
IMO 2021 Q1

Andrew D Smith
University College Dublin

22 January 2022

1 Problem: Avoiding Sums of Squares

1.1 Simplified Version of IMO 2021 Q1

Ivan writes the numbers 100, 101, 102, . . . 200 each on different

cards. He then shuffles these 101 cards, and divides them into two

piles. Prove that at least one of the piles contains two cards such

that the sum of their numbers is a perfect square.

1.2 Brute Force Solution

Start dealing cards to avoid putting pairs in the same pile that add

to a square, and see where we get stuck. The sum of two distinct

cards lies between 201 and 399. Squares in that range are: 225,

256, 289, 324, 361.

Call the two piles A and B.
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Step 1: Deal 100 in pile A.

Step 2: Deal 125, 156, 189 in pile B.

Step 3: Deal 131, 133, 135, 164, 168, 172, 199 in pile A.

Step 4: Deal 117, 121, 123, 152, 154, 158, 160, 162, 191, 193,

197 in pile B.

Step 5. Deal 102, 104, 108, 127, 129, 135, 137, 139, 164, 166,

168, 170, 172 in pile A.

Now we are stuck because 127 and 129 are both in pile A, but

127 + 129 = 256 = 162.

We found this by trial and error. The problem setter likely did

this. It was hard work. Is there a neater way?

1.3 Remarks

We have shown that the dealing of cards starting with card 100

gets stuck if we avoid pairs adding to squares. That is enough to

answer the problem.

But could this method of proof fail? Could we hypothetically

have tried dealing from 100, and not get stuck, but the claimed

result could still hold?

Yes, it could fail, because maybe our process never uses up all

the original 101 cards.
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2 Search for a Simpler Solution

2.1 Try a Smaller Example

Might we find a proof in a smaller example we can generalise?

Sometimes IMO questions refer to a large number (eg the year of

the contest) but the result is true for any sufficiently large number.

Suppose instead Ivan has cards numbered 10 to 20. Is it still

impossible to avoid square sums?

Possible squares for the sum of two cards are are 25 or 36.

Step 1: Deal 10 and 15 in different piles.

Step 2: Deal 11 and 14 in different piles.

Step 3: Deal 12 and 13 in different piles.

Step 4: Deal 16 and 20 in different piles.

Step 5: Deal 17 and 19 in different piles.

Step 6: Deal 18 in either pile.

There are many ways to avoid square sums. How many differ-

ent ways?

2.2 Reducing the Counterexample

Return to the original problem with cards numbered 100 to 200

inclusive. We had a counterexample in 5 steps. How can we

simplify the example to its bare bones?

Working back through the calculations, we did not need to

start with 100. We can start the story putting 164 in pile A (was

step 3). That implies 160 and 197 are in pile B, which in turn puts
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127 and 129 back in pile A.

So we have a cycle 164, 160, 129, 127, 197, 164 ... where every

two consecutive terms add to a square.

As the cycle has an ODD period of 5 steps, we cannot avoid

dealing two consecutive terms into the same pile.

Our calculations also reveal another odd cycle: 164, 160, 129,

127, 162, 199, 125, 164 ... with period 7.

2.3 Is there a Simpler Counterexample?

We found counterexample cycles of size 5 and 7. It suffices to find

any odd cycle whose consecutive terms add to squares.

So maybe there is a 3-cycle to find? That would prove some-

thing we now know to be true, but would be simpler.

At this point, we reach for the back of an envelope. We are

not proving anything yet; we are coming from the other end with

a hunch for a proof and seeing if we can make it work. Our search

might not work, that is, the claim could still be true even if there

are no 3-cycles. So this is a long shot.

Suppose our 3-cycle is x, y, z, x, . . .. Without loss of generality

100 ≤ x < y < z ≤ 200

There must be integers a, b, c such that:
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x + y = a2

x + z = b2

y + z = c2

with a < b < c. This is equivalent to:

x =
a2 + b2 − c2

2

y =
a2 + c2 − b2

2

z =
b2 + c2 − a2

2

Can we find such a, b, c? Let us refine the search.

The squares a, b, c are either all even numbers, or two odd

numbers and one even number. Otherwise we fail to get integers

x, y, z.

Furthermore, as x and z are between 100 and 200, we must

have:

200 ≤ b2 − (c2 − a2) < b2 + (c2 − a2) ≤ 400

This means b must be between 15 and 19.

Furthermore,

0 < c2 − a2 < min{b2 − 200, 400− b2}

This puts a bound on the gap between a and c.

Also, as a < b < c are integers we have a ≤ b−1 and c ≥ b+1

and therefore c2 − a2 ≥ 4b
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Check the cases:

b c2 − a2

min max Parity

15 60 25 N/A

16 64 56 N/A

17 68 89 Not OK

18 72 76 OK

19 76 39 N/A

So the only solution is a = 17, b = 18, c = 19. This gives the

3-cycle 126, 163, 198, 126 ...

To answer the original question, we can merely pull the 3-cycle

126, 163, 198, 126 ... out of a hat. We can throw away the envelope

on which we found the cycle.

So far, this gives us just another way of solving the original

problem. Yet another reason why Ivan cannot avoid having two

cards in the same pile adding to a square. But the 3-cycle is easier

to generalise.

3 IMO Problem

3.1 IMO 2021 Q1

Let n ≥ 100 be an integer. Ivan writes the numbers n, n+ 1, . . . ,

2n each on different cards. He then shuffles these n+ 1 cards, and

divides them into two piles. Prove that at least one of the piles
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contains two cards such that the sum of their numbers is a perfect

square.

3.2 Proof for 99 ≤ n ≤ 126

The 3-cycle 126, 163, 198, 126 ...already proves impossibility.

3.3 Generalising the Counterexample

We look for other 3-cycles where x < y < z lie within a range

z ≤ 2x.

To keep x, y, z in a narrow range, we must have a, b, c in a nar-

row range. The narrowest they can be is consecutive. As integers

x, y, z imply we cannot just one odd number out of a, b, c, they

must be odd, even, odd so that:

a = 2k − 1

b = 2k

c = 2k + 1

so that:

x =
a2 + b2 − c2

2
= 2k(k − 2)

y =
a2 + c2 − b2

2
= 2k2 + 1

z =
b2 + c2 − a2

2
= 2k(k + 2)
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This triple provides a proof of impossibility provided that:

n ≤ 2k(k − 2) ≤ 2k(k + 2) ≤ 2n

or, equivalently:

k(k + 2) ≤ n ≤ 2k(k − 2)

Setting k = 9 solved the original problem (to prove there must

be two cards in the same pile adding to a square) for 99 ≤ n ≤ 126.

For other values of k we then have proofs for the following ranges

of n:

k Proven values of n Overlap with next?

min max

6 48 48 FALSE

7 63 70 FALSE

8 80 96 FALSE

9 99 126 TRUE

10 120 160 TRUE

11 143 198 TRUE

If we can prove that the overlaps continue for larger k, then we

have solved the IMO problem for all n ≥ 100.

The condition for case k to overlap with the next case is that:

2k(k − 2) ≥ (k + 1)(k + 3)

This is equivalent to:

k2 − 8k − 3 = (k − 9)(k + 1) + 6 ≥ 0
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This of course holds for k ≥ 9. The original claim then holds

for all n ≥ 99.

This is a valid solution to the IMO problem. It is rather

lengthy, but would still earn full marks. We will now tidy it up a

little to find the model solution.

Remark: We have answered the question posed. But what

of the values of n where we have no proof? For example n = 98

lies in the gaps between intervals for k = 8 and k = 9. We have

not proved that the result holds for n = 98, but it might still be

true, just needing a more cunning proof.

It turns out the result fails when n = 98. See if you can find

a way to split cards numbered from 98 to 196 (inclusive) into two

piles so that no two in the same pile add to a square.
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4 How to Write the Proof in 2 Pages

• Step 1: Given n ≥ 99, let (k + 1)2 be the largest perfect

square that does not exceed n + 1, so that:

(k + 1)2 ≤ n + 1 < (k + 2)2

As n ≥ 99 then k ≥ 9.

• Step 2: Show that:

n ≤ 2k(k − 2) < 2k2 + 1 < 2k(k + 2) ≤ 2n

so that each of {2k(k−2), 2k2+1, 2k(k+2)} appears on one

of the cards numbered from n to 2n. See below for proof.

• Step 3: Note that:

2k(k − 2) + 2k2 + 1 = (2k − 1)2

2k(k − 2) + 2k(k + 2) = (2k)2

2k2 + 1 + 2k(k + 2) = (2k + 1)2

At least two of {2k(k− 2), 2k2 + 1, 2k(k + 2)} must appear

in the same pile, and add to a square number. This is what

we had to prove.
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It remains only to prove the inequalities in step 2.

We start with the left hand side, where by construction of k

we have:

n < (k + 2)2 − 1

= k2 + 4k + 3

= (2k2 − 4k)− (k2 − 8k − 3)

= 2k(k − 2)− [(k − 9)(k + 1) + 6]

< 2k(k − 2)

This confirms that n ≤ 2k(k − 2) which is the first claimed in-

equality. The next two claimed inequalities:

2k(k − 2) < 2k2 + 1 < 2k(k + 2)

reduce to −4k < 1 < 4k which are trivially true for k ≥ 9. For

the final inequality, the lower bound for n in the construction of k

ensures that:

n ≥ (k + 1)2 − 1 = k2 + 2k = k(k + 2)

Doubling, we have 2k(k+ 2) ≤ 2n which was the last part of Step

2 to prove.

Remark: the observation that (k − 9)(k + 1) + 6 > 0 in

the proof of the left hand inequality was the same argument we

used in the longer proof to demonstrate overlaps between proven

intervals for n.
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