ ⟨mγ |∂γĤγ |nγ⟩. Since ∂γĤγ =

Â and ⟨mγ |Ĥγ |nγ⟩ = 0 for n ̸= m, we thus find,

⟨mγ |Ĝγ |nγ⟩ = i
⟨mγ |Â|nγ⟩
Eγ

m − Eγ
n

: n ̸= m (5)

which, upon substitution into Eq. 4 yields Eq. 1a. An
alternative perturbative derivation is given in the Sup-
plementary Material (SM) [36]. In a different context,

Ref. [39] obtained a similar result but crucially without
the excitation energy denominator in Eq. 1a.
Susceptibilities and transport coefficients.– We in-
troduce the retarded real-time correlation function
K̄(t) = −iθ(t)⟨[Â(0), Â(t)]⟩0 evaluated in the unper-

turbed Hamiltonian Ĥ0, where Ω̂(t) = eiĤ0t Ω̂ e−iĤ0t.
The Lehmann representation of its Fourier transform
K̄(ω) ≡ ⟨⟨Â; Â⟩⟩ =

∫
dt exp(iωt)K̄(t) reads,

ImK̄(ω) = π
∑

n,m(p0n−p0m)|⟨n0|Â|m0⟩|2δ(ω−E0
m+E0

n).

With the identity
∫
dω ω−2 tanh(ω/2T )δ(ω−E0

m+E0
n) =

p0
n−p0

m

p0
n+p0

m
× (E0

n − E0
m)−2 we may express Eq. 1a as,

FQ[λ] =
2

π

∫
dω

tanh(ω/2T )

ω2
ImK̄(ω) , (6)

in terms of the susceptibility K̄(ω), which is a physical
observable. This exact expression holds equally well for
interacting quantum many-body systems in the thermo-
dynamic limit as well as finite or closed quantum systems.
Since ImK(ω) = ω2ImK̄(ω) [36], where K(ω) is

the Fourier transform of the current-current correlator
K(t) = −iθ(t)⟨[Ȧ(0), Ȧ(t)]⟩, we may further relate the
QFI to linear-response (LR) transport coefficients. With
an ac bias perturbation λ cos(ωt)Â switched on adiabat-
ically, the ac conductance χ(ω) = −ImK(ω)/ω follows
from the Kubo formula [35, 40]. This gives Eq. 1b.
Nanoelectronic quantum sensors.– We turn now to the
application and implications of the above for quantum
nanoelectronic devices. We focus on the simplest model
for a single semiconductor QD with local Coulomb inter-
action, coupled to source and drain leads – the celebrated
Anderson impurity model (AIM) [17, 41, 42],

Ĥ0 = ϵd

(
d†↑d↑ + d†↓d↓

)
+ Ud

(
d†↑d↑d

†
↓d↓

)
(7)

+ t

L∑

j=1

∑

α,σ

(
c†αjσcαj+1σ +H.c.

)
+ V

∑

α,σ

(
d†σcα1σ +H.c.

)

where α = s, d for source and drain leads, σ =↑, ↓ for

up and down spin, c
(†)
αjσ are annihilation (creation) oper-

ators for the conduction electrons, and d
(†)
σ are QD op-

erators. Here we have given the Hamiltonian for each
of the leads in the form of a 1d nanowire comprising L
sites. This allows us to study the scaling of the QFI with
system size. The thermodynamic limit, where quantum
transport can be meaningfully considered, corresponds
to L → ∞. The noninteracting (Ud = 0) limit of this
model is the resonant level model (RLM), which can be
solved exactly using Green’s function methods. For fi-
nite L up to around L = 8, the interacting AIM can be
solved directly using exact diagonalization (ED). The full
AIM with L → ∞ can also be solved with sophisticated
many-body techniques such as the numerical renormal-
ization group (NRG) [43]. We combine these methods
below to study the metrological capability of the AIM.
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FIG. 2. QFI for an adiabatic voltage bias perturbation in
the noninteracting RLM with Ud = 0 in (a,b) compared with
interacting AIM for Ud = 0.2 in (c,d). FQ[Vb] plotted vs
temperature T for finite leads of L sites in (a,c) and the scaling
of the maximum QFI with L shown in (b,d). Asymptotes as
dotted lines. Parameters: t = 0.4, V = 0.2 and ϵd = −Ud/2.

Voltometry.– We consider first a bias voltage pertur-
bation switched on adiabatically, with λ = −eVb and
Â = 1

2 (N̂s − N̂d), where N̂α =
∑L

j=1 n̂αj is the total

number operator for lead α and n̂αj =
∑

σ c
†
αjσcαjσ. This

perturbation can be defined for finite or infinite L. For
infinite leads in the quantum transport context, the natu-
ral observable is the (average) electrical current into the
drain lead, I ≡ ⟨Î⟩ with current operator Î = −eṄd.
In LR, I = χdcVb, where χdc = limω→0 χ(ω) is the dc
conductance. χdc is naturally finite in any typical nano-
electronics setup, and so the QFI FQ[Vb] for estimating
the bias voltage diverges according to Eq. 1b. Funda-
mentally, this is because the QFI relates to estimating
a global parameter using an arbitrarily complex global
measurement, in an infinite Fock space.

It is however instructive to examine how the QFI di-
verges with system size L. As shown in the SM [36], the
adiabatic voltage QFI for the AIM can be cast exactly as

FQ[Vb] = 4V 2
∑

k,p

tanh
(

ξk−ϵp
2T

)

(ξk − ϵp)4
[f(ϵp)− f(ξk)] ak bp , (8)

where ak and ξk are the trivial pole weights and energies
of the free (disconnected) lead density of states ρ0(ω) =∑L

k=1 akδ(ω− ξk) whereas bp and ϵp the the pole weights
and energies of the full lead-coupled QD spectral function
AQD(ω) =

∑
p bpδ(ω − ϵp). f(ω) is the Fermi function.

FIG. 3. QFI for a local magnetic field B applied adiabatically
in the AIM. (a) ED results for FQ[B] vs T in systems with
finite leads using the same parameters as Fig. 2c. (b) NRG
results for the AIM in the thermodynamic limit of infinite
leads, scaled in terms of the Kondo temperature TK , for Ud =
0.2, ϵd = −0.1, V = 0.07, t = 0.5 in the universal regime.
Dotted/dashed lines are the asymptotes discussed in the text.

For the noninteracting RLM, the sum on p runs over
all 2L+1 poles of the full system, Ĥ0. In this case ϵp are
the single-particle energies in the diagonal representation
Ĥ0 =

∑
pσ ϵpf

†
pσfpσ and bp is the weight of eigenstate p

on the QD orbital. Fig. 2(a) shows the resulting QFI for
representative model parameters as a function of temper-
ature T for different system sizes. As anticipated we see a
saturation of FQ[Vb] for T ≪ t/L due to the existence of a
minimum excitation gap |ξk−ϵp| in the finite system, and
we generally see better sensitivity at lower temperatures.
Fig. 2(b) shows Heisenberg-type scaling of the QFI with
the system size [44–48], max FQ[Vb] ∼ L2. The low-T
QFI increases as the excitation gap closes. Because the
system is noninteracting, the quantum resources being
utilized here are essentially the single-particle states.

For the interacting AIM, Figs. 2(c,d), the story is
quite different. The Lehmann representation of the QD
spectral function AQD(ω) now involves exponentially-
many terms, corresponding to the proliferation of many-
particle excitations [49]. We now see very strong, roughly
exponential scaling, max FQ[Vb] ∼ (4L)2 consistent with
the growth of the underlying Fock space with L. This
highlights that optimal global measurements may exploit
the full Fock space in strongly correlated systems [36].

Magnetometry.– We now consider a local magnetic field
perturbation λÂ = BŜz

d in the AIM (the RLM has no
spin dynamics since σ =↑, ↓ are decoupled for Ud = 0).
The magnetometry QFI is computed from Eq. 6 using
the QD dynamical spin susceptibility K̄(ω) = ⟨⟨Ŝz

d ; Ŝ
z
d⟩⟩

[50], obtained for small finite systems via ED in Fig. 3(a)
and via NRG [49] for L → ∞ in Fig. 3(b).

The ED results for FQ[B] vs T with finite leads show
only a modest increase of sensitivity with L. Even though
the underlying Fock space dimension increases exponen-
tially with L, information on the local perturbation is
seemingly not strongly imprinted on all many-particle
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FIG. 4. Quantum metrology with current measurements. (a) Precision of voltage estimation FI [Vb] in the nonequilibrium RLM
as a function of Vb and T for ϵd = −0.2, Γ = 0.05. (b,c,d) NRG results for interacting AIM with Ud = 0.3, Γ = 0.013 in linear
response. (b) FI [Vb] vs T/TK in the universal Kondo regime for ϵd = −0.15. (c) Magnetometry FI [B] vs T/TK and B/TK with
ϵd = −0.15. (d) FI [S] vs T and ϵd for estimation of the QD entropy S from a current measurement. See [36] for details.

states (unlike for the extensive voltage perturbation).
Jumping to the case with infinite leads in Fig. 3(b), we in
fact find a finite FQ[B] for all finite T . To understand this
behavior of the QFI one must understand the physics of
the AIM and its spin dynamics. At half-filling, the inter-
acting QD hosts a spin- 12 local moment, which becomes
dynamically screened by conduction electrons at low tem-
peratures T ≪ TK due to the formation of a many-body
singlet state through a process known as the Kondo ef-
fect [41]. The Kondo temperature TK is an emergent
low-energy scale in terms of which physical properties ex-
hibit universal scaling [43]. While an asymptotically-free
local moment is polarized by an infinitesimal field, giving
a diverging dynamical spin susceptibility, the QD local
moment in the AIM only starts to become polarized for
B ∼ TK due to formation of the Kondo singlet [51]. On
the lowest energy scales, K̄(ω) ∼ ω [50] and thus Eq. 6 is
finite. Up to log corrections, our NRG results are consis-

tent with the ansatz ImK̄(ω) ∼ ω/T 2
K

1+(T/TK)2+(ω/TK)2 in the

universal regime |ω|, T ≪ Ud, from which we extract the
universal asymptotes T 2

KFQ[B] ∼ (TK/T )2 for T ≫ TK

(Fig. 3(b), dotted line) and ∼ log[TK/T ] for T ≪ TK

(dashed line), in agreement with NRG data. Our results
are also consistent with Eq. 1b since the field cannot in-
duce a persistent dc spin current, and so χ(0) = 0.
Estimation from current measurement.– While the QFI
considered above provides a bound on the best possible
sensitivity, the optimal global measurement in a many-
body system is typically impractical. For nanoelectronics
devices, the standard experimental measurement [17] is
the electrical current I due to a bias voltage Vb switched
on adiabatically (but λ can be a parameter of Ĥ0). The
error-propagation formula [4] gives the precision FI [λ] for
estimating parameter λ from a current measurement,

FI [λ] ≡ 1/Var(λ) = |∂λ⟨Î⟩|2/Var(I) , (9)

and FQ[λ] ≥ FI [λ]. The precision is equal to the clas-
sical Fisher information when current measurements are
Gaussian distributed [52].

For the noninteracting RLM the current is given by
the Landauer-Büttiker (LB) formula [40, 53], ⟨Î⟩ =
e
h

∫
dωT (ω)× [f(ω−µs)−f(ω−µd)] which holds even at

finite bias eVb = µs − µd, with µα the chemical potential
of lead α. We assume for simplicity a flat lead density of
states ρ0(ω) = ρ0Θ(D−|ω|) in a band of halfwidthD ≡ 1,
and hybridization Γ = πρ0V

2. For the RLM the trans-
mission function is then given by T (ω) = 4πΓAQD(ω)
in terms of the QD spectral function, which takes a
Lorentzian form [36]. We consider instantaneous current
measurements and so Var(I) = 1

2π

∫
dωS(ω) in terms of

the nonequilibrium noise spectrum S(ω) [36], which can
similarly be obtained in closed form from the transmis-
sion function via the Lesovik formula [36, 54]. In Fig. 4(a)
we use this machinery to compute FI [Vb] for voltage esti-
mation. We see that resonances in the QD transmission
function enhance the precision at sweet-spot values of T
and Vb. Unlike the QFI, the precision FI [Vb] is finite,
despite the current being a global measurement.

For the interacting AIM the situation is more sub-
tle, since the LB and Lesovik formulae no longer ap-
ply [55]. We therefore restrict to LR and use NRG to
compute the current from the Kubo formula [35, 36, 40]
χdc = limω→0 ImK(ω)/ω for Â = 1

2 [N̂s − N̂d] as before.
Var(I) is again obtained from the noise spectrum, which
in LR follows from the fluctuation-dissipation relation
S(ω) = nB(ω)ImK(ω)/π with nB(ω) the Bose-Einstein
distribution [36]. Fig. 4(b) shows FI [Vb] vs T/TK for the
AIM, indicating a dramatic enhancement to precision at
low temperatures due to the Kondo effect. In panel (c)
we consider instead magnetometry in the AIM, showing
a nontrivial precision profile, with strongly enhanced per-
formance at low T ≪ TK for fields B ∼ TK .

Finally, we briefly examine the capability of estimating
thermodynamic properties using current measurements.
Recent interest in measuring the entropy S of a QD
system [56–58] motivates us to compute the precision
FI [S] in Fig. 4(d). We do this from Eq. 9 by rewriting
∂S⟨Î⟩ = ∂ϵd⟨Î⟩/∂ϵdS and then exploiting the Maxwell
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relation ∂ϵdS = −∂T ⟨n̂d⟩ in terms of the QD charge
n̂d =

∑
σ d

†
σdσ. The required derivatives are obtained

from NRG results for the evolution of ⟨Î⟩ and ⟨n̂d⟩ with
T and ϵd. Fig. 4(d) shows highly nontrivial behavior,
with distinct regions of the precision phase diagram cor-
responding to the different renormalization group fixed
points of the AIM [41]. Further details in the SM include
the case of an integrated current measurement [36].
Conclusion.– The metrological performance of a quan-
tum system can be optimized by maximizing its QFI
and measurement-specific precision. Here we developed a
general strategy for computing the QFI for an adiabatic
perturbation to a quantum many-body system and ap-
plied it to models of nanoelectronics devices. For generic
extensive perturbations we expect the QFI for the op-
timal global measurement to grow exponentially in the
number of degrees of freedom for strongly correlated sys-
tems, since the full Fock space can in principle be utilized.
The effective single-particle states in noninteracting sys-
tems appear to be a much weaker quantum resource for
metrology. Local perturbations will typically yield a fi-
nite QFI even in the thermodynamic limit. These fea-
tures are illustrated for voltometry and magnetometry
in the AIM describing semiconductor QD devices.

The precision for practical measurements may be far
from the QFI ideal – even for global measurements, as
with the electrical current in QD devices. This presents
ample opportunity to optimize the design and measure-
ment protocol for nanoelectronics devices beyond the sin-
gle QD paradigm. Many-body quantum effects [17, 59]
and quantum criticality [28, 29] engineered in such sys-
tems may provide a route to enhanced sensing [60–63].

The adiabatic gauge potential [64, 65] has recently
been computed using the Lanczos algorithm and might
provide a route to the QFI beyond linear response. Our
results have potential impact beyond metrology, since the
QFI plays many roles in different areas of quantum sci-
ence and technology e.g. witness for entanglement [66],
measure of non-Markovianity [67, 68], resource quantifier
in quantum thermodynamics [69] and fidelity susceptibil-
ity in quantum control [70], quantum speed limits [71],
optimisation of variational quantum algorithms [72], and
for continuous measurement currents [73–77].
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Quantum Sensing with Nanoelectronics:

Fisher Information for an Adiabatic Perturbation
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Centre for Quantum Engineering, Science, and Technology, University College Dublin, Ireland

S-I. QFI UNDER ADIABATIC EVOLUTION

We consider in this work an arbitrary Hamiltonian Ĥ0, to which we apply a small (dc) perturbation Ĥ1 = γÂ that
is switched on adiabatically in the infinitely distant past. We examine the response of the system to the perturbation
at time t = 0 as a means to estimate the perturbation strength. In particular, we wish to calculate the quantum
Fisher information (QFI) for the perturbation after the adiabatic evolution of the system.

We take our quantum system to be initially in thermal equilibrium, described by the thermal density matrix ρ̂0 =
exp(−βĤ0)/Z0 at inverse temperature β, where Z0 = Tr[exp(−βĤ0)] is the partition function of Ĥ0. We set kB ≡ 1

and ℏ ≡ 1. In the energy eigenbasis we have Ĥ0|n0⟩ = E0
n|n0⟩ and ρ̂0 =

∑
n p

0
n|n0⟩⟨n0|, where p0n = exp(−βE0

n)/Z0

are the probabilities. The full Hamiltonian, including the perturbation, reads,

Ĥγ = Ĥ0 + γÂ . (S-1)

The adiabatic switch-on of the perturbation is encoded through the time-dependence γ(t). For concreteness, suppose

that γ(t) = λ×e−|t|, which describes the adiabatic transformation from Ĥ0 at time t = −∞ to Ĥλ = Ĥ0+λÂ at t = 0.

The instantaneous spectral decomposition reads Ĥγ =
∑

n E
γ
n|nγ⟩⟨nγ | and the density matrix is ρ̂γ =

∑
n p

γ
n|nγ⟩⟨nγ |.

However, under adiabatic evolution the states stay in their instantaneous eigenstates and so pγn = p0n and |nγ⟩ = Ûγ |n0⟩.
From this it follows that the density matrix at t = 0 for a system with an adiabatic perturbation is given by,

ρ̂λ =
∑

n

p0n|nλ⟩⟨nλ| = Ûλρ̂0Û
†
λ . (S-2)

The general expression for the QFI for a parameter λ imprinted on a density matrix ρ̂λ is given by,1

FQ[λ] =
∑

n

(∂λp
λ
n)

2

pλn
+ 2

∑

n ̸=m

(pλn − pλm)2

pλn + pλm
|⟨mλ|∂λnλ⟩|2 , (S-3)

which for Eq. S-2 reduces to,

FQ[λ] = 2
∑

n ̸=m

(p0n − p0m)2

p0n + p0m
|⟨m0|Û†

λ

(
∂λÛλ

)
|n0⟩|2 , (S-4)

where the first term of Eq. S-3 vanishes because the probabilities p0n are those of the unperturbed Hamiltonian

Ĥ0. If we now suppose a general form for the unitary Ûλ = eiλÔ then we can write ⟨m0|Û†
λ

(
∂λÛλ

)
|n0⟩ =

⟨m0|e−iλÔ(iO)eiλÔ|n0⟩ = i⟨m0|O|n0⟩ and hence,

FQ[λ] = 2
∑

n̸=m

(p0n − p0m)2

p0n + p0m
|⟨m0|O|n0⟩|2 ≡ Var(Ô) . (S-5)

This holds for any perturbation λ provided that it is switched on adiabatically.

A. Perturbation Theory

For a small perturbation λ, we can obtain the states of Ĥλ perturbatively to first order in λ,

|nλ⟩ ≈ |n0⟩+ λ
∑

m ̸=n

⟨m0|Â|n0⟩
E0

n − E0
m

|m0⟩

= |n0⟩ − iλŴ |n0⟩
(S-6)
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where the correction to the wavefunction normalization can be neglected to leading order, and where

Ŵ =
∑

j ̸=m

i⟨m0|Â|j0⟩
E0

j − E0
m

|m0⟩⟨j0| (S-7)

is an Hermitian operator. Inserting this into our expression for ρ̂λ in Eq. S-2 we obtain

ρ̂λ ≈
∑

n

p0n

(
|n0⟩ − iλŴ |n0⟩

)(
⟨n0|+ iλ⟨n0|Ŵ †

)

≈ ρ̂0 − iλ[Ŵ , ρ̂0]

(S-8)

where we have truncated to linear order in the perturbation λ in the second line.

Finally, we note that when λ is a small parameter, the BCH expansion of Eq. S-2 with Ûλ = eiλÔ may be truncated
at leading commutator order, which yields,

ρ̂λ ≃ ρ̂0 − iλ[Ô, ρ̂0] (S-9)

Comparing Eqs. S-8 and S-9 we can identify the operator Ô with Ŵ . This analysis shows that a small perturbation
switched on adiabatically can be understood as a phase-imprinting unitary rotation of the unperturbed thermal state
of the system. The QFI FQ[λ] for estimation of the perturbation λ must be calculated with respect to the operator

Ŵ . Substituting our result Eq. S-7 into Eq. S-5 with Ô = Ŵ we obtain,

FQ[λ] = 2
∑

n ̸=m

(p0n − p0m)2

p0n + p0m

|⟨n0|Â|m0⟩|2
(E0

n − E0
m)2

. (S-10)

As shown in the main text, this result can also be obtained using the concept of the adiabatic gauge potential. This
may provide a route to generalizing our present results beyond the perturbative regime.

B. QFI from susceptibilities

Our Eq. S-10 can be cast in the alternative form of a susceptibility, similar to the famous result of Ref. 2, by using
the identity,

∫
dω

tanh(ω/2T )

ω2
δ(ω − E0

m + E0
n) =

p0n − p0m
p0n + p0m

× 1

(E0
n − E0

m)2
. (S-11)

Together with the the definition of the correlation function,

ImK̄(ω) = π
∑

n,m

(p0n − p0m)|⟨n0|Â|m0⟩|2 δ(ω − E0
m + E0

n) , (S-12)

we can now express the QFI as

FQ[λ] =
2

π

∫
dω

tanh(ω/2T )

ω2
ImK̄(ω) . (S-13)

Here, K̄(ω) ≡ ⟨⟨Â; Â⟩⟩ =
∫
dt exp(iωt)K̄(t) is the Fourier transform of the retarded, real-time correlator K̄(t) =

−iθ(t)⟨[Â(0), Â(t)]⟩0, where Ω̂(t) = eiĤ0t Ω̂ e−iĤ0t. K̄(ω) is evaluated in Ĥ0 and its Lehmann representation is given
by Eq. S-12. Thus, the QFI for an adiabatic perturbation is a physical observable, since the susceptibility is a physical
observable and experimentally measurable in principle.

We note the difference between Eq. S-13 and the result in Ref. 2, which expresses Eq. S-5 in terms of the susceptibility
for the operator Ô, without connecting it to any physical perturbation. By recognizing that the generator of the

evolution for the quantum state model ρ̂λ = Ûλρ̂0Û
†
λ is Ŵ in Eq. S-7 and not the perturbation Â itself, we get an

additional squared excitation energy denominator in the expression for the QFI. This has important consequences.
However, it does not affect the results or conclusions of Ref. 2, which were obtained in a different context and did not
address quantum parameter estimation.
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It may be convenient to express Eq. S-13 in terms of a related correlation function. We now introduce the retarded
current-current correlation function K(ω) ≡ ⟨⟨Ȧ; Ȧ⟩⟩, where Ȧ = d

dt Â. Here K(ω) is the Fourier transform of

K(t) = −iθ(t)⟨[Ȧ(0), Ȧ(t)]⟩0, again evaluated in Ĥ0. Using bosonic Green’s function equations of motion,3

ω⟨⟨X̂; Ŷ ⟩⟩ − ⟨[X̂, Ŷ ]⟩ = ⟨⟨X̂; [Ĥ, Ŷ ]⟩⟩ = ⟨⟨[X̂, Ĥ]; Ŷ ⟩⟩

with Ω̇ ≡ d
dt Ω̂ = i[Ĥ, Ω̂], we find that ⟨⟨Ȧ; Ȧ⟩⟩ = ω2⟨⟨Â; Â⟩⟩ + ω⟨[Â, [Â, Ĥ0]]⟩. Since Â and Ĥ0 are both Hermitian,

⟨[Â, [Â, Ĥ0]]⟩ is real, and therefore ImK(ω) = ω2ImK̄(ω). Thus we can write,

FQ[λ] =
2

π

∫
dω

tanh(ω/2T )

ω4
ImK(ω) , (S-14)

which expresses the QFI for a perturbation λ in terms of the correlation function for the associated currents Ȧ.

C. QFI from transport coefficients

As shown above, the QFI for an adiabatic perturbation can be computed from correlation functions evaluated in
the unperturbed system at equilibrium. The linear response of a system to a weak perturbation can also be expressed
in terms of equilibrium correlation functions via the Kubo formula. As we show below, it is possible to relate the QFI
for an adiabatic perturbation to dynamical linear response transport coefficients – even though the perturbation for
which we compute the QFI is dc steady-state.

Generalizing to an ac perturbation, we define,

Ĥ ′
1(t) = λ cos(ωt)Â , (S-15)

where ω is the ac frequency. Taking the perturbation λ to be small, we can look at the response of the system to the
perturbation in terms of the induced currents that flow, to linear order in λ. Within linear response, it follows that,

⟨Ȧ⟩ = χ(ω)λ (S-16)

where χ(ω) = d
dλ ⟨Ȧ⟩|λ→0 is the ac-frequency-dependent linear-response transport coefficient, and Ȧ = d

dt Â.

The Kubo formula4,5 allows us to calculate the transport coefficient in terms of equilibrium properties of the
unperturbed system Ĥ0,

χ(ω) = − ImK(ω)

ω
(S-17)

where K(ω) ≡ ⟨⟨Ȧ; Ȧ⟩⟩ as before. We have set ℏ ≡ 1. Equivalently, this may be expressed in terms of K̄(ω) in
Eq. S-12,

χ(ω) = −ωImK̄(ω) . (S-18)

The dc limit corresponds to taking ω → 0, such that Ĥ1(t) → Ĥ1 = λÂ and χ(ω) → χdc where,

χdc = − lim
ω→0

[ωImK̄(ω)] = − lim
ω→0

[ImK(ω)/ω] . (S-19)

When the dc transport coefficient χdc is finite, the low-frequency behaviour of the correlation functions is therefore
ImK̄(ω) ∼ 1/ω and ImK(ω) ∼ ω.

It is now clear that the QFI for a small adiabatic dc perturbation λ can be understood in terms of the ac linear-
response transport coefficient χ(ω) corresponding to the currents ⟨Ȧ⟩ induced by the operator Â coupling to λ,

FQ[λ] = − 2

π

∫
dω

tanh(ω/2T )

ω3
χ(ω) (S-20)

An immediate consequence is that FQ[λ] is divergent (infinite) unless χ(ω) vanishes faster than ω.
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S-II. QFI FOR THE ANDERSON IMPURITY MODEL

A nontrivial application is to quantum dot (QD) nanoelectronics devices. Here we define Ĥ0 as the QD nanostructure
coupled to source and drain leads at equilibrium. The leads are held at the same chemical potential and have the same
temperature; everything is at zero field. In general, the QD-leads coupling can be strong,6 and electronic interactions
cannot typically be neglected because quantum confinement in any nano-scale device ubiquitously results in Coulomb
blockade physics.7 The ensuing macroscopic entanglement between the QD and leads at low temperatures can produce
highly non-markovian dynamics, such as the Kondo effect.8

We model our equilibrium nanodevice as a generalized quantum impurity model9 of the form Ĥ0 = Ĥleads+Ĥnano+
Ĥhyb. In the quantum transport setup, the nanostructure is tunnel-coupled to infinite source and drain leads, which
are taken to be continuum reservoirs of non-interacting conduction electrons, in the thermodynamic limit.

The approach we develop can be straightforwardly generalized to more complex nanostructures but for the sake of
a simple demonstration, we restrict ourselves here to a single QD orbital, tunnel-coupled symmetrically to source and
drain leads. With local Coulomb interactions on the QD, this is the celebrated Anderson impurity model (AIM):8

Ĥ0 = t
L∑

j=1

∑

α,σ

(
c†αjσcαj+1σ +H.c.

)
+ ϵd

∑

σ

(
d†σdσ

)
+ Ud

(
d†↑d↑d

†
↓d↓

)
+ V

∑

α,σ

(
d†σcα1σ +H.c.

)
, (S-21)

where α = s, d for source and drain leads, σ =↑, ↓ for up and down spin, c
(†)
αjσ are annihilation (creation) operators

for the conduction electrons, and d
(†)
σ are annihilation (creation) operators for the QD. Here we have given the

Hamiltonian for the each of the leads in the form of a 1d nanowire, comprising L sites. This allows us to study the
scaling of the QFI with system size. The thermodynamic limit corresponds to L → ∞. The noninteracting (Ud = 0)
limit of this model is the resonant level model (RLM).
One useful simplification arising in the case of the AIM or RLM is the ‘proportionate coupling’ QD-lead hybridization

geometry.10 This means that we may introduce even and odd lead orbital combinations: cejσ = 1√
2
(csjσ + cdjσ) and

cojσ = 1√
2
(csjσ − cdjσ). The QD then only couples to the even lead orbitals in Ĥ0 and the odd lead orbitals

formally decouple. The Hamiltonian for the leads takes exactly the same form as in Eq. S-21 but now α = e, o. The

hybridization part of the Hamiltonian becomes simply Hhyb =
√
2V

∑
σ(d

†
σce1σ + H.c.). This effective one-channel

description is not essential to the following, but does permit an elegant description.
To this model we add a perturbation Ĥ1, switched on adiabatically, and study the resulting QFI for this perturbation.

In the following we consider, separately, a voltage bias perturbation and a magnetic field applied to the QD.

A. Bias Voltage Perturbation

First we consider applying an ac bias voltage,

Ĥ1(t) = −eVb cos(ωt)
1
2

[
N̂s − N̂d

]
, (S-22)

where Vb is the bias voltage, taken to be split equally across source and drain leads. Here N̂α =
∑L

jσ c
†
αjσcαjσ is the

total number operator for lead α. This perturbation can be defined for the model with finite or infinite L.
In this setup λ = −eVb and Â = 1

2 (N̂s − N̂d). For infinite leads in the quantum transport context, the natural

observable is the (average) electrical current into the drain lead, ⟨Î⟩ with current operator Î = −eṄd and Ṅα = d
dtN̂α.

For infinite leads, due to current conservation we have ⟨Ṅs⟩ = −⟨Ṅd⟩. In linear response we may write ⟨Î⟩ = χ(ω)Vb

with χ(ω) the ac conductance. The dc conductance is simply χdc = χ(ω → 0), and is typically finite. The conductance

is given in units of e2/h. From the Kubo formula,4,5 χ(ω) =
(

e2

h

)
× 2πω

4 Im⟨⟨N̂s − N̂d; N̂s − N̂d⟩⟩, which is evaluated

at equilibrium in Ĥ0. The QFI for estimation of the bias voltage in the dc limit is therefore,

FQ[Vb] =
2

π

∫
dω

tanh(ω/2T )

ω3
χ(ω) , (S-23)

where here and in the following we set ℏ ≡ 1, e ≡ 1 and kB ≡ 1.
With infinite leads as thermal reservoirs, χdc is typically finite and so the integral is divergent, meaning an infinite

voltage QFI. However, an interesting question addressed in the following is how the QFI diverges with system size?
For finite L it is no longer meaningful to talk of quantum transport and steady state currents. Therefore we express
the voltage QFI directly via Eq. S-14 in terms of the correlation function K(ω).
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1. Green’s function formulation

For the following discussion, it will be useful to find an efficient formulation for the QFI in terms of the QD retarded

Green’s function. The key object is the correlator K(ω) = 1
4 ⟨⟨Ṅs − Ṅd; Ṅs − Ṅd⟩⟩, where N̂α =

∑L
j=1

∑
σ c

†
αjσcαjσ

and Ṅα = d
dtN̂α = i[Ĥ, N̂α]. Thus we find,

K(ω) = − 1
2V

2
∑

σ,σ′

⟨⟨(d†σco1σ −H.c.); (d†σ′co1σ′ −H.c.)⟩⟩ = 1
2V

2
∑

σ

[
⟨⟨d†σco1σ; c†o1σdσ⟩⟩+ ⟨⟨c†o1σdσ; d†σco1σ⟩⟩

]
, (S-24)

where the second equality follows from the fact that the odd conduction electron sector is decoupled and is therefore
subject to separate charge and spin conservation. Furthermore, the retarded correlators can be decomposed into
independent contributions corresponding to the decoupled even and odd sectors. After some manipulations we obtain,

Im K(ω) = πV 2

∫
dω′ AQD(ω′)× [ρ0(ω

′ − ω){feq(ω′ − ω)− feq(ω
′)} − ρ0(ω

′ + ω){feq(ω′ + ω)− feq(ω
′)}] , (S-25)

where AQD(ω) = − 1
π Im GQD(ω) is the QD spectral function, and where GQD(ω) ≡ ⟨⟨dσ; d†σ⟩⟩ is the full lead-

coupled QD retarded Green’s function, evaluated in Ĥ0 (which is independent of spin σ). Also, we have used
ρ0(ω) = − 1

π Im Glead(ω) as the density of states of the free, uncoupled, leads at the QD position. It is given in terms

of the free leads Green’s function Glead(ω) ≡ ⟨⟨cα1σ; c†α1σ⟩⟩0, which is taken to be independent of channel α and spin
σ. As we see later, it is crucial in certain circumstances to keep track of the finite lead bandwidth, and so here we
retain the full lead density of states as an arbitrary function for generality. The equilibrium Fermi-Dirac distribution
is denoted feq(ω) = [eω/T +1]−1. We note that Eq. S-25 is exact, holds for interacting or noninteracting models, and
for finite lead length L as well as in the thermodynamic limit L → ∞.

With a knowledge of the lead density of states ρ0(ω) and the QD spectral function AQD(ω) we can evaluate K(ω)
and hence the voltage QFI,

FQ[Vb] = 4V 2

∫
dω

∫
dω′ tanh(ω−ω′

2T )

(ω − ω′)4
[feq(ω

′)− feq(ω)]× ρ0(ω)AQD(ω′) . (S-26)

For L → ∞ we have tGlead(ω) = ω/2t − i
√
1− (ω/2t)2 such that ρ0(ω) = 1

πt

√
1− (ω/2t)2Θ(1 − |ω/2t|) is finite

within a band of halfwidth D = 2t. For the noninteracting RLM, the lead-coupled QD Green’s function reads,

GRLM
QD (ω) =

1

ω − ϵd − 2V 2Glead(ω)
. (S-27)

AQD(ω) is then approximately Lorentzian, with a peak centered on ω ∼ ϵd of width ∼ V 2/t. Combining these results,
we indeed find that the dc electrical conductance χdc

c = limω→0 ImK(ω)/ω is finite, and hence the voltage QFI FQ[Vb]
from Eq. S-20 or Eq. S-26 diverges.

For the interacting AIM, the Green’s function has a non-trivial self-energy correction,

GAIM
QD (ω) =

1

ω − ϵd − 2V 2Glead(ω)− Σ(ω)
, (S-28)

but the dc conductance is again finite, and the QFI again diverges.

For finite L, both the free lead density of states ρ0(ω) and the lead-coupled QD Green’s function GQD(ω) consist
of a finite sum of poles, and the QFI integrals collapse to sums over pole contributions. For the free lead,

ρ0(ω) =
L∑

k=1

akδ(ω − ξk) , (S-29)

which has L poles for a nanowire lead of length L. In the diagonal basis of lead α, we can write Ĥα
lead =

∑
kσ ξkc

†
αkσcαkσ

and ak is the weight of free lead state k at the site j = 1 coupled to the QD.
On the other hand, for the non-interacting RLM, we can write,

AQD(ω) =
∑

p

bpδ(ω − ϵp) (S-30)
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where the sum over p runs over all 2L + 1 poles of the full lead-QD-lead composite system. In the diagonal repre-
sentation of the full (equilibrium) Hamiltonian, Ĥ0 =

∑
pσ ϵpf

†
pσfpσ with single-particle energies ϵp. Here bp is the

weight of eigenstate p on the QD orbital.
In the case of the interacting AIM with finite L, we may still write AQD(ω) as a sum of poles as per Eq. S-30 but

the pole weights and positions must be obtained from the Lehmann representation in the many-particle basis.11 The
sum over p includes exponentially-many terms, corresponding to the proliferation of many-particle excitations.

For the finite-sized RLM or AIM, we therefore find that the QFI can be expressed as,

FQ[Vb] = 4V 2
∑

k,p

tanh
(

ξk−ϵp
2T

)

(ξk − ϵp)4
[feq(ϵp)− feq(ξk)]× ak bp . (S-31)

In general this expression for the QFI yields a finite result, although clearly FQ[Vb] blows up as the energy gap between
single-particle excitation poles closes.

Our numerical results for the noninteracting RLM obtained by diagonalizing the single-particle Hamiltonian Ĥ0

shown in Fig. 2(a,b) of the main text demonstrate a scaling max(FQ[Vb]) ∼ L2. This is the result of entanglement
of all 2L + 1 sites in the system in this setup. However, note that we are ultimately dealing with the single-particle
physics of independent electrons: for 2L + 1 sites in our full system, we have 2L + 1 poles of the single-particle QD
Green’s function on which the QFI depends. The energy gap between excitations is then typically ∼ 1/L.

For the interacting AIM we obtain the QD Green’s function of the coupled system using exact diagonalizaion (ED)
in the many-particle basis (exploiting charge and spin symmetries), which we can comfortably do with a basic code up
to L = 8. We find very strong scaling with system size – roughly exponential, max(FQ[Vb]) ∼ (4L)2 – see Fig. 2(c,d).

B. Magnetic Field Perturbation

We now consider adding instead a perturbation to Ĥ0 corresponding to a magnetic field B on the QD,

Ĥ1 = BŜz
d , (S-32)

with B a Zeeman field along z and Ŝz
d = 1

2 [d
†
↑d↑ − d†↓d↓] the spin projection of the QD orbital. Due to SU(2) spin

symmetry the direction of B is arbitrary. In this case the QFI for estimation of the field strength B is,

FQ[B] =
2

π

∫
dω

tanh(ω/2T )

ω2
ImK̄(ω) , (S-33)

where K̄(ω) = ⟨⟨Sz
d ;S

z
d⟩⟩ is the dynamical spin susceptibility evaluated in Ĥ0. In a Fermi liquid phase8 we typically

have ImK̄(ω) ∼ ω. Thus the integral is convergent and FQ[B] is expected to be finite. Since the perturbation is local,
the correlation function K̄(ω) also involves local operators. However, it does of course still encode correlations in the
full systems that affect the QD.

The RLM has no spin dynamics since σ =↑ and σ =↓ sectors are decoupled. Therefore in the case of magnetometry
we must consider the interacting AIM. In Fig. 3 of the main text we compare ED calculations for finite-size systems
with numerical renormalization group (NRG) results9,11 for the system in the thermodynamic limit. Although we see
a modest increase in FQ[B] with L from ED up to L = 8, the QFI does not diverge with L. NRG results for L → ∞
show a finite magnetometry QFI for any finite T , although the QFI does diverge logarithmically as the temperature
T is decreased.

To understand the numerical results for the QFI we note that NRG results for Im K̄(ω) are consistent with the
ansatz

TK Im K̄(ω) ∼ ω/TK

1 + (T/TK)2 + (ω/TK)2
, (S-34)

where TK is the Kondo temperature, defined here as the T = 0 peak in Im K̄(ω). The universal scaling result is
approximate but found to be rather accurate for all ω and T considered, up to log corrections. Using our ansatz
in Eq. S-33 for the QFI yields directly the scaling prediction that T 2

KFQ[B] is a universal scaling function of T/TK ,
as confirmed by the full NRG results in Fig. 3(b). Furthermore, we extract from the ansatz the QFI asymptotes
T 2
KFQ[B] ∼ (TK/T )2 for T ≫ TK and ∼ log[TK/T ] for T ≪ TK . We expect similar low-T results for magnetometry

in any Fermi liquid, since by the Korringa-Shiba relation8 Im K̄(ω) ∼ ω for such a system on the lowest energy scales.
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S-III. FISHER INFORMATION FOR A CURRENT MEASUREMENT

In the nanoelectronics context, the natural experimental observable is of course the electrical current between source
and drain leads passing through the QD. We imagine switching on a bias voltage Vb adiabatically and measuring the
current, to estimate some parameter λ. Note that λ here can be a parameter of Ĥ0 or Ĥ1, or indeed temperature
T , and need not be small. To make contact with the QFI results of the previous sections, here we consider explicitly
once again voltometry or magnetometry (estimation of Vb or B), but this time we use the current specifically, rather

than the optimal measurement. We focus here on an instantaneous current measurement ⟨Î⟩, although we consider
the integrated current (collected charge) in the next section. To characterize the precision of our system to estimation
of Vb or B, we use the error-propagation formula to define the quantity,1

FI [λ] =
(∂λ⟨Î⟩)2
Var(I)

, (S-35)

where Var(I) = ⟨δÎ2⟩ and δÎ = Î−⟨Î⟩ in terms of the current operator Î = −eṄd as before. In general, FI [λ] ≤ FI [λ],
where FI [λ] is the true (classical) Fisher information (FI) for a current measurement. The precision FI [λ] is equal
to the FI FI [λ] when measurement outcomes are Gaussian distributed.12 Thus we have a chain of inequalities,
FQ[λ] ≥ FI [λ] ≥ FI [λ], and from the CRB Var(λ) ≥ 1/FQ[λ] (one-shot case).

1

The variance of the instantaneous current Var(I) appearing in Eq. S-35 can be obtained from the current autocor-

relator S(t) = ⟨δÎ(0)δÎ(t)⟩ since S(t = 0) = ⟨δÎ2⟩. Therefore, Var(I) can also be calculated by integrating the noise
spectrum S(ω) =

∫
dt eiωt S(t), viz:

Var(I) = S(t = 0) =
1

2π

∫
dω S(ω). (S-36)

We conclude that if we know the current and its noise spectrum, we can calculate the precision for an instantaneous
current measurement. In the following we therefore focus on finding expressions for ⟨Î⟩ and S(ω) for our nanoelec-
tronics models of interest. Note that the electrical current has units e/h, the conductance is in units e2/h, and the
noise has units e2/h2. Unless otherwise stated, we take e ≡ 1, kB ≡ 1 and ℏ ≡ 1.

For parameter estimation of Vb or B we therefore have,

FI [Vb] =
(Gdc)2

S(t = 0)
; FI [B] =

(∂B⟨Î⟩)2
S(t = 0)

(S-37)

where Gdc = d⟨Î⟩/dVb is the dc differential conductance, which can be evaluated at any Vb.

A. Linear Response but interacting

In linear response we can apply a small ac bias voltage Vb according to Eq. S-22. The (average) current ⟨Î⟩ is then
proportional to the voltage Vb. The proportionality factor is the linear response ac conductance χ(ω). For ω → 0
this becomes the dc linear response conductance χdc, which is the differential conductance Gdc appearing in Eq. S-37
evaluated in the zero-bias limit Vb → 0 and we have ⟨Î⟩ = χdcVb. In the general ac transport setup, with ω the ac

bias frequency, the Kubo formula gives an expression4,5 for the linear response conductance χ(ω) = Im ⟨⟨Î; Î⟩⟩/ω.
Importantly, the current-current correlation function is evaluated at equilibrium in Ĥ0. Since in Ĥ0 at zero bias no
net current flows, ⟨Î⟩0 = 0 and so δÎ ≡ Î − ⟨Î⟩ = Î at equilibrium. Thus,

χ(ω) = Im ⟨⟨δÎ; δÎ⟩⟩/ω ; lim
Vb→0

Gdc ≡ χdc = lim
ω→0

χ(ω) (S-38)

Furthermore, the fluctuation-dissipation relation tells us that the retarded and lesser Green’s functions in equilibrium
are connected. Therefore we can write,

πS(ω) = nB(ω) Im ⟨⟨δÎ; δÎ⟩⟩ ≡ ωnB(ω)χ(ω) , (S-39)

where nB(ω) = [eω/T − 1]−1 is the Bose-Einstein distribution. For FI(λ) we need S(t = 0), which we can obtain from

the ac linear response conductance χ(ω), or the current-current correlation function ⟨⟨δÎ; δÎ⟩⟩.
The above formulation is restricted to linear response, but is otherwise completely general: it makes no assumptions

about the form of the nanostructure, which can be single or multi-orbital in any geometry, interacting or non-
interacting, and connected to the leads in any geometry. The central object needed is the current-current correlation
function evaluation at equilibrium, which can be calculated even for complex interacting systems by e.g. NRG.9,11



8

1. Single QD case

If we specialize now to the single-QD case of the interacting AIM (or non-interacting RLM) then we can in fact
make further simplifications. Up to factors of the electric charge e, ℏ and kB (which we have set to unity), the

current-current correlator ⟨⟨δÎ; δÎ⟩⟩ = K(ω) is simply the correlator given in Eq. S-25. The dc conductance in linear
response for the AIM (or RLM) can then be obtained by inserting Eq. S-25 into Eq. S-38. After some manipulations
we recover the famous Meir-Wingreen formula,10

χdc = lim
ω→0

[ImK(ω)/ω] = 2πV 2

∫
dω [−∂ωfeq(ω)] ρ0(ω)AQD(ω) (S-40)

Similarly, inserting Eq. S-25 into Eq. S-39 yields an explicit expression for the equilibrium noise spectrum,

S(ω) = V 2

∫
dω′ AQD(ω′)× nB(ω) [ρ0(ω

′ − ω){feq(ω′ − ω)− feq(ω
′)} − ρ0(ω

′ + ω){feq(ω′ + ω)− feq(ω
′)}] ,

≡ V 2

∫
dω′ AQD(ω′)×

[
ρ0(ω

′ − ω)feq(ω
′)
(
1− feq(ω

′ − ω)
)
+ ρ0(ω

′ + ω)feq(ω
′ + ω)

(
1− feq(ω

′)
)]

(S-41)

This can be integrated to find the variance of the instantaneous current,

Var(I) =

∫
dω S(ω) =

1

π

∫
dω nB(ω) Im K(ω)

= V 2

∫ ∫
dω dω′ nB(ω)AQD(ω′)× [ρ0(ω

′ − ω){feq(ω′ − ω)− feq(ω
′)} − ρ0(ω

′ + ω){feq(ω′ + ω)− feq(ω
′)}]

= 1
2V

2

[∫
dω′ AQD(ω′)×

∫
dω ρ0(ω)−

∫
dω′ tanh(ω′/2T )AQD(ω′)×

∫
dω tanh(ω′/2T )ρ0(ω)

]

(S-42)

Due to spectral normalization, and for the standard case of a particle-hole symmetric free lead density of states
ρ0(ω) = ρ0(−ω), we therefore have the remarkably simple result,

Var(I) = 1
2V

2 , (S-43)

which is as such a constant trivial factor that plays a spectating role in the calculation of FI(λ) for single QDs
(noninteracting RLM and interacting AIM) in linear response. We note that in the naive calculation in which the
finite bandwidth is neglected is UV divergent.

B. Beyond linear response but noninteracting

We now consider the full nonequilibrium transport problem at finite voltage bias. In the presence of strong electron
interactions, however, this is largely still a hard open problem. Therefore in this section we restrict ourselves to the
simpler case of non-interacting models, where a Landauer-Büttiker type approach holds.13 This greatly simplifies the
formulation. We note however that although the current calculation is straightforward, the full nonequilibrium noise
spectrum is more subtle. In particular, we emphasize that it is crucial to consider a realistic (microscopic) model for
the QD circuit since nonuniversal high-energy scales like the hybridization and the conduction electron bandwidth
play a role. One must therefore consider from the outset a model with a finite conduction electron bandwidth – the
commonly-used wide-band limit will not suffice, as shown below. As such, and for concreteness, in the following we
take the metallic free lead density of states to be flat within a band of half-width D, such that ρ0(ω) = ρ0Θ(D− |ω|)
and ρ0 = 1/2D. In practice we set D = 1.

For non-interacting impurity-type models, the quantum transport problem is controlled by the transmission
function T (ω), which is independent of both temperature and bias voltage.5,13 In general, we can write T (ω) =
4ΓsΓd

∑
σ |Gsd;σ(ω)|2 where Γα = πρ0V

2
α is the hybridization of the nanostructure frontier orbital drα;σ to lead

α = s, d and Gsd;σ(ω) = ⟨⟨drs;σ; d†rd;σ⟩⟩ is the full lead-coupled retarded nanostructure Green’s function connecting
source and drain leads. For clarity, we restore units of e and h in the following.

Taking care to keep track of the finite bandwidth, we now express the current in Landauer-Büttiker form,13

⟨Î⟩ = e

h

∫
dω T (ω)× [fs(ω)− fd(ω)] , (S-44)
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where fα(ω) = feq(ω − µα)Θ(D − |ω − µα|) in terms of the chemical potential µα for lead α, and we are keeping
track of the finite bandwidth with the step function. The bias voltage is eVb = µs −µd, which one can assume is split
equally across source and drain leads.

Generalizing the results of Lesovik,14 we can similarly formulate the nonequilibrium noise spectrum,

S(ω) =
e2

h2

∫
dω′

[
fs(ω

′ + ω)f̄s(ω
′)T (ω′)T (ω′ + ω) + fd(ω

′ + ω)f̄d(ω
′)T (ω′)T (ω′ + ω)

+fs(ω
′ + ω)f̄d(ω

′)
(
1− T (ω′)

)
T (ω′ + ω) + fd(ω

′ + ω)f̄s(ω
′)T (ω′)

(
1− T (ω′ + ω)

)]
,

(S-45)

where we have defined f̄α(ω) = [1− feq(ω − µα)]Θ(D − |ω − µα|) for notational simplicity.
The current variance can be obtained by integrating the noise spectrum as before, but now we use the nonequilibrium

formula for noninteracting fermions. After some manipulation we obtain,

Var(I) ≡ ⟨Î2⟩ − ⟨Î⟩2 =

∫
dω S(ω)

= D∆Vb
+ ⟨Î⟩δVb

− ⟨Î⟩2 ,

(S-46)

where D is the lead bandwidth as before, ∆Vb
= e2

h2

∫
dω T (ω)Θ(D − |ω − µs|) is an effective hybridization, and

δVb
= e

h

∫
dω T (ω)[Θ(D− |ω−µs|)−Θ(D− |ω−µd|)] describes particle-hole asymmetry in the transmission function

at the band edges in a window of width Vb. For a symmetric transmission function T (ω) = T (−ω) this factor vanishes,

δVb
= 0. The current ⟨Î⟩ is given by Eq. S-44 as usual.

1. Single QD case

Here we consider the single QD case of the RLM (with spin). For simplicity we assume equal coupling to source
and drain leads, Vs = Vd ≡ V such that Γs = Γd ≡ Γ = πρ0V

2. Then the transmission function reads,

T (ω) = 8Γ2|GQD(ω)|2 ≡ 4πΓAQD(ω) =
2Θ(D − |ω|)

1 + (ω − ϵd)2/4Γ2
, (S-47)

where we have used the exact form of the RLM Green’s function in Eq. S-27 and approximate Glead(ω) = −iπρ0(ω).
We take care of the finite lead bandwidth, but neglect the small Lamb shift coming from the real part of the lead
Green’s function.

S-IV. INTEGRATED CURRENT MEASUREMENTS

In the previous section we considered instantaneous current measurements. However, the formalism can be straight-
forwardly extended to integrated current measurements.15

We denote the charge collected in the drain lead over some time interval ∆t as C(∆t). For some time-dependent

current trace I(t) we define C(∆t) =
∫∆t

0
dt I(t). In the steady state, and taking ∆t large, the integrated current

becomes C ≃ ∆t⟨Î⟩ while the variance of the integrated current is Var(C) ≃ ⟨(∆tδÎ)2⟩. Since more information is
gained about the parameter of interest from the collected charge the longer we wait, the relevant quantity is really
the precision rate (or time average) which we denote F̄I [λ]. Thus we define,15

F̄I [λ] =
(∂λ⟨Î⟩)2
d
dtVar(C)

. (S-48)

It can be shown that d
dtVar(C) can also be obtained by integrating the current autocorrelation function S(t), or

equivalently in terms of the zero-frequency value of the noise spectrum,

d
dtVar(C) =

∫
dt S(t) = S(ω = 0). (S-49)
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FIG. S-1. Voltometry precision for estimation of the bias voltage Vb in the non-interacting single-QD resonant level model,
as a function of temperature and bias. Left panel shows FI [Vb] for an instantaneous current measurement, whereas the right
panel shows the rate F̄I [Vb] for an integrated current measurement. Exact results plotted for representative values ϵd = −0.2,
Γ = 0.05, and finite lead bandwidth D = 1. Recall that the corresponding voltometric QFI is infinite for this model.

In the interacting but linear-response regime we can take the ω → 0 (dc) limit of Eq. S-39 to obtain the completely
general relation,

S(ω = 0) =

(
T

πℏ

)
χdc ≡ 2Tχdc h−1 . (S-50)

Thus we may calculate F̄I(λ) purely from a knowledge of the dc linear response conductance χdc.

For the noninteracting but nonequilibrium case, we take the ω → 0 (dc) limit of Eq. S-45 instead. We obtain,

S(ω = 0) =
e2

h2

∫
dω′

[
T (ω′)

(
fs(ω

′)f̄d(ω
′) + fd(ω

′)f̄s(ω
′)
)
− [T (ω′)]2

(
fs(ω

′)− fd(ω
′)
)2

]
, (S-51)

which is a generalization of the well-known Levitov formula,14 in which we keep track of the finite lead bandwidth.

A. Voltometry via current measurements

We briefly compare estimation of the bias voltage using either an instantaneous current measurement FI [Vb], or an
integrated current measurement, F̄I [Vb]. In Fig. S-1 we consider both quantities for the non-interacting RLM in the
non-linear regime, as a function of temperature and bias. There are qualitative similarities between the two measures,
but the major difference is that the instantaneous current measurement precision has vanishing sensitivity at low
T and Vb when the transmission function is small at low energies (as with these parameters); while the integrated
current precision rate is relatively enhanced in this region.

B. Magnetometry via current measurements

In Fig. S-2 we present numerical results for the precision for estimation of a magnetic field applied to the QD. The
left panel shows the precision for an instantaneous current measurement FI(B), while in the right panel we show
the precision rate F̄I(B) for an integrated current measurement. This is computed for the interacting AIM, since
the field couples to the QD spin, and the non-interacting RLM has no spin dynamics. Therefore we use NRG to
compute the linear response conductance, from which the precision is obtained. We are thereby restricted to linear
response in the bias voltage and current; the precision is proportional to V 2

b . We plot universal results in the Kondo
regime. Fig. S-2 shows nontrivial behaviour for both, plotted here as a function of rescaled temperature T/TK and
field strength B/TK , with peak sensitivity in both cases at low T around B ∼ TK .
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FIG. S-2. Magnetometry precision for estimation of an applied magnetic field B using a current measurement in linear response,
for the interacting Anderson impurity model. Exact results obtained using NRG, plotted as a function of temperature and field
strength, rescaled in terms of the Kondo temperature TK . Left panel shows FI [B] for an instantaneous current measurement,
whereas right panel shows the rate F̄I [B] for an integrated current measurement. Shown for representative values ϵd = −0.15,
Ud = 0.3, V = 0.09, D = 1.

S-V. NRG CALCULATIONS

For many-body calculations of the interacting AIM in the thermodynamic limit, we use Wilson’s NRG,9 with
real-frequency dynamical correlation functions obtained using the full-density-matrix method.11 We exploit conserved
charge and spin-projection in the iterative block-diagonalization procedure. A logarithmic discretization parameter
Λ = 2.5 was used and Ns = 3000 states retained at each NRG step.

S-VI. VALIDITY OF THE ADIABATIC APPROXIMATION

Our general results on the QFI for an adiabatic perturbation (Eq. 1 of the main text) were illustrated with the
example of the AIM and RLM (Figs. 2 and 3). Care must be taken in defining the adiabatic process in such cases,
especially when taking the thermodynamic limit of system size L → ∞.

The standard adiabatic approximation requires that the instantaneous spectral decomposition of the time-evolving
Hamiltonian does not contain accidental degeneracies. The AIM and RLM do feature degenerate eigenstates, but
typically these are symmetry protected and cannot mix. Specifically, we may label eigenstates by conserved total
charge Q and total Sz spin projection; the voltage perturbation Vb and QD magnetic field B preserve these symmetries
and so adiabatic evolution occurs independently in these block diagonal symmetry subspaces.

The switch-on protocol γ(t) for the perturbation Ĥ1(t) = γ(t)Â must be slow in an adiabatic process. In
particular, the ramp time ∆t must be long compared with the inverse minimum spectral gap ℏ/∆E to satisfy16∑

m ̸=n |ℏ⟨mγ |ṅγ⟩/(Eγ
n − Eγ

m)| ≪ 1. This condition can be checked by analyzing the spectrum of the instantaneous

Hamiltonian Hγ . Thus as the gap closes (∆E → 0) the adiabatic switch-on time diverges (∆t → ∞). For the AIM
and RLM, the system becomes gapless as L → ∞. As discussed in Ref. 17, the adiabatic limit exists in gapless systems
when the limits L → ∞ and ∆t → ∞ commute – that is, we can take ∆t → ∞ first before L → ∞. Real many-body
systems have this property when weak coupling to the environment or relaxation scattering processes cut off incipient
infrared divergences of the energy coming from low-energy modes.17 We therefore expect our results to hold for the
AIM and RLM with finite L for a slow ramp of finite duration. For the noninteracting RLM the characteristic spectral
gap is ∆E ∼ D/L due to the single-particle states, whereas for the interacting AIM we have ∆E ∼ D/(4L) due to
strong correlation effects. In the thermodynamic limit L → ∞ where both RLM and AIM are gapless, the adiabatic
switch-on of the perturbation in principle therefore requires an infinite ramp time ∆t → ∞.

On a technical level, the calculation of the QFI in the thermodynamic limit is handled automatically using Eq. 1b
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and Eq. 6 through the formulation involving integrals over the correlation functions χ(ω) or K̄(ω), which simply
become continuous functions of ω within a finite bandwidth D as L → ∞. For finite L note that χ(ω) and K̄(ω)
consist of a discrete sum of poles, obtainable from their Lehmann representation. This is used in Fig. 2 and 3 for
the finite-size scaling analysis. Controlled finite-size approximations that converge to the thermodynamic limit can
be naturally achieved by broadening the discrete poles by e.g. convolution of the spectra with a Gaussian kernel.

In the second part of the paper we consider instead the metrological precision for a current measurement in nano-
electronics devices in the thermodynamic limit L → ∞, rather than the QFI for the optimal many-body measurement.
Here we employ the standard assumption that the voltage bias Vb is switched on adiabatically in the distant past
(but the parameter λ can be a parameter of Ĥ0, Ĥ1 or even T ). The adiabatic approximation has a long history
in the quantum transport context.4,18 In experiment, where the nanostructure is contacted with a macroscopic ex-
ternal electronic circuit, the voltage bias is obviously switched on in a finite time, yet the measured linear-response
transport coefficients are accurately given by the predictions of the Kubo formula which relies on the linear response
assumption.4,6,19 Indeed, detailed universal scaling predictions using the Kubo formula for the electrical conductance
in strongly correlated critical systems have been quantitatively confirmed experimentally.20–22 We conclude that the
adiabatic switch-on of the voltage bias in nanoelectronics systems in the thermodynamic limit is entirely practical.

S-VII. SUPER-HEISENBERG SCALING OF THE QFI

Fig. 2 of the main text shows a scaling analysis of the QFI for the adiabatic bias perturbation Vb with increasing
system size L in the noninteracting RLM and the interacting AIM. Here L refers to the number of fermionic sites
in each of the 1d nanowire leads. The total number of fermionic degrees of freedom is thus 2L + 1 in both cases,
including the QD. For the RLM, the model is quadratic in fermion field operators and so the Hamiltonian operator
can be brought to diagonal form by a canonical transformation. All physical properties can then be expressed in
terms of the independent single-particle (one-body) states of the diagonal representation. In particular, any operator
of arbitrary M -body complexity can be formulated in this way, and so the optimal global measurement for parameter
estimation depends only on these states. The QFI can then be formulated in terms of single-particle states for
noninteracting systems. For the RLM, the quantum ‘resource’ is in some sense therefore these single-particle states,
of which we have 2L + 1. Using exact diagonalization in the single-particle sector we are able to go to large system
sizes and see a robust scaling max(FQ[Vb]) ∼ L2. This is Heisenberg scaling,23–27 which already shows a quantum
advantage over metrology with classical systems. The classical Fisher information (FI) is extensive in classical systems
and for uncorrelated quantum states (the FI of a product state is the sum of the FI for its subsystems1). Quantum
correlations are needed to reach the observed quadratic scaling.

For interacting systems such as the AIM (with quartic coupling terms), there is no simple single-particle represen-
tation and in general one must construct the Hamiltonian matrix in the full many-particle basis. The full Fock space
is of dimension 42L+1 and is exponentially large in the system size. For global perturbations (such as Vb) that imprint
strongly on a large fraction of the many-particle states, and with the optimal many-body measurement with support
on the global system, we find that the QFI can scale as max(FQ[Vb]) ∼ (4L)2, indicating that the quantum ‘resource’
here is in some sense the set of many-particle states, of which we have exponentially many in number. Thus for both
RLM and AIM we see a kind of quadratic scaling (FQ[Vb]) ∼ N2, where for the RLM N ≡ L for single-particle states,
whereas for the AIM N ≡ 4L for the many-particle states. The subtleties of apparent super-Heisenberg scaling are
discussed in Refs. 27 and 28.

We emphasize that a more modest scaling would be expected if: (i) the measurement were confined to a subspace
of the full system (for example one or a few local sites); (ii) the measurement was restricted to M -body terms, with
M < 2L + 1 (but still with support on the full system); (iii) the perturbation is not global and therefore imprints
strongly on only a small fraction of the many-body states; (iv) we deal with some specific practical measurement
rather than the optimal one.

Regarding point (i), the thermometric QFI for a local measurement on the QD (in a Kondo model variant) was
considered in Ref. 29, and was found to remain finite in the thermodynamic limit of an infinite conduction electron
bath. Point (iii) is addressed specifically in Fig. 3 where we consider a local perturbation BŜz

d to the QD. Even
the optimal global, many-body measurement on the full system here yields a QFI FQ[B] that remains finite even as
L → ∞. We illustrate point (iv) in Fig. 4 where we consider a current measurement. Even though the current is a
global object and we take the thermodynamic limit L → ∞, the precision FI [Vb] and FI [B] are finite.

Finally, we touch upon the time resources required to do parameter estimation for an adiabatic perturbation.27 As
discussed above in Sec. S-VI, the adiabatic switch-on protocol involves a ramp time that diverges as the system size
increases. The results for the adiabatic QFI for large L are therefore to be understood as a fundamental bound rather
than a guide for experiments, since in this limit meaningful measurement statistics cannot be gathered in practice. For
finite L (and hence a finite preparation time ∆t) this has implications for the effective QFI scaling, since the effective
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FIG. S-3. Precision of thermodynamic entropy estimation from current measurements in QD systems modelled by the AIM in
the Kondo regime. (a) Derivative of the experimentally-measurable linear-response electrical conductance χdc with respect to
the QD potential ϵd as a function of T and ϵd. (b) Temperature derivative of the experimentally-measurable QD charge ⟨n̂d⟩
as a function of T and ϵd. (c) Thermodynamic entropy S of the QD as a function of T and ϵd. Shown for representative values
of AIM model parameters Ud = 0.3, V = 0.09 (Γ = 0.013) and B = 0 with a flat conduction electron band of half-width D = 1.

QFI scales linearly in the number of independent measurements N . In a given amount of experimental measurement
time τ , we can perform τ/∆t independent measurements. But for adiabatic evolution ∆t itself increases with system
size as the excitation gaps close. The precision is lower bounded by a quantity which scales as (τ4L)−1 for the AIM
or (τL)−1 for the RLM. This should be analyzed on a case-by-case basis.

The above discussion highlights the limitations of interpreting the QFI for global measurements in many-body
systems. However, the QFI does provide a benchmark against which feasible experimental measurements (such as
the current) should be compared. Our ultimate conclusion is that practical measurements that leverage many-body
effects and have support on the full system may be vastly superior to local or few-body measurements. This provides
ample motivation for designing nonstandard measurement protocols for advanced quantum sensing applications.

S-VIII. ENTROPY ESTIMATION

In Fig. 4d of the main text we provide a non-standard application of the parameter estimation paradigm, to ther-
modynamic quantities. We focus on the thermodynamic entropy of the QD in the AIM, defined S = Stot − S0

where Stot = −∂TF is the equilibrium entropy of the full lead-coupled QD system Ĥ0, and S0 is the entropy of a
trivial reference state in which the QD is unoccupied (in practice obtained for ϵd → ∞). Here F = −T ln(Z0) is the

free energy of the system (Z0 is the partition function of Ĥ0 as before). Recently,30 it was pointed out that since
∂T∂ϵdF = ∂ϵd∂TF , one can write down a local Maxwell relation,

S(ϵd, T ) = −
∫ ∞

ϵd

dϵ̄ ∂T ⟨n̂d⟩ϵ̄,T , (S-52)

for the entropy S in terms of the experimentally measurable QD charge ⟨n̂d⟩ = ∂ϵdF , where n̂d =
∑

σ d
†
σdσ. Indeed,

the entropy of a single QD modelled by the AIM in the strongly correlated regime was extracted experimentally in
Ref. 30 in this way.

Here we consider the precision of estimation of S from a current measurement, FI [S] = |∂S⟨Î⟩|2/Var(I), as defined
from Eq. 9 of the main text. We wish to express the precision in terms of the experimentally-measurable quantities
⟨n̂d⟩ and χdc = ∂Vb

⟨Î⟩. We do this by writing ∂S⟨Î⟩ = ∂ϵd⟨Î⟩/∂ϵdS and then exploiting the Maxwell relation
∂ϵdS = −∂T ⟨n̂d⟩ as used above. This leads to,

FI [S] =
|∂ϵd⟨Î⟩/∂T ⟨n̂d⟩|2

Var(I)
. (S-53)

For the AIM, we compute both ⟨Î⟩ and ⟨n̂d⟩ as a full function of ϵd and T using NRG. From these we easily obtain
their numerical derivatives, which are plotted in Figs. S-3(a,b). For reference, we show the entropy S itself in panel
(c). Evaluation of Eq. S-53 using the data in Figs. S-3(a,b) yields the plot in Fig. 4d of the main text.

We note that the entropy in Fig. S-3(c) shows characteristic regions corresponding to the renormalization group fixed
points of the AIM.8 In particular we have S = ln(4) at high temperatures for the free-orbital fixed point corresponding
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to quasi-degenerate empty, singly-occupied, and doubly-occupied QD states. We also see a local-moment regime of
degenerate QD spin states giving S = ln(2) (but charge degrees of freedom frozen out), and S = 0 fermi liquid regimes.
For ϵd < 0 and T ≪ TK the quenched entropy has a nontrivial origin in the Kondo effect.8 Note that the metallic
AIM does not support any critical points; the complex behavior of Fig. S-3(c) arises from crossovers, rather than
transitions, between fixed points. The precision diagram Fig. 4d can now be understood: we see enhanced sensitivity
to estimation of the entropy using a current measurement when the entropy itself changes rapidly with ϵd and T .
This occurs along the crossovers between the renormalization group fixed points described above.
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