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Basic Principle of Inequalities: For any real number x, we have

x2 ≥ 0 , with equality if and only if x = 0 .

Example. Prove that x2+ y2+ z2 ≥ xy+ yz+ zx, and determine

when equality occurs.

Solution. Note that

(x− y)2 ≥ 0

(y − z)2 ≥ 0

(z − x)2 ≥ 0 .

Adding these three inequalities yields

(1) 2(x2 + y2 + z2)− 2(xy + yz + zx) ≥ 0 .

Equality will occur in (1) if and only if equality occurs in all three of

the inequalities that were added. Therefore, equality occurs if and

only if x = y = z.
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Example. For any two positive real numbers x and y, we have

(x− y)2 ≥ 0, and so x2 + y2− 2xy ≥ 0. Writing this as x2 + y2 +

2xy ≥ 4xy, we get
(
x+y
2

)2 ≥ xy. Taking the square root of both

sides yields
x + y

2
≥ √xy .

where by convention,
√
· denotes the positive square root. This

inequality has a special name.

The Arithmetic Mean – Geometric Mean (AM-GM) In-

equality:

For any two positive real numbers x and y, we have

x + y

2
≥ √xy

with equality if and only if x = y.

The quantity of the LHS is called the arithmetic mean of the two

numbers x and y. The quantity of the LHS is called the geomet-

ric mean of the two numbers x and y. They can be regarded as

providing two different ways of “averaging” a pair of numbers.

This gives a new “Law of Averages”: Some averages are bigger than

others!
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Remark: This result has the following interpretations:

• The minimum value of the sum of two positive quantities

whose product is fixed occurs when both are equal.

• The maximum value of the product of two positive quantities

whose sum is fixed occurs when both are equal.

• A geometric interpretation of this result is that “the rectangle

of largest area, with a fixed perimeter, is a square”.

Example. Find the minimum of

x

y
+

y

x

where x and y are positive.

Solution. By the AM-GM inequality,

x

y
+

y

x
≥ 2

√
x

y
· y
x

= 2 .

The minimum occurs when x
y = y

x, i.e., when x2 = y2. Since x and

y are both positive, this occurs if and only if x = y.
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The Arithmetic Mean – Geometric Mean (AM-GM) In-

equality (more than two variables):

Suppose we have n positive real numbers x1, x2, . . . , xn. Then

x1 + x2 + · · · + xn
n

≥ (x1x2 · · · xn)
1
n

with equality if and only if all of the numbers x1, x2, . . . , xn are

equal.

Remark: This result has the following interpretations:

• The minimum value of the sum of positive quantities whose

product is fixed occurs when all are equal.

• The maximum value of the product of positive quantities

whose sum is fixed occurs when all are equal.

Example. Find the minimum of

50

x
+

20

y
+ xy

where x, y > 0.

Solution. By AM-GM,

50

x
+

20

y
+ xy ≥ 3 3

√
50

x
· 20
y
· xy

= 3
3
√
1000

= 30 .

The minimum occurs when 50
x = 20

y = xy, i.e., when x = 5 and

y = 2.
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Example.

Maximize xy (72− 3x− 4y), where x, y > 0 and 3x + 4y < 72.

Solution. We seek to maximize the product of three positive quan-

tities. Note that the sum of the three quantities is equal to

x + y + (72− 3x− 4y) = 72− 2x− 3y .

This is NOT a constant! However, we can rearrange the product as

1

12
(3x) (4y) (72− 3x− 4y)

Thus by AM-GM, the maximum occurs when 3x = 4y = 72− 3x−

4y, i.e., when 3x = 72− 6x. This yields 9x = 72, or x = 8. Thus

y = 6 and the maximum value is 1
12 · (24)

3 = 1152.
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Example.

Find the maximum value of f (x) = (1−x)(1+x)2, where 0 ≤ x ≤

1.

Solution. Writing f (x) = (1 − x)(1 + x)(1 + x), we seek to

maximize the product of three positive quantities. Note that the

sum of the three quantities is equal to

(1− x) + (1 + x) + (1 + x) = 3 + x .

This is NOT a constant! However, we can rearrange the product as

f (x) =
1

2
(2− 2x)(1 + x)(1 + x) .

We then have, by AM-GM,

3
√
(2− 2x)(1 + x)(1 + x) ≤ (2− 2x) + (1 + x) + (1 + x)

3
=

4

3

and so

(2− 2x)(1 + x)(1 + x) ≤
(
4

3

)3

=
64

27

and so f (x) ≤ 32
27. The maximum is achieved when 2−2x = 1+x =

1 + x, i.e., when x = 1/3.
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Two More “Averages”:

The Harmonic Mean of n numbers x1, x2, . . . , xn is given by

HM =
n

1
x1
+ 1

x2
+ · · · + 1

xn

and their Root-Mean-Square is given by

RMS =

√
x21 + x22 + · · · + x2n

n
.

If all the numbers x1, x2, . . . , xn are positive, then we have

min{x1, . . . , xn} ≤ HM ≤ GM ≤ AM ≤ RMS ≤ max{x1, . . . , xn}

with equality in each case if and only if all of the numbers x1, x2, . . . , xn

are equal.

Special case: for two positive numbers x and y

min{x, y} ≤ 2xy

x + y
≤ √xy ≤ x + y

2
≤
√

x2 + y2

2
≤ max{x, y} .

Exercise: Prove the above special case (all inequalities)!
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Next we will prove a famous elementary inequality called The Re-

arrangement Inequality. We will then show that this inequality

has some far-reaching consequences!

Motivating Example (Part 1). Banknotes are available in the

denominations of EUR5 and EUR10. You are allowed to take 3

banknotes of one type, and 7 banknotes of the other type. How

should you choose in order to maximize the amount of money you

have?

Answer. Choose 3 EUR5 notes, and 7 EUR10 notes. “Obvious”!

Justification. Because

3 · 5 + 7 · 10 > 3 · 10 + 7 · 5 .

This example motivates the following result.

The Rearrangement Inequality (Case of two variables): Let

a < b and x < y. Then

ax + by > ay + bx .
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Proof: Note that b− a > 0 and also y − x > 0. Therefore

(b− a)(y − x) > 0 .

Expanding this product yields

ax + by − ay − bx > 0 ,

giving the result.

Motivating Example for the General Case. Banknotes are

available in the denominations of EUR5, EUR10 and EUR20. You

are allowed to take 3 banknotes of one type, 7 banknotes of a second

type, and 9 banknotes of the third type. How should you choose in

order to maximize the amount of money you have?

Answer. Choose 3 EUR5 notes, 7 EUR10 notes, and 9 EUR20

notes. Again, “obvious”!

Justification. Because

3 · 5 + 7 · 10 + 9 · 20 > 3 · x + 7 · y + 9 · z ,

where x, y, z is any rearrangement of 5, 10, 20.

This example motivates the following general result.
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The Rearrangement Inequality:

Suppose that

• The n numbers a1, a2, . . . , an are in increasing order, i.e.,

a1 < a2 < · · · < an

• The n numbers b1, b2, . . . , bn are also in increasing order, i.e.,

b1 < b2 < · · · < bn

If x1, x2, . . . , xn is a rearrangement (or permutation) of the numbers

b1, b2, . . . , bn, then

(2) a1x1 + a2x2 + · · · + anxn ≤ a1b1 + a2b2 + · · · + anbn

with equality if and only if the numbers x1, x2, . . . , xn are in increas-

ing order, i.e., if and only if x1 = b1, x1 = b1, . . ., xn = bn.

In other words, the maximum of the mixed sum

M = a1x1 + a2x2 + · · · + anxn

is equal to the forward-ordered sum

F = a1b1 + a2b2 + · · · + anbn .
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Proof. Suppose we consider any mixed sum

M = a1x1 + a2x2 + · · · + anxn .

Suppose that the arrangement x1, x2, . . . , xn maximizes the mixed

sum. Suppose also that we can find two numbers xi and xj such

that ai < aj but xi > xj. Suppose we swap xi with xj. What

happens to the mixed sum?

The mixed sum beforehand equals

M = a1x1 + a2x2 + · · · + aixi + · · · + ajxj + · · · + anxn

and after the swap equals

M ′ = a1x1 + a2x2 + · · · + aixj + · · · + ajxi + · · · + anxn

Does the mixed sum increase? In other words, is M ′ > M? Well,

this will be true if

aixj + ajxi > aixi + ajxj .

But this must be true since

(aj − ai)(xi − xj) > 0 .

But then the mixed sum after the swap is larger than before the

swap. This contradicts our initial assumption that “we can find

two numbers xi and xj such that ai < aj but xi > xj”. If this



1414

assumption does not hold, then we must have xi < xj whenever

ai < aj.

This shows that the unique arrangement which maximizes the mixed

sum is x1 = b1, x2 = b2, . . ., xn = bn, i.e., when the numbers

x1, x2, . . . , xn are in increasing order. This completes the proof.

Example. [From earlier] Prove that x2 + y2 + z2 ≥ xy + yz + zx,

and determine when equality occurs.

Solution. Note that (x, y, z) and (x, y, z) are in the same order,

but (x, y, z) and (y, z, x) are not. Thus, applying the Rearrange-

ment Inequality, we obtain

x · x + y · y + z · z ≥ x · y + y · z + z · x

and the result is proved.
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Example. [“Nesbitt’s Inequality”] Prove that for positive numbers

a, b, c,
a

b + c
+

b

a + c
+

c

a + b
≥ 3

2
.

Solution. Let s = a + b + c. Then

X =
a

s− a
+

b

s− b
+

c

s− c

= a · 1

s− a
+ b · 1

s− b
+ c · 1

s− c
.

Note that (a, b, c) and
(

1
s−a,

1
s−b,

1
s−c
)

are in the same order (Exer-

cise: prove this!). Therefore,

X = a · 1

s− a
+b · 1

s− b
+c · 1

s− c
≥ x · 1

s− a
+y · 1

s− b
+z · 1

s− c

where (x, y, z) is any rearrangement of (a, b, c). So

X ≥ b

s− a
+

c

s− b
+

a

s− c

and

X ≥ c

s− a
+

a

s− b
+

b

s− c

Adding the two previous equations yields

2X ≥ b + c

s− a
+

a + c

s− b
+

a + b

s− c
= 3

i.e.

X ≥ 3/2 .
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Motivating Example for a Related Result. Banknotes are

available in the denominations of EUR5, EUR10 and EUR20. You

are allowed to take 3 banknotes of one type, 7 banknotes of a second

type, and 9 banknotes of the third type. How should you choose in

order to minimize the amount of money you have?

Answer. Choose 9 EUR5 notes, 7 EUR10 notes, and 3 EUR20

notes.

Corollary to the Rearrangement Inequality:

Suppose that

• The n numbers a1, a2, . . . , an are in increasing order, i.e.,

a1 < a2 < · · · < an

• The n numbers b1, b2, . . . , bn are also in increasing order, i.e.,

b1 < b2 < · · · < bn

If x1, x2, . . . , xn is a rearrangement (or permutation) of the numbers

b1, b2, . . . , bn, then

(3) a1x1 + a2x2 + · · · + anxn ≥ a1bn + a2bn−1 + · · · + anb1

with equality if and only if x1 = bn, x1 = bn−1, . . ., xn = b1.
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This tells us that the minimum of the mixed sum

M = a1x1 + a2x2 + · · · + anxn

is equal to the reverse-ordered sum

R = a1bn + a2bn−1 + · · · + anb1 .

Proof of the Corollary to the Rearrangement Inequality:

Applying the Rearrangement Inequality (2) with −bn ≤ −bn−1 ≤

−b1 in place of b1 ≤ b2 ≤ · · · ≤ bn we obtain

(4)

a1(−x1)+a2(−x2)+· · ·+an(−xn) ≤ a1(−bn)+a2(−bn−1)+· · ·+an(−b1)

Here we note that if x1, x2, . . . , xn is a rearrangement of the num-

bers b1, b2, . . . , bn, then −x1,−x2, . . . ,−xn is a rearrangement of

the numbers −b1,−b2, . . . ,−bn.

Simplifying (4) leads to the desired result.
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Exercises.

(1) Show that 4x2+1 ≥ 4x and determine when equality occurs.

(2) If a and b are positive real numbers, prove that

(a + b)

(
1

a
+

1

b

)
≥ 4

and determine when equality occurs.

(3) Find the minimum value of

x +
8

y(x− y)

where y > 0 and x > y.

(4) Show that if a and b are positive real numbers, then (a +

2b)(2a + b) > 8ab.

(5) Find the positive number whose square exceeds its cube by

the greatest amount.

(6) Prove that for positive real numbers x, y, z,

1

x + y
+

1

y + z
+

1

z + x
≤ 1

2

(
1

x
+

1

y
+

1

z

)
.

(7) Prove that for positive real numbers a, b, c,

(a + b + c)

(
1

a
+

1

b
+

1

c

)
≥ 9

and determine when equality occurs.
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(8) Let a, b, c be positive real numbers whose sum is 1. Prove

that

a

(a + 1)(b + 1)
+

b

(b + 1)(c + 1)
+

c

(c + 1)(a + 1)
≥ 3

4
.

For further reading, click here:

Wikipedia entry on AM-GM

Wikipedia entry on the Rearrangement Inequality

http://en.wikipedia.org/wiki/Inequality_of_arithmetic_and_geometric_means
http://en.wikipedia.org/wiki/Rearrangement_inequality

