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1 Introduction

1.1 What is a Functional Equation?

1.2 IMO 2019, Bath. Question 1

Let Z be the set of integers. Determine all functions f : Z 7→ Z such that, for
all integers a and b,

f(2a) + 2f(b) = f(f(a+ b)) (1)

2 Cauchy’s Functional Equation

f(a+ b) = f(a) + f(b) (2)

2.1 Cauchy’s Equation over Non-negative Integers

Put a = 0 in equation 2
f(b) = f(0) + f(b)

Therefore f(0) = 0.
Suppose that for some positive integer a the following inductive hypothesis

holds:
f(a) = af(1) (3)

Then, putting b = 1 in equation 2

f(a+ 1) = f(a) + f(1)

= af(1) + f(1)

= (a+ 1)f(1)

So the claimed equation 3 also holds for a + 1. As the relation is trivially
true when a = 0, then it holds for all a ∈ Z+.

We need finally to check that this indeed satisfies the original functional
equation. This plainly works as for arbitrary non-negative integers a, b and
f(1) we have:

f(a+ b) = (a+ b)f(1) = af(1) + bf(1) = f(a) + f(b)
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2.2 Cauchy’s Equation over Integers

For 0 ≤ a ∈ Z we already have the solution in equation 3.
For a ≥ 0, set b = −a in equation 2, to give:

0 = f(a− a) = f(a) + f(−a)

Hence equation 3 holds for all a ∈ Z.

2.3 Cauchy’s Equation over Rationals

Suppose Q 3 a = p
q with p and q integers and q > 0.

Then by a similar inductive process to our proof of equation 3, we have:

f(p) = f

(
q
p

q

)
= qf

(
p

q

)
As p ∈ Z we also have f(p) = pf(1) and so:

f

(
p

q

)
=
p

q
f(1)

We have then shown that equation 3 holds for all a ∈ Q.

2.4 Cauchy’s Equation over Reals

Let us now consider solutions to equation 2 for a, b ∈ R. The reals include
the rational numbers Q but also numbers such as

√
2 and π that cannot be

expressed as fractions.
Any function of the form f(x) = cx for c ∈ R satisfies equation 2. But are

these the only solutions? To put this differently, we know that any solution
much have (for some c ∈ R)

f(x) = cx;x ∈ Q

But can we be sure the same multiple c works for x /∈ Q?
To take a specific example, let us try x =

√
2. We take the opportunity

to practice some binomial expansions. We note first the trivial result that for
integers n ≥ 0:

(1−
√

2)n =
1

2

[
(1 +

√
2)n + (1−

√
2)n
]
− 1

2

[
(1 +

√
2)n − (1−

√
2)n
]

Looking at the binomial expansions of the first square brackets, all the odd
powers of

√
2 cancel out, so the square brackets in total are an even integer. In

the same way, expanding binomial terms in the second square bracket, all the
even powers of

√
2 cancel out, so the expression is twice an integer multiplied

by
√

2.
Thus, we can write the power on the left as an integer minus an integer

multiple of
√

2:

(1−
√

2)n =
1

2

[
(1 +

√
2)n + (1−

√
2)n
]
− 1

2
√

2

[
(1 +

√
2)n − (1−

√
2)n
]√

2
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Applying the function f to each side and using equation 2 repeatedly, we
have:

f
[
(1−

√
2)n
]

=
1

2

[
(1 +

√
2)n + (1−

√
2)n
]
f(1)

− 1

2
√

2

[
(1 +

√
2)n − (1−

√
2)n
]
f(
√

2)

= (1−
√

2)n

[
f(1)

2
+
f(
√

2)

2
√

2

]

+ (
√

2− 1)−n

[
f(1)

2
− f(

√
2)

2
√

2

]

In the last line we have used the difference of two squares:

(
√

2 + 1)(
√

2− 1) =
√

2
2
− 12 = 1

Combining this with the rational case, we have two distinct behaviours:

f(a) =

{
af(1) a ∈ Q
a
[
f(1)
2 + f(

√
2)

2
√
2

]
+ 1
|a|

[
f(1)
2 −

f(
√
2)

2
√
2

]
a = (1−

√
2)n

Of course, not all real a fall into one of these categories, but just looking
at these points, we have a function that looks like a combination of straight
lines and hyperbolas, unless f(

√
2) =

√
2f(1) in which case the reciprocal terms

vanish.
This tells us that if there is a solution with f(

√
2) 6=

√
2f(1) then that

function is badly behaved; certainly not continuous or even bounded at zero,
nor indeed anywhere else. It turns out (you won’t be able to prove this without
a lot more advanced maths) that these solutions do exist, and are called Hamel
functions.

If we want the solution to equation 2 to be continuous over the reals, then
the Hamel functions are excluded and the only solutions are linear.

3 A 2020 Problem

3.1 Problem Statement

Find all functions f : Z 7→ Z such that, for all n ∈ Z:

f(f(n)) = n+ 2020 (4)

3.2 A Trivial Solution

f(n) = n+ 1010
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3.3 A Non-Trivial Solution

f(n) =

{
n+ 5 n even

n+ 2015 n odd

The choice of 5 and 2015 is arbitrary; any two odd numbers adding up to
2020 suffice.

Have we captured all the possibilities?

3.4 Manipulating the Function

With two alternative interpretations of f(f(f(n))) we can deduce from 4 that:

f(n+ 2020) = f [f(f(n)] = f(f [f(n)]) = f(n) + 2020 (5)

3.5 Reduction mod 2020

To proceed, instead of working with all integers Z we work with

Z2020 = {0, 1, 2, . . . 2018, 2019}

that is, the set of possible remainders on division by 2020. We say two in-
tegers are congruent modulo 2020 if their difference is a multiple of 2020, or
equivalently, if they have the same remainder on division by 2020.

In the light of equation 5, we can define a modified function:

f̃ : Z2020 7→ Z2020

For a ∈ Z2020 we pick any Z 3 n ≡ a mod 2020 and define:

f̃(a) = f(n) mod 2020

Equation 5 ensures this is well-defined, in that we get the same f̃(a) regardless
of which n we choose.

3.6 Twin Remainders

Unlike the original function f , the modified function f is self-inverse. Equation
4 implies that:

f̃(f̃(a)) = a; a ∈ Z2020

We refer to the pair (a, f̃(a)) as a twin pair. The self-inverse property ensures
that if a is a twin of b then b is a twin of a. It also rules out any number being
twinned by more than one other number.

Finally, we must show that no number is a twin of itself. To see why, we
suppose there is a with f(a) ≡ a mod 2020. Then there is some c ∈ Z such
that:

f(a) = a+ 2020c

But then equation 5 implies that:

a+ 2020 = f(f(a)) = f(a+ 2020c) = f(a) + 2020c = a+ 4040c
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Thus c = 1/2, contradicting c ∈ Z.
Having excluded the possibility of self-twins, we conclude that f̃ induces a

partition of Z2020 into disjoint twin pairs. Conversely, for any such partition we
can define a self-inverse function f̃ that maps any number onto its twin.

3.7 A Shift Function

If we know f̃ we cannot uniquely reconstruct f . We can only reconstruct f(n)
mod 2020. In other words, if (a, b) is a twin, we do not know that b = f(a). All
we know is that for some shift function s : Z2020 7→ Z we have:

f(n) = n+ s(n mod 2020)

Equation 5 ensures that f(n)− n is periodic with period (a factor of) 2020.
We cannot choose the shift function arbitrarily. Firstly, for each twin pair

(a, b) we must have s(a) + s(b) = 2020 in order to ensure equation 4 holds.
The shift function must also respect the twinning, so that for each twin pair

(a, b):

s(a) ≡ b− a mod 2020

This, together with s(a) + s(b) = 2020 implies the reverse relation:

s(b) ≡ a− b mod 2020

3.8 General Solution

We are now in a position to describe the general solution to equation 4 as follows.
The following algorithm generates all cases.

• Partition the set Z2020 into 1010 disjoint twin pairs, of the form (a, b).

• Pick a shift function s : Z2020 7→ Z such that, for each twin (a, b):

s(a) + s(b) = 2020

s(a) ≡ b− a mod 2020

• Define a function f : Z 7→ Z by:

f(n) = n+ s(n mod 2020)

• This function f satisfies equation 4, and ever solution is of this form.

3.9 It would not work if 2020 were odd

The solution relies on partitioning Z2020 into twin pairs. The same approach
works if we replace 2020 with any even number.

It doesn’t work if we replace 2020 with an odd number. In that case, there
would be no functions f satisfying equation 4 .

5



4 Collatz Stopping Length

Functional equations might have a unique solution, multiple solutions or no
solutions. And sometimes we do not know if a solution exists or not.

Let us consider functions from the positive integers to the integers: f :
Z+\{0} 7→ Z

f(n) =

 0 n = 1
1 + f

(
n
2

)
n even

1 + f(3n+ 1) n ≥ 3, n odd

Is there a solution for f(n)? That depends on what happens to the map:

n→
{

n
2 n even

3
n + 1 n odd

• If the sequence ends up at 1, then f(n) is the number of steps to get to 1.

• If the sequence shoots off to infinity, then we can define the first f to be
whatever we like, and subtract 1 each step.

• If the sequence ends up in a cycle then there is no solution for f .

The Collatz conjecture is that all paths lead to 1 eventually.

5 Solution IMO 2019 Q1

The problem was to find all functions satisfying the equation 1.
The function of a function is awkward so we try to get rid of it by looking

at two ways producing f(f(n + 1) on the right hand side, first as 0 + (n + 1)
and then as 1 + n

a b Equation 1
0 n+ 1 f(0) + 2f(n+ 1) = f(f(n+ 1))
1 n f(2) + 2f(n) = f(f(n+ 1))

Equating the left hand sides of these two equations, we have:

f(n+ 1)− f(n) =
1

2
(f(2)− f(0))

Let us call this quantity m, so f is linear and we have for all a ∈ .

f(a) = f(0) +ma

Substitute this into equation 1 and we have:

f(0) + 2ma+ 2f(0) + 2mb = f(0) +m(f(0) +ma+mb)

Collecting all terms on the right hand side, we have:

0 = −3f(0)− 2m(a+ b) + f(0) +mf(0) +m2(a+ b)

= (m− 2)(m(a+ b) + f(0))
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Thus, either m = 2, in which case

f(a) = f(0) + 2a

for arbitrary f(0). Or else, m 6= 0, in which case for all a+ b,

m(a+ b) = −f(0)

so m = 0 in which case f(a) = 0 for all a.
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