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Basic Facts About Circles

e A central angle is an angle whose vertex is at the center of
the circle. It measure is equal the measure of the intercepted
arc.

e An angle whose vertex lies on the circle and legs intersect the
cirlc is called inscribed in the circle. lts measure equals half

length of the subtended arc of the circle.

A

/AOC= contral angle, ZAOC =AC
Z/ ABC=inscribed angle, ZABC = %
e A line that has exactly one common point with a circle is

called tangent to the circle.
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e The tangent at a point A on a circle of is perpendicular to

the diameter passing through A.

OA 1l AB

e Through a point A outside of a circle, exactly two tangent
lines can be drawn. The two tangent segments drawn from

an exterior point to a cricle are equal.

A

Ta”Qen;

Radius

Radius

OA= 0B, ZOBC=/0AC =90°= AOAB=AOBC



5

e The value of the angle between chord AB and the tangent
line to the circle that passes through A equals half the length
of the arc AB.

AC,BC = chords  CP = tangent

— —

AC AC
AABCZT, AACPZT

e The line passing through the centres of two tangent circles

also contains their tangent point.



Cyclic Quadrilaterals

e A convex quadrilateral is called cyclic if its vertices lie on a
circle.

e A convex quadrilateral is cyclic if and only if one of the fol-
lowing equivalent conditions hold:

(1) The sum of two opposite angles is 180°?;

(2) One angle formed by two consecutive sides of the quadri-
lateral equal the external angle formed by the other two
sides of the quadrilateral;

(3) The angle between one side and a diagonal equals the

angle between the opposite side and the other diagonal.
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Example 1. Let BD and CE be altitudes in a triangle ABC.
Prove that if DE||BC, then AB = AC.

Solution.  Let us observe first that ZBEC = ZCDE =90°, so
BCDE is cyclic. It follows that ZAED = ZACB (1)

On the other hand, DE||BC implies ZAED = ABC (2)

From (1) and (2) it follows that ZABC = ZACB so AABC is isosce-

les.
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Example 2. In the cyclic quadrilateral ABCD, the perpendicular
from B on AB meets DC at B’ and the perpendicular from D on
DC meets AB at D’. Prove that B'D'||AC.

Solution. Since ABCD is cyclic we have ZACD = ZABD.
Similarly, BD'DB' is cyclic (because /B'DD'+ ZB'BD’ = 180°)
implies ZDB'D' = ZD'BD. Hence ZDCA = ZCB'D', so that
AC||B'D’.
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Example 3. A line parallel to the base BC of triangle ABC
intersects AB and AC at P and Q respectively. The circle passing
through P and tangent to AC at Q intersects AB again at R. Prove
that BCQR is cyclic.

Solution. It is enough to proce that ZARQ = ZACB.

Indeed, since APRQ is inscribed in the circle = ZPRQ = %.
Since AC is tangent to the circle passing through P,Q,R = ZAQP =
PQ

T.

Hence, ZPRQ = ZAQP. Now, since PQ||BC it follows that ZAQP =
ZACB. Thus, ZARQ = ZACB which shows that BCQR is cyclic.
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Example 4. The diagonals of the cyclic quadrilateral ABCD
are perpendicular and meet at P. The perpendicular from P to AD
meets BC at Q. Prove that BQ = CQ.

Solution. Denote by M the intersection between AD and PQ.

/MPD=/BPQ (opposite angles)

/MPD=/MAP (=90°-/APM) |= £ZBPQ=/ZCBP

/MAP=/CBP (ABCD cyclic)

Hence, §QBP is isosceles which further yields BQ=QP (1)

Similarly we have

/APM = /CPQ (opposite angles)

/APM =/ADP (=90°-/MPD) |= ZCPQ=/QCP

/ADP=/QCP (ABCD cyclic)

Hence, §QCP is isosceles which further yields CQ = QP (2)
From (1) and (2) it follows that BQ = CQ.
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Example 5. Let E and F be two points on the sides BC and DC
of the square ABCD such that ZEAF =45°. Let M and N be the
intersection of the diagonal BD with AE and AF respetively. Let
P be the intersection of MF and NE. Prove that AP L EF.

Solution. ZEAN=/EBN =45° so ABEN is cyclic. It follows
that ZANE =180° - ZABE =90°, so NE L AF.

Similarly, ADFM is cyclic so ZAMF =180°—- ZADF =90° which
yields AE L FM. It follows that EN and FM are altitudes in AAEF,
so P is the orthocentre of AAEF. This imples AP 1 EF.
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Example 6. Let ABCD be a cyclic quadrilateral. Prove that the
incentres of traingles ABC, BCD, CDA, ADB are the vertices of
a rectangle.

Note. The incenter is the intersection of angles’ bisectors.
Solution. We shall start with the following auxiliary result.

Lemma. If M is the incentre of AABC then ZAMB =90° +

ZACB
5 -

Proof of Lemma. In ABMC we have

/AMB =180°-/MAB-/MBA

/BAC /ABC
2 2
/BAC+ /ABC
2
180° — / ACB

2

, ZACB
=907+ = —.

=180° —

=180° -

=180° -
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Returning to our solution, denote by Mj, My, M3, M, the incentres
of traingles DAB, ABC, BCD and CDA respectively.

M; is the incentre of ADAB => ZAM,B =90°+ <428 (1)

M, is the incentre of AABC => ZAM,B =90° + 48 (2)

ABCD is cyclic = ZACB=/ZADB. (3)
Combining (1), (2) and (3) we find ZAM;B = ZAM,B so ABM, M,

is cyclic. It follows that

/BAD
/BM,M; =180° - ZBAM,; =180° —

. (4)
Similarly BCM3M; is cyclic so

BCD
/BM,M;5 =180°—- /BCM3; =180° — — (5)
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From (4) and (5) we now deduce

ZBAD BCD
lMleMg = 3600—(ZBM2M1+LBM2M3) = 2 + > = 900

In the same way we obtain that all angles of the quadrilateral My M, Mz M,

have meaure 90° and this finishes our proof.
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Example 7. Let A, B’ and C’ be points on the sides BC, CA
and AB of trinagle ABC. Prove that the circumcentres of traingles

AB'C’, BA'C' and CA'B’ have a common point.

Solution. Denote by M the point of intersection of circumcentres
of triangl;es AB'C’ and BA'C’. We prove that MA'CB’ ic cyclic so

the circumcentre of triangle A'CB’ opasses through M as well.



