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1 Definitions

1.1 Dyadic Convexity

IF we know the value of a function at x and y, what can we say about the value
at the midpoint, (x + y)/2? We are interested in cases where the value at the
midpoint is systematically lower than the values at the ends:

Suppose we have a function f : R 7→ R such that, for all x, y,∈ R

f

(
x+ y

2

)
≤ f(x) + f(y)

2

Examples of such functions include:

• f(x) is linear (equality holds)

• f(x) = x2

• f(x) = 10x

• f(x) = |x| (equality holds if x and y have the same sign)

1.2 Convex Function Definition

A function f : R 7→ R ∪ {∞} is convex if for all x, y ∈ R and 0 ≤ λ ≤ 1:

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y) (1)

The left hand side is the function evaluated at a point between x and y. The
right hand side is the linear interpolation between f(x) and f(y).

A function f(x) is concave if −f(x) is convex. Linear functions (and only
linear functions) are both concave and convex.

1.3 Adding the Point at Infinity

Sometimes we want to consider a convex function only on a particular range.
For example, we might consider f(x) = 1/x on x > 0 or f(x) = −

√
x on x ≥ 0.

These are both convex functions, but over smaller ranges.
In these cases, we define f(x) = +∞ for values of x where f(x) would not

otherwise be defined.
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1.4 Examples of Convex Functions

1.4.1 Powers

y = xn on x > 0 is:

• Convex if n ≥ 1 or if n ≤ 0

• Concave if 0 ≤ n ≤ 1.

1.4.2 Exponents

The function f(x) = 10x is convex.

1.4.3 Logarithms

For y > 0, the logarithm of y, written log10(y) is the value of x such that
10x = y.

The number of decimal digits in y is 1 + blog10(y).
The logarithm is not a convex function, but this function is:

f(x) =

{
∞ x ≤ 0

− log10(x) x > 0

1.4.4 Piecewise Linear Functions

f(x) =

 ∞ x < 0
0 0 ≤ x ≤ 1

x− 1 x ≥ 1

2 Combining Convex Functions

2.1 Sums of Convex Functions are Convex

2.2 Maximum of Convex Functions are Convex

2.3 Minimum of Convex Functions

True or False: the minimum of two convex functions is convex.
False: Consider (x+ 1)2 and (x− 1)2.

2.4 Increasing function of a Convex Function

f(x) convex, g(y) increasing.
True or False: g(f(x)) is convex?
False: Try

√
|x| for example.

2.5 Convex Function of a Convex Function

f(x) convex, g(y) convex.
True or False: g(f(x)) is convex?
False. Try 1

1+|x| .
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2.6 Increasing Convex Function of a Convex Function

Suppose f(x) is convex and g(y) is both increasing and convex.
Then f(g(x)) is convex.
Proof As f is convex,

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y)

Now as g is an increasing function, we can apply g to eaxch side of the inequality
and the result still holds:

g[f((1− λ)x+ λy)] ≤ g[(1− λ)f(x) + λf(y)]

But now we use the convexity of g(x) to get an upper bound for the right hand
side:

g[(1− λ)f(x) + λf(y)] ≤ (1− λ)g(f(x)) + λg(f(y))

Putting the last two inequalities together,

g[f((1− λ)x+ λy)] ≤ (1− λ)g(f(x)) + λg(f(y))

This is exactly the definition of the convexity of g(f(x)).
Corollary: If f(x) is convex, then so is 10f(x).
However, if f(x) is convex it does NOT follow that log10(f(x)) is convex. It

might be, or it might not.

3 Jensen’s Inequality

3.1 Extending from Pairs to Multiples

Consider the situation where:

• f : R 7→ R is a convex function

• x1, x2, . . . xn ∈ R

• λ1, λ2, . . . λn satisfy

λj ≥ 0
n∑
j=1

λj = 1

Then Jensen’s inequality states that

f

 n∑
j=1

λjxj

 ≤ n∑
j=1

λjf(xj)
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3.2 Proof of Jensen’s Inequality

Proof by induction on n.
Trivial (equality holds) if n = 1.
Suppose we now have the situation as described for some n ≥ 2 and we have

proved the relation for n− 1 points.
For j = 1, 2, . . . n− 1, define:

µj =
λj

1− λn

These satisfy the same conditions as the λ’s, but there are only n−1 of them
rather than n.

Of course we have:

n∑
j=1

λjxj = (1− λn)

n−1∑
j=1

µjxj

+ λnxn

So applying the convexity of f to the mixture on the right hand side, we
have:

f

 n∑
j=1

λjxj

 ≤ (1− λn)f

n−1∑
j=1

µjxj

+ λnf(xn)

Now we can can apply the inductive hypothesis:

f

n−1∑
j=1

µjxj

 ≤ n−1∑
j=1

µjf(xj)

Substituting this back gives:

f

 n∑
j=1

λjxj

 ≤ (1− λn)

n−1∑
j=1

µjf(xj)

+ λnf(xn)

=

n∑
j=1

λjxj

Thus then proves the result claimed.

4 Convex Functions and Optimisation

4.1 Unique Minimum

A convex function
True or False: If a convex function has a minimum, then that minimum is

unique.
False: the minimum might be in a range of constant values.
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5 Harmonic - Arithmetic - Geometric Means

5.1 Definitions

Positive numbers x1, x2, . . . xn.

arithmetic mean =
1

n

n∑
j=1

xj

geometric mean = n

√√√√ n∏
j=1

xj

harmonic mean =

 2

n

n∑
j=1

1

xj

−1

5.2 Numerical Example

With observations 18, 20, 75 we have

18 + 20 + 75

3
=

113

3
= 37

2

3
3
√

18× 29× 75 =
3
√

27000 = 30

3
1
18 + 1

20 + 1
75

=
2700

107
= 25

25

107

5.3 Ordering

We observe that HM ≤ GM ≤ AM Trial and error suggests this often holds.
Equality applies if all the observations are equal.

Can we prove this?

5.4 Jensen Implies GM ≤ AM

Proof: given n positive observations x1, x2, . . . n, let

yj = log10 xj

Then applying Jensen’s inequality to the convex function 10y we have:

10( 1
n

∑n
j=1 yj) ≤ 1

n

n∑
j=1

10yj

This is equivalent to:

n

√√√√ n∏
j=1

xj ≤
1

n

n∑
j=1

xj

This is the famous arithmetic-geometric mean inequality.
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5.5 General Weighted Results

We can use the same methodology to show the GM ≤ AM inequality when the
weights are λj (with

∑
λj = 1) rather than necessarily being equal to 1/n. IN

that case, the GM ≤ AM inequality takes the form:

n∏
j=1

x
λj

j ≤
n∑
j=1

λjxj

5.6 GM ≤ AM implies GM ≥ HM

To prove this, apply GM ≤ AM to the reciprocals of the observations.

6 Convex Conjugates

6.1 Definition

Suppose we have an arbitrary function f : R 7→ R. The convex conjugate
function, written f∗(y) is defined as:

f∗(y) = sup
x∈R
{xy − f(x)}

This immediately implies Fenchel’s Inequality

xy ≤ f(x) + f∗(y)

Remark: The Convex Conjugate f∗(y) is always a convex function, regard-
less of whether f(x) is convex. This follows because f∗(y) is the maximum of a
set of convex (indeed, linear) functions of y.

6.2 Examples

6.2.1 Quadratic

Suppose f(x) = x2.
To find f∗(y) we need to maximise (over x)

xy − x2 =
y2

4
−
(y

2
− x
)2

Obviously maximised when y = 2x and the maximum is

f∗(y) =
y2

4

6.2.2 Square Root

We know that f(x) = −
√
x is convex on x ≥ 0.

The convex conjugate is:

f∗(y) = sup
x≥0
{xy +

√
x}
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This is obviously unbounded if y ≥ 0. So we look at the less obvious case y < 0.
Here, we complete the square:

xy +
√
x = −

(
(−y)x−

√
x+

1

−4y

)
+

1

−4y

= −
(√

x
√
−y − 1

2
√
−y

)2

+
1

−4y

Once again, we use the fact that a square is at least zero to complete the
maximisation, which finally gives:

f∗(y) =

{
− 1

4y y < 0

+∞ y ≥ 0

6.2.3 Reciprocal

The function f(x) = 1/x is convex on x > 0. Then:

f∗(y) = sup
x>0

{
xy − 1

x

}
It is clear that for y ≥ 0 we have f∗(y) =∞, while if f∗(0) = 0.
So we focus on the non-trivial case when y < 0. Once again, we look for a

square; this time we note:

−(−y)x− 1

x
= −

(√
−y
√
x− 1√

x

)2

− 2
√
−y

Putting the pieces together, we have:

f∗(y) =

{
−2
√
−y y ≤ 0
∞ y > 0

6.3 Guessing Duality

The seems to be some kind of duality here: the convex conjugate of a square
root on the positive axis is a reciprocal on the negative axis, while the convex
conjugate of a reciprocal on the positive axis is a square root on the negative
axis.

We also saw that the convex conjugate of a quadratic function is another

quadratic function. Indeed, if f(x) = x2

2 then f∗(y) = y2/2 so f is self-
conjugate.

True or False: The only self-conjugate function is f(x) = x2/2.
Hint for solution: try Fenchel’s inequality with x = y.

6.4 Piecewise Linear Example

Let us define f(x) by:

f(x) =

 ∞ x < 0
0 0 ≤ x ≤ 1

x− 1 x ≥ 1

To find the convex conjugate f∗(y) we consider separately three cases in the
maximisation of xy − f(x).
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• If y < 0 then the objective function (the thing you’re trying to optimise)
is decreasing for x ≥ 0 so the maximum is at x = 0, whence f∗(y) = 0.

• If 0 < y < 1 then the objective function in increasing on 0 ≤ x ≤ 1 and
decreasing on x ≥ 1 so the maximum is attained at x = 1 and so f∗(y) = y

• If y > 1 then the objective function is increasing for all y and so f∗(y) =
∞.

• If y = 0 or y = 1 then there is a range of x for which the objective function
is flat.

Putting these together, we have:

f∗(y) =

 0 y ≤ 0
y 0 ≤ y ≤ 1
∞ y > 1

7 Convex Bi-Conjugate

7.1 Definition

Define f∗∗(x) to be the convex conjugate of the convex conjugate of f .

7.2 Bi-Conjugate Does not Exceed f

Fenchel’s inequality implies:

xy − f∗(y) ≤ f(x)

Taking the supremum of the left hand side over values of y:

f∗∗(x) ≤ f(x)

7.3 The Case of a Tangent

Suppose f(x) has a supporting line with gradient y0 at a single point x0, so
that:

f(x) ≥ f(x0) + y0(x− x0);x ∈ R
This works for continuous convex functions - take this on trust for now as the
proof is tricky. Obviously if such a tangent exists then equality holds at x = x0.

Then we have:

f∗(y0) = sup
x∈R
{xy0 − f(x)}

= x0y0 − f(x0) + sup
x∈R
{f(x0) + y0(x− x0)− f(x)}

= x0y0 − f(x0)

Taking a specific value y = y0 in the sup defining f∗∗(y), we have:

f∗∗(x0) = sup
y∈R
{x0y − f∗(y)}

≥ x0y0 − f∗(y0)

= f(x0)
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As we already know f∗∗(x) ≤ f(x), we deduce that in the case where a
tangent exists at x0 we have equality and f∗∗(x0) = f(x0).

8 Non-Integer Factorials

8.1 Definition

The factorial n! for integers n ≥ 1 is defined by the product:

n! = 1× 2× 3× . . .× (n− 1)× n

In more formal terms we define n! inductively:

n! =

{
1 n = 0

n× (n− 1)! n ≥ 1

8.2 Log Factorials are Convex

I claim the log factorial is convex, at least when measured on non-negative
integers.

Proof: Let 0 ≤ a < b < c be non-negative integers. Then:

b!

a!
= (a+ 1)(a+ 2) · · · (b− 1)b

≤ bb−a

c!

b!
= (b+ 1)(b+ 2) · · · (c− 1)c

> bc−b

Then (
b!

a!

) c−b
c−a

≤ b
(b−a)(c−b)

c−a <

(
c!

b!

) b−a
c−a

Write

λ =
b− a
c− a

1− λ =
c− b
c− a

Then the inequality we proved is:(
b!

a!

)1−λ

<

(
c!

b!

)λ
Cross-multiplying, and taking logs, this is equivalent to

b = (1− λ)a+ λc

log10 b! ≤ (1− λ) log10 a! + λ log10 c!

We have shown that log10(n!) is convex.
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8.3 Extending Factorials to Non-Integers

The factorial function is defined for non-negative integers n. Can we extend it
in a logical way for non-integers? We want to preserve:

• The recurrence relation n! = n× (n− 1)!

• The log convex property.

Let us try, for example, to devise a logical value of (− 1
2 )!.

The recurrence relation implies:(
1

2

)
! =

1

2

(
−1

2

)
!

Expressing 0 as the average of −1/2 and 1/2, the log convexity of factorials
would imply:

1 = (0!)2 ≤
(
−1

2

)
!×
(

1

2

)
! =

1

2

(
−1

2

)
!
2

But then also as 1/2 is the average of 0 and 1, logarithmic convexity gives:

1

4

(
−1

2

)
!
2

=

(
1

2

)
!
2

≤ 0!× 1! = 1

Combining these two inequalities, we have:

2 ≤
(
−1

2

)
!
2

≤ 4

We can strengthen the inequality by applying the same techniques for larger
n.

Expressing n as the average of n− 1
2 and n+ 1

2 , logarithmic convexity implies:

(n!)2 ≤
(
n− 1

2

)
!

(
n+

1

2

)
!

Substituting the recurrence relation for factorials, we have:

(n!)2 ≤
(
−1

2

)
!
2 n∏
j=1

(
j − 1

2

) n+1∏
j=1

(
j − 1

2

)
Likewise, expressing n+ 1

2 as the average of n and n+1, logarithmic convexity
implies: (

n+
1

2

)2

≤ (n)!(n+ 1)!

We can expand the left side by the recurrence relation, to give:(
−1

2

)
!
2 n∏
j=0

(
j +

1

2

)2

≤ (n)!(n+ 1)!

Combining those equations, we have upper and lower bounds:

(n!)2∏n
j=1

(
j − 1

2

)∏n+1
j=1

(
j − 1

2

) ≤ (−1

2

)
!
2

≤ n!(n+ 1)!∏n
j=0

(
j + 1

2

)2
Let us evaluate both sizes of this inequality:
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n Lower Upper
0 2.0000 4.0000
1 2.6667 3.5556
2 2.8444 3.4133
3 2.9257 3.3437
4 2.9722 3.3024
5 3.0022 3.2751

10 3.0677 3.2138
20 3.1035 3.1792
50 3.1261 3.1570

100 3.1338 3.1494
200 3.1377 3.1455
500 3.1400 3.1432

1000 3.1408 3.1424

We guess the limit is π (this is hard to prove, but true). That implies:(
−1

2

)
! =
√
π

We haven’t proved that n! admits a logarithmically convex extension to reals
(at least those exceeding -1), although that also turns out to be true.
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