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Example Problems:

Example 1. 17 contestants took part in a mathematics contest
with 9 problems. Each problem was solved by exactly 11 contestants.
Prove that there exists a pair of contestants who, between them,

solved all 9 problems.

Example 2 (IMO 1998 Q2). In a competition, there are a
contestants and b judges, where b > 3 is an odd integer. Each
judge rates each contestant as either “Pass” or “Fail”. Suppose k
is a number such that, for any two judges, their ratings coincide for

at most k£ contestants.

Prove that
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Homework Problems:

Problem 1. Two hundred students participated in a mathematical
contest. They had six problems to solve. It is known that each
problem was correctly solved by at least 120 participants. Prove
that there must be two participants such that every problem was

solved by at least one of these two students.

Problem 2 (Generalization of Example 1). Suppose that ¢
contestants took part in a mathematics contest with p problems.
Each problem was solved by at least £ contestants. Prove that
there exists a pair of contestants who, between them, solved all p

problems provided that
clc—1)

P=qa=1

where d = ¢ — k.

Problem 3. Suppose that 15 contestants took part in a mathe-
matics contest with 15 problems. Each contestant solved exactly 6
problems. Show that there exists a pair of contestants who solved

at least 3 problems in common.
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Problem 4. 8§ singers participate in an art festival where m songs
are performed. Each song is performed by 4 singers, and each pair of
singers performs together in the same number of songs. Determine

the minimum value of m.

Problem 5. A group of 10 people went into a bookshop. It is
known that
(1) Everyone bought exactly 3 books;
(2) For every two persons, there is at least one book that both
of them bought.

What is the least number of people that could have bought the book

purchased by the greatest number of people?

[INOTE: On the next page, | have provided hints for the problems
which you can look at if you get stuck. But | suggest to try each

problem for a while first before looking at the corresponding hint.]



Hints for Homework Problems:

Problem 1. Create an incidence matrix, with rows corresponding to
problems, and columns corresponding to contestants. Then count,
in two different ways, the number of pairs of 1s that occur in the

Same row.

Problem 2 (Generalization of Example 1). You can use either
the method of Solution 1 from the lecture or that of Solution 2 from
the lecture: both can be made to work. The method of Solution 1

might involve less algebra.

Problem 3. Create an incidence matrix, with rows corresponding to
problems, and columns corresponding to contestants. Then count,
in two different ways, the number of pairs of 1s that occur in the
same row. You may need to consider the total number of 1s in the

matrix and how these 1s might be divided among the rows.

Problem 4. Create an incidence matrix, with rows corresponding
to singers, and columns corresponding to songs. Now count, in two
different ways, the number of pairs of 1s that occur in the same

column. Next, consider divisibility properties of this number.
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Problem 5. Create an incidence matrix, with rows corresponding
to people, and columns corresponding to books. Notice that while
there are 10 rows, the number of columns is unknown (we can call
this b, but note that reasoning involving b may not be very helpful as
it may possibly be very large). Let k& denote the maximum number
of 1s in any column of the matrix. What is the question asking us
to prove about the value of £? Now, by counting (in two different
ways) the number of pairs of 1s that occur in the same column, it
should be possible to prove that k > 4. However, there is a catch:
it can be checked that £ = 4 is actually not possible to achieve

(why?). Does a configuration (incidence matrix) exist that achieves

k=257
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