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1 Definitions

1.1 Dyadic Convexity

IF we know the value of a function at x and y, what can we say about the value
at the midpoint, (x + y)/27 We are interested in cases where the value at the
midpoint is systematically lower than the values at the ends:

Suppose we have a function f : R +— R such that, for all z,y, € R

! (x;ry> < f(w);rf(y)

Examples of such functions include:

x) is linear (equality holds)

xT

22
107

o f(x)
o f(x)
o f(x)
o f(x)

x) = |z| (equality holds if z and y have the same sign)

1.2 Convex Function Definition

A function f: R+~ RU{oo} is convez if for all z,y e Rand 0 < A < 1:

F(A =Nz +Ay) < (1 =N f(z)+Af(y) (1)

The left hand side is the function evaluated at a point between x and y. The
right hand side is the linear interpolation between f(z) and f(y).

A function f(z) is concave if —f(z) is convex. Linear functions (and only
linear functions) are both concave and convex.

1.3 Adding the Point at Infinity

Sometimes we want to consider a convex function only on a particular range.
For example, we might consider f(x) =1/ onz > 0or f(z) = —y/z onz > 0.
These are both convex functions, but over smaller ranges.

In these cases, we define f(z) = +oco for values of x where f(z) would not
otherwise be defined.



1.4 Examples of Convex Functions
1.4.1 Powers
y=a"onzx >0is:

e Convexifn>1lorifn<0

e Concave if 0 <n < 1.

1.4.2 Exponents

The function f(z) = 10 is convex.

1.4.3 Logarithms

For y > 0, the logarithm of y, written log;y(y) is the value of z such that
107 = y.

The number of decimal digits in y is 1 + [log;(y).

The logarithm is not a convex function, but this function is:

10 ={ oy 250

—logg(x) >0

1.4.4 Piecewise Linear Functions

00 z <0
f(z) = 0 0<z<l1
r—1 r>1

2 Combining Convex Functions

2.1 Sums of Convex Functions are Convex

2.2 Maximum of Convex Functions are Convex

2.3 Minimum of Convex Functions

True or False: the minimum of two convex functions is convex.
False: Consider (x 4+ 1)? and (z — 1)%.

2.4 Increasing function of a Convex Function

f(x) convex, g(y) increasing.
True or False: g(f(x)) is convex?
False: Try +/|z| for example.

2.5 Convex Function of a Convex Function

f(x) convex, g(y) convex.
True or False: g(f(z)) is convex?
False. Try %\wl



2.6 Increasing Convex Function of a Convex Function

Suppose f(z) is convex and g(y) is both increasing and convex.
Then f(g(z)) is convex.
Proof As f is convex,

F(A =Nz +xy) < (A=) f(z)+Af(y)

Now as g is an increasing function, we can apply g to eaxch side of the inequality
and the result still holds:

glf (L =Nz + Ay)] < gl(1 = A)f(z) + Af(y)]

But now we use the convexity of g(z) to get an upper bound for the right hand
side:

gl(L =N f(@) +Af(y)] < (1= Ng(f(x)) + Ag(f(v))

Putting the last two inequalities together,

glf (1 =Nz +Ay)] < (1= Ng(f(=)) + Ag(f(y))

This is exactly the definition of the convexity of g(f(x)).

Corollary: If f(z) is convex, then so is 10/(*),

However, if f(x) is convex it does NOT follow that log;,(f(x)) is convex. It
might be, or it might not.

3 Jensen’s Inequality

3.1 Extending from Pairs to Multiples

Consider the situation where:
e f:R — Ris a convex function
® x1,%9,..., €ER

e A\, o, ...\, satisfy

Then Jensen’s inequality states that

f Zijj SZ)\jf(l”j)
j=1 j=1



3.2 Proof of Jensen’s Inequality

Proof by induction on n.

Trivial (equality holds) if n = 1.

Suppose we now have the situation as described for some n > 2 and we have
proved the relation for n — 1 points.

For j =1,2,...n — 1, define:

A
T 1=\,

2%}

These satisfy the same conditions as the A’s, but there are only n—1 of them
rather than n.
Of course we have:

n n—1
D oNag = (=) | D mws | + Ann
j=1 Jj=1

So applying the convexity of f to the mixture on the right hand side, we
have:

n n—1
FAY N | =) f [ D mjzs | + Anf(zn)
Jj=1 j=1

Now we can can apply the inductive hypothesis:
n—1 n—1
FUD wimy | <D wif(a))
j=1 j=1
Substituting this back gives:

n n—1
FAIY N | <@ =X) | D mif ()| + Anf(zn)
j=1 j=1

n
=D N
j=1
Thus then proves the result claimed.

4 Convex Functions and Optimisation

4.1 Unique Minimum

A convex function

True or False: If a convex function has a minimum, then that minimum is
unique.

False: the minimum might be in a range of constant values.



5 Harmonic - Arithmetic - Geometric Means

5.1 Definitions

Positive numbers x1, zs, ... x,.

n
arithmetic mean = — E x;
n
j=1

geometric mean =

j=1
-1
2.1
h i =2y —
armonic mean n Z x]
Jj=1
5.2 Numerical Example
With observations 18,20, 75 we have
18420475 113 _ 372
3 3 73
/18 x 29 x 75 = /27000 =30
3 2700 25
T 1T T 7 07 :25ﬁ
18 20 75

5.3 Ordering

We observe that HM < GM < AM Trial and error suggests this often holds.
Equality applies if all the observations are equal.
Can we prove this?

5.4 Jensen Implies GM < AM
Proof: given n positive observations 1, o, ...n, let
yj = logyo x;
Then applying Jensen’s inequality to the convex function 10Y¥ we have:

n
> 10v
j=1

10(% 2o yj) <

3=

This is equivalent to:

This is the famous arithmetic-geometric mean inequality.



5.5 General Weighted Results

We can use the same methodology to show the GM < AM inequality when the
weights are A\; (with " A; = 1) rather than necessarily being equal to 1/n. IN
that case, the GM < AM inequality takes the form:

n n
[T <> N
j=1

Jj=1

56 GM < AM implies GM > HM
To prove this, apply GM < AM to the reciprocals of the observations.

6 Convex Conjugates

6.1 Definition

Suppose we have an arbitrary function f : R +— R. The convex conjugate
function, written f*(y) is defined as:

f(y) = sup {zy — f(z)}
x€eR

This immediately implies Fenchel’s Inequality
zy < fx) + [ (y)

Remark: The Convex Conjugate f*(y) is always a convex function, regard-
less of whether f(x) is convex. This follows because f*(y) is the maximum of a
set of convex (indeed, linear) functions of y.

6.2 Examples
6.2.1 Quadratic

Suppose f(r) = x2.

To find f*(y) we need to maximise (over x)

xyfxzzy—zf(yfx)Q
4 2

Obviously maximised when y = 22 and the maximum is

6.2.2 Square Root

We know that f(z) = —/z is convex on = > 0.
The convex conjugate is:

) = Sglg{wy +Va}



This is obviously unbounded if y > 0. So we look at the less obvious case y < 0.
Here, we complete the square:

1

xy+\/5=—((—y)x—\/5+_14y>+_4y

2
1 1
()L
( 2v/—y —4y
Once again, we use the fact that a square is at least zero to complete the

maximisation, which finally gives:

sy =4 " Y=
f(y) {+OO Y >0

6.2.3 Reciprocal

The function f(x) = 1/x is convex on x > 0. Then:

" 1
f*(y) = sup {wy— }
x>0 xz
It is clear that for y > 0 we have f*(y) = oo, while if f*(0) = 0.

So we focus on the non-trivial case when y < 0. Once again, we look for a
square; this time we note:

e Ve jg)g—wfy

Putting the pieces together, we have:

00 y>0

6.3 Guessing Duality

The seems to be some kind of duality here: the convex conjugate of a square
root on the positive axis is a reciprocal on the negative axis, while the convex
conjugate of a reciprocal on the positive axis is a square root on the negative
axis.

We also saw that the convex conjugate of a quadratic function is another
quadratic function. Indeed, if f(z) = ”:2—2 then f*(y) = 3?/2 so f is self-
conjugate.

True or False: The only self-conjugate function is f(z) = x2/2.

Hint for solution: try Fenchel’s inequality with z = y.

6.4 Piecewise Linear Example
Let us define f(x) by:

00 z <0
flx) = 0 0<z<1
r—1 z>1

To find the convex conjugate f*(y) we consider separately three cases in the
maximisation of zy — f(x).



e If y < 0 then the objective function (the thing you’re trying to optimise)
is decreasing for z > 0 so the maximum is at = 0, whence f*(y) = 0.

e If 0 < y < 1 then the objective function in increasing on 0 < z < 1 and
decreasing on x > 1 so the maximum is attained at = 1 and so f*(y) =y

e If y > 1 then the objective function is increasing for all y and so f*(y) =
0.

e If y = 0or y =1 then there is a range of = for which the objective function
is flat.

Putting these together, we have:

0 y <0
[flyy=9 v 0<y<1
00 y>1

7 Convex Bi-Conjugate
7.1 Definition

Define f**(x) to be the convex conjugate of the convex conjugate of f.

7.2 Bi-Conjugate Does not Exceed f
Fenchel’s inequality implies:

zy — f*(y) < f(=)
Taking the supremum of the left hand side over values of y:

[ (x) < f(x)

7.3 The Case of a Tangent

Suppose f(z) has a supporting line with gradient yo at a single point zg, so
that:

f(x) > f(z0) + yo(z — z0);7 €R
This works for continuous convex functions - take this on trust for now as the

proof is tricky. Obviously if such a tangent exists then equality holds at x = x.
Then we have:

1"(yo) = sup {wyo — f (@)}
= zoyo — f(20) + Slelg {f(zo) +yo(z — 20) — f(z)}
= xoyo — f(o)
Taking a specific value y = yo in the sup defining f**(y), we have:
[ (2o) = sup {zoy — f*(y)}
yeR

> 20Y0 — " (o)
= f(z0)



As we already know f**(x) < f(z), we deduce that in the case where a
tangent exists at xg we have equality and f**(xq) = f(xo).

8 Non-Integer Factorials
8.1 Definition
The factorial n! for integers n > 1 is defined by the product:
nl=1x2x3x...x(n—1)xn
In more formal terms we define n! inductively:

| 1 n=20
n!=
nx(n—-1! n>1

8.2 Log Factorials are Convex

I claim the log factorial is convex, at least when measured on non-negative
integers.
Proof: Let 0 < a < b < ¢ be non-negative integers. Then:

b!
a:(a+1)(a+2)~~(b—1)b
Sbb_a
c!
y:(b—i-l)(b—l-Q)---(c—l)c
>bc7b
Then
ce=b b—a
b\ e <b<b—al<c—b> cl) e
a < c—a < a
Write
N b—a
c—a
L= c—b
c—a

Then the inequality we proved is:

A AN
(@) <)
Cross-multiplying, and taking logs, this is equivalent to

b=(1-XNa+ X
log,b! < (1 — X)logy,a! + Alogy ¢!

We have shown that logig(n!) is convex.



8.3 Extending Factorials to Non-Integers

The factorial function is defined for non-negative integers n. Can we extend it
in a logical way for non-integers? We want to preserve:

e The recurrence relation n! =n x (n — 1)!
e The log convex property.

Let us try, for example, to devise a logical value of (—%)!.
The recurrence relation implies:

(-0

Expressing 0 as the average of —1/2 and 1/2, the log convexity of factorials

would imply:
1 1 1/ 1\,
=2 < (== == (==
1= (o _( 2).><<2). 2( 2)

But then also as 1/2 is the average of 0 and 1, logarithmic convexity gives:

2 2
1/ 1 1
Sz = () <ox1=
4(2) (2) Ohxti=1

Combining these two inequalities, we have:

2
2 < (1) I <4
< 5 <
We can strengthen the inequality by applying the same techniques for larger

Expressing n as the average of n— % and n+ %, logarithmic convexity implies:

e (o D)o )

Substituting the recurrence relation for factorials, we have:
2 n n+1
1 1 1
NZ2<(—= )t j— = j— =
o= () 1(-3) I (-3)
j=1 j=1
Likewise, expressing n—l—% as the average of n and n+1, logarithmic convexity
implies:

(n + ;)2 < (n)!(n + 1)

We can expand the left side by the recurrence relation, to give:

1 2 n 1 2
(—2>! H (j + 2) < (m)(n+1)!
7=0
Combining those equations, we have upper and lower bounds:

(n)? (L) o et
Ty () Mo G+ )’

Let us evaluate both sizes of this inequality:

10



n  Lower Upper
0 2.0000 4.0000
1 2.6667 3.5556
2 28444 3.4133
3
4

2.9257  3.3437
2.9722  3.3024

5 3.0022 3.2751

10 3.0677 3.2138
20 3.1035 3.1792
50 3.1261 3.1570
100 3.1338 3.1494
200 3.1377  3.1455
500 3.1400 3.1432
1000 3.1408 3.1424

We guess the limit is 7 (this is hard to prove, but true). That implies:

(-

We haven’t proved that n! admits a logarithmically convex extension to reals
(at least those exceeding -1), although that also turns out to be true.
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