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Abstract

Many interesting and important economic questions relate to the effects of bi-

nary treatments such as starting a college degree or participating in a job training

program. The causal effects of these treatments are likely to be heterogeneous and

recent research has emphasized the estimation of heterogeneous treatment effects,

with a particular focus on Marginal Treatment Effects (MTEs). In this note, I

describe why common methods of estimating MTEs of binary treatments can be

very sensitive to omitted higher powers of covariates and demonstrate this using

simple Monte Carlo simulations. I conclude by discussing approaches that may be

useful for researchers to address this problem in practice.

∗I thank Ben Elsner for helpful comments.This work was partially supported by the Research Council
of Norway through its Centres of Excellence Scheme, FAIR project No 262675.
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1 Introduction

Many interesting and important economic questions relate to the effects of binary treat-

ments such as starting a college degree or participating in a job training program. These

effects are likely to be heterogeneous; for example, the benefit of going to college may

differ greatly based on the cognitive and non-cognitive skills of the individual. Addition-

ally, individuals may decide whether or not to take a particular treatment based on the

expected costs and benefits so persons taking the treatment are likely to be those with

relatively high returns —referred to as selection into treatment based on gains. While

much empirical analysis assumes homogenous treatment effects, recent research has em-

phasized the estimation of heterogeneous treatment effects, with a particular focus on

Marginal Treatment Effects (MTEs).1

The Two Stage Least Squares (2SLS) estimator can provide consistent estimates if the

treatment effect is constant across the population. MTE estimation relaxes the constant

treatment effect assumption and allows treatment effects to differ across the population

by quantifying the gain from treatment for individuals shifted into (or out of) treatment

by a marginal change in the propensity score (the predicted probability of treatment). By

estimating the full distribution of MTEs, researchers can estimate many parameters of

interest such as the average treatment effect (ATE), the effect of treatment on the treated

(ATT), and various policy related treatment effects. Because of this, these techniques

are becoming very widely used in empirical practice.2

Estimation of MTEs requires quite strong assumptions and is therefore likely to be

sensitive to misspecification. Some previous work (Andresen, 2018) has shown sensitivity

of MTE estimates to the specification of the first stage regression that models the proba-

bility of receving the treatment. In this note, I focus on a different issue —robustness to

1The concept of a marginal treatment effect was first introduced by Björklund and Moffi tt (1987) and
has been further developed by Heckman and Vytlacil (1999, 2007), Carneiro et al. (2011), and Brinch
et al. (2017) among others. Cornelissen et al. (2016) provide a useful introduction for empiricists.

2Topics studied include the return to education (Nybom, 2017; Carneiro et al., 2017; Kamhofer et al.,
2019), the economics of crime (Agan et al., 2021; Arnold et al., 2018; Bhuller et al., 2020), the effects of
childcare (Cornelissen et al., 2018; Felfe and Lalive, 2018; Andresen, 2019), the effects of family size on
child education (Brinch et al., 2017) as well as many others.
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omitted higher order powers of covariates.3 Because instrumental variables are often ran-

domly or quasi-randomly assigned, covariates tend to play little role in 2SLS and omitted

higher powers of covariates are unlikely to lead to important inconsistencies. However,

this is not the case with MTEs.

In this note, I describe why commonmethods of estimating MTEs can be very sensitive

to omitted higher powers of covariates and demonstrate this using simple Monte Carlo

simulations. I conclude by discussing what approaches may be useful to address this

problem in practice.

2 Definition of a Marginal Treatment Effect

Consider an outcome for individual i, Yi, and a binary treatment variable, Di, that equals

0 if the person does not get the treatment and 1 if the person gets the treatment. Yji

refers to the counterfactual outcome when Di = j. We start with the following model:

Yji = µj(Xi) + Uji for j = 0, 1 (1)

Yi = DiY1i + (1−Di)Y0i (2)

Di = I(µD(Zi) > Vi), (3)

where Zi = (Xi, Z
∗
i ), and Z

∗
i represents one or more excluded instrumental variables.

(U0i, U1i, Vi) are error terms, µj(Xi) is a (possibly treatment-varying) function of ex-

ogenous covariates, and µD(Zi) is a function of Zi. The standard IV assumption for

instrument validity is the conditional independence assumption that

(U0i, U1i, Vi) ⊥ Z∗i |Xi. (4)

3Indeed any omitted non-linear functions of covariates can be problematic. For simplicity, the focus
here is on higher order powers such as omitted quadratic or cubic terms. However, the problem can arise
even if quadratic or cubic functions of covariates are included if even higher order terms are incorrectly
omitted from the model. Likewise, there can be problems due to omitted interaction terms between
covariates.
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If Vi has a continuous distribution, we can rewrite the selection equation as

Di = I(P (Zi) > UDi), (5)

where UDi represents quantiles of Vi and P (Zi) is the propensity score. The Marginal

Treatment Effect at each possible value of Xi and UDi is defined as

MTE(x, u) = E(Y1i − Y0i|Xi = x, UDi = u),

where u is a particular quantile of V .

3 Estimating Marginal Treatment Effects

While it is possible to estimate marginal treatment effects nonparametrically with no

further assumptions, this requires full support of the propensity score in both treated

and untreated samples for all values of X. Given that this is very unlikely in practice,

researchers generally make two further assumptions:

Assumption 1: The model is linear in parameters so

µj(Xi) = Xiβj (6)

µD(Zi) = Ziγ, (7)

where γ and βj are parameters to be estimated.

Assumption 2:

E(Y0i|Xi = x, UDi = u) = xβ0 + E(U0i|UDi) (8)

E(Y1i|Xi = x, UDi = u) = xβ1 + E(U1i|UDi). (9)

This "linear separability" assumption implies that the MTE is identified over the uncondi-

tional support of P (Zi), jointly generated by the excluded instrument and the covariates,
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as opposed to the support of P (Zi) conditional on Xi (Brinch et al., 2017).4 The linear

separability assumption is typically benign in 2SLS as it is only a problem if controls for

nonlinear functions of Xi are required to satisfy conditional exogeneity of the instrument

Often Z∗i is randomly or quasi-randomly assigned so this is not an issue. However, as we

will see, it is not a benign assumption for MTE estimation.

Given these assumptions, the Marginal Treatment Effect is defined as

MTE(x, u) = E(Y1i − Y0i|Xi = x, UDi = u) (10)

= x(β1 − β0) + E(U1i − U0i|UDi = u) (11)

= x(β1 − β0) + k(u), (12)

where

k(u) = E(U1i − U0i|UDi = u). (13)

In words, the MTE is the treatment effect for an individual who is at the margin of being

treated (is indifferent between being treated or not) when P (Zi) = u and Xi = x. These

assumptions imply that the intercept of the MTE function depends on Xi but the slope

of the function is independent of Xi.5

3.1 Local Instrumental Variables (LIV)

The most common method to estimate the MTE is the method of Local Instrumental

Variables (LIV; see Heckman and Vytlacil, 1999, 2007; Heckman et al., 2006; Carneiro

et al., 2011), which estimates the MTE as the derivative of the outcome with respect to

the propensity score, where the outcome has been modeled as a flexible function of the

4An alternative but stronger assumption is full independence so (U0i, U1i, Vi) ⊥ Z∗i , Xi. Both the
full independence and the linear separability assumption imply that the marginal treatment effect is
additively separable into an observed and an unobserved component (see Cornelissen et al., 2016).

5Some early studies assume joint normality of the error terms but, due to the restrictive and somewhat
arbitrary nature of the normality assumption, this assumption is now rarely made and I will not consider
it in this note.
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propensity score. We can write

E(Yi|Xi = x, P (Zi) = p) = xβ0 + x(β1 − β0)p+K(p), (14)

where K(p) is a non-linear function of the propensity score. The MTE is then given by

MTE(Xi = x, UDi = p) =
∂E(Yi|Xi = x, P (Zi) = p)

∂p
= x(β1−β0)+

∂K(p)

∂p
= x(β1−β0)+k(p),

(15)

where k(p) = ∂K(p)
∂p
.

A typical approach is to model K(p) as a polynomial in the propensity score, which

itself is first estimated from a probit or logit regression of the treatment variable on Zi.6

The regression equation is

Yi = Xiβ0 +Xi(β1 − β0)p̂+
K∑
k=2

p̂kπk + Ui (16)

where p̂ is the estimated propensity score from the first stage.7 If the polynomial in p̂

includes only a single quadratic term, the estimatedMTE function is linear (k̂(p) = 2π̂2p̂)

while further higher order terms allow for non-linearities.8

3.2 The Separate Approach

As developed by Brinch et al. (2017), this approach uses equations

E(Y0i|Xi = x,Di = 0) = xβ0 + E(U0i|UDi ≥ P (Zi)) = xβ0 +K0(p) (17)

E(Y1i|Xi = x,Di = 1) = xβ1 + E(U1i|UDi < P (Zi)) = xβ1 +K1(p), (18)

6The LIV approach with a global polynomial has been used by many studies including Agan et al.
(2021), Alessie et al. (2020), Basu et al. (2007), Bhuller et al. (2020), Cornelissen et al. (2018), and
Gupta et al. (2021).

7The estimated propensity score differs across sample members as they have different values of Zi.
However, to avoid clutter, I omit the i subscript from p̂.

8Another common approach is semiparametric and uses a local rather than a global polynomial. I
discuss this later in the Monte Carlo simulations.
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and estimates separate regressions for the conditional expectations of Y0i and Y1i on the

sample for which Di = 0 and the sample for which Di = 1, respectively. The control

functions (K0(p) and K1(p)) are specified based on the assumptions made. Then the

MTE equals

MTE(Xi = x, UDi = p) = E(Y1i|Xi = x, UDi = p)− E(Y0i|Xi = x, UDi = p) (19)

= x(β1 − β0) + k1(p)− k0(p), (20)

where kj(p) = E(Uji|UDi = p). We consider the case where the kj(p) functions are

specified as a polynomial in p.9 The regression equations are of the form

Yi = Xiβ0 +

K∑
k=1

p̂kπk0 + U0i if Di = 0 (21)

Yi = Xiβ1 +
K∑
k=1

p̂kπk1 + U1i if Di = 1, (22)

where, as before, p̂ is the estimated propensity score from the first stage.

4 Consequences of Misspecification

4.1 LIV

The MTE estimated using LIV has been shown to be somewhat sensitive to the choice of

first stage model (probit, logit, or linear probability model) but perhaps a bigger issue is

the fragility of the estimator to other sources of misspecification.10 Consider once again

the LIV estimating equation

Yi = Xiβ0 +Xi(β1 − β0)p̂+
K∑
k=2

p̂kπk + Ui. (23)

9The separate approach with a global polynomial has been used by Gong et al. (2020), Kowalski
(2020), and Sarr et al. (2021) as well as others. As with LIV, a semiparametric approach with a local
polynomial can be taken to estimate this model. I consider this approach later in the Monte Carlo
simulations.
10Andresen (2018) does Monte Carlo simulations to investigate sensitivity to misspecification of the

first stage model and to some other misspecifications.
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To fix ideas, assume Xi includes a single continuous variable, Wi, in addition to the

constant and the order of the polynomial in the propensity score is quadratic. Given

this, the estimated MTE is linear and its slope equals 2π̂2, twice the coeffi cient on the

squared term. Now, assume that this regression is misspecified in that Yi depends on W 2
i

as well as Wi but W 2
i is excluded from the model.11

Let’s start with the simplest case where p̂ is the predicted value from a linear proba-

bility model first stage so

p̂ = Ziγ̂ = γ̂1 + Z∗i γ̂z +Wiγ̂w, (24)

where γ̂1 is the estimate of the constant term. Clearly, p̂
2 is correlated with W 2

i . There-

fore, given the exclusion of W 2
i from equation (23), π̂2 will be an inconsistent estimator

of π2 and the estimator of the slope of the MTE will be inconsistent. If, instead, we use

a nonlinear first stage such as logit or probit, the same issue arises as p̂ itself is then a

nonlinear function of Wi and so both p̂ and p̂2 are likely to be correlated with W 2
i . Note

that this is a fundamental problem unless Wi is an indicator variable.

Some further points are relevant. First, even if Wi and W 2
i are included in the model,

π̂2 will be an inconsistent estimator if Yi depends on even higher order powers of Wi.

Second, the extent of the problem will tend to increase with the number of covariates.

Third, this problem continues to exist even if the specified polynomial in p̂ is third order

or higher (and may even be exacerbated as included higher powers of p̂ are correlated

with excluded higher powers of Wi).12 So, the LIV estimator of the slope of the MTE

will necessarily be very sensitive to the specification of the Xi matrix. The estimator of

β1−β0 will also be inconsistent if W 2
i is excluded from the model as the inconsistency of

the estimator for the parameter on p̂2 will lead to inconsistent estimates of all the other

parameters in the model.

11Such misspecification could also lead 2SLS to be inconsistent in the constant treatment effects case
if the presence of W 2

i is required to satisfy conditional independence of Z
∗
i . However, this may be less

likely as (1) instruments are often randomly or quasi-randomly generated and (2) researchers use their
knowledge of the situation to appropriately specify Xi to satisfy conditional independence.
12Models that assume joint normality and, hence, have a nonlinear parametric function of p̂ in the

regression, will also face the same problem as the nonlinear function will be correlated with W 2
i .
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4.2 The Separate Approach

Consider once again the estimating equations for the separate approach:

Yi = Xiβ0 +
K∑
k=1

p̂kπk0 + U0i if Di = 0 (25)

Yi = Xiβ1 +
K∑
k=1

p̂kπk1 + U1i if Di = 1. (26)

As before, consider the case where there is a single included explanatory variable, Wi,

Yji depends on W 2
i as well as Wi, and the kj(p) functions are specified as a polynomial in

p̂. Start again with the simplest case of a linear MTE function (the regression equations

are linear in p̂) and where p̂ is estimated as the predicted value from a linear probability

model first stage so p̂ = Ziγ̂ = γ̂1 + Z∗i γ̂z +Wiγ̂w. The omission of W
2
i leads to omitted

variable bias in equations (25) and (26) as Wi and p̂ will generally be correlated with

W 2
i . Even in the special case where Wi is uncorrelated with W 2

i in the full sample, it

will be correlated with W 2
i in each subsample defined by treatment status. The logic is

that, since Wi shifts the probability of treatment, the distribution of p̂ and Wi will differ

between the subsample with Di = 0 and the subsample with Di = 1, so Wi and p̂ will

generally be correlated with W 2
i in each subsample. These correlations will differ across

subsamples, leading to omitted variable biases that differ in size and possibly direction

for the estimators of π10 and π11 and, hence, in the MTE.

With a higher order polynomial in p̂, higher powers of p̂ are correlated withW 2
i (given

p̂ = γ̂1+Z
∗
i γ̂z+Wiγ̂w so p̂

2 is a function of W 2
i ) leading to inconsistent estimators of the

πk0 and πk1 parameters and, hence, likely inconsistency of the MTE.With a nonlinear first

stage from a Logit or Probit model, there is an additional potential source of inconsistency

as p̂ is a nonlinear function of Wi and Z∗i and, hence, is likely correlated with W
2
i .
13

13These issues also arise when the Kj(p) functions are derived from joint normality and may be
exacerbated as these functions are nonlinear in Wi and Z∗i .
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5 Monte Carlo

I now do Monte Carlo experiments to illustrate the effects of misspecification in a very

simple setup. The base model assumes

Yi = DiY1i + (1−Di)Y0i (27)

Y0i = U0i + β0Xi + θ1X
2
i + θ2X

3
i (28)

Y1i = U1i + β1Xi + θ1X
2
i + θ2X

3
i (29)

D∗
i = π0 + π1Z

∗
i + π2Xi + vi (30)

Di = 1 if D∗
i ≥ 0 (31)

Di = 0 if D∗
i < 0 (32)

whereDi is a binary endogenous variable, Z∗i is a continuous instrument that is distributed

i.i.d. N(0, 1), and Xi is a continuous exogenous variable that is distributed i.i.d. N(0, 1).

Z∗i is drawn independently of Xi. We allow for misspecification by excluding X2
i or X

3
i

from the estimated model. We vary the values of θ1 and θ2, showing estimates without

misspecification (θ1 = θ2 = 0) and estimates with misspecification (θ1 6= 0 or θ2 6= 0). In

all cases, we set π0 = 0, π1 = 0.25, π2 = 1 and β0 = β1 = 1.

5.1 Linear Model

First, we create a model with a linear MTE function, defining U0i and U1i so as to allow

for selection into treatment based on both levels and gains:

U0i = 0.5(UDi − 0.5) + εi (33)

U1i = 1.5(UDi − 0.5) + εi, (34)

where εi ∼ N(0, 0.5) and UDi is distributed standard uniform. Finally vi = F−1(UDi). By

construction, this setup implies that the MTE function is linear.
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5.2 Quadratic Model

The second model has a quadratic MTE function:

U0i = 1.5(UDi − 0.5)− U2Di + εi (35)

U1i = −0.5(UDi − 0.5) + U2Di + εi, (36)

where εi ∼ N(0, 0.5), UDi is distributed standard uniform, and vi = F−1(UDi). By con-

struction, this setup implies that the MTE function is quadratic.

5.3 Implementation

We estimate the models with 100,000 observations.14 These large sample sizes imply that

we estimate the MTE function with reasonable precision. In both models, the parameter

values are chosen to ensure that the instrument is suffi ciently strong to provide variation

in the treatment across the distribution of the propensity score. The common support

across the distribution of the propensity score is shown in Figure 1.15 We perform 100

Monte-Carlo replications and plot out the average value of the MTE for each percentile

of UDi.16 For each estimator, we also report the average treatment effect (ATE), the

effect of treatment on the treated (ATT), and the effect of treatment on the non-treated

(ATUT). These treatment effects are calculated from the MTE using appropriate weights

as follows (N denotes the number of observations, 100,000 in all cases):

ÂTE =
N∑
i=1

Xi(β̂1 − β̂0) +
0.99∑
u=0.01

k̂(u)

99
(37)

ÂTT =
N∑
i=1

p̂

p
Xi(β̂1 − β̂0) +

0.99∑
u=0.01

(
prop(p̂ > u)

99p
)k̂(u) (38)

14The models are estimated using the Stata MTEFE command created by Andresen (2018).
15Figure 1 shows the distribution of propensity scores for the linear model without misspecification.

The analogous distributions are very similar for the quadratic model and for all specifications.
16While 100 simulations is not many, it is probably suffi cient due to the very large number of ob-

servations and, hence, precise estimates. As we will see, even with only 100 replications, the correctly
specified models provide average estimates that exactly equal the true parameters.
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ÂTUT =

N∑
i=1

(1− p̂)
1− p Xi(β̂1 − β̂0) +

0.99∑
u=0.01

(
prop(p̂ ≤ u)

99(1− p) )k̂(u) (39)

5.4 Results of Monte Carlo Simulations

5.4.1 Linear Model

Figure 2 shows the estimated marginal treatment effects for the linear MTE model,

estimated using the linear polynomial versions of both LIV and the separate method.

Because there is limited overlap in the support of the propensity score for the treated

and untreated in the tails of the UDi distribution, we trim the pictures and show the MTEs

from UDi = 0.05 to UDi = 0.95. In the absence of misspecification (θ1 = θ2 = 0), both

estimators perform very well and we do not show this case in the figure as the estimated

MTE line sits on top of the true values of the MTEs. So, we show the true MTEs and

those estimated from misspecified models where we consider θ1 = {0.05,−0.05}. The

true MTE line has a slope of 1. The slope of the estimated lines differs greatly and is

even negative for both estimators when θ1 = 0.05. Clearly, both estimators are very

sensitive to the omitted X2
i term.

Table 1 reports the summary treatment effects for each specification. The true value of

the ATE is 0, the true ATT is -0.16, and the true ATUT is 0.16. Without misspecification,

both approaches are unbiased. However, while both estimators get the ATE right with

θ1 6= 0, they can be very wrong for the ATT and the ATUT. I also report the average

standard errors across the simulations to show that this is not an issue of precision but

purely one of bias. Both estimators allow β̂1 − β̂0 to differ from 0 but, by design, the

Monte Carlos have no heterogeneity in this dimension so the estimate of β̂1 − β̂0 should

be 0. However, as can be see in Table 1, when θ1 6= 0, this parameter can also be very

biased.

Table 1 also shows the R2 from (1) a regression of Yi on Di and Xi and (2) a regression

of Yi on Di, Xi and X2
i . Adding X

2
i to the model has no discernable effect on the R

2,

suggesting that it is possible to have sizeable biases even with a relatively small amount
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of misspecification.17

5.4.2 Quadratic Model

Figure 3 shows the estimated marginal treatment effects for the quadratic model. Once

again, the correctly specified model performs really well so we do not show it in the

pictures. When θ1 6= 0, the results differ by approach. The LIV estimates are very biased

as can be seen in the first panel of Figure 3. The separate approach gives MTE estimates

that are very close to correct, irrespective of the value of θ1. However, this is a special

case. In Figure 4, we show estimates for the quadratic model when we set θ1 = 0 but

θ2 = {0.02,−0.02}, so that the X3
i term is incorrectly omitted from the model. In this

case, we find large biases using both approaches.

Tables 2 and 3 report the summary treatment effects for each specification of the

quadratic model and the biases from misspecification are once again apparent for the

ATT, the ATUT, and also for β̂1 − β̂0. However, the findings differ by specification

suggesting that it is unpredictable when the estimators are likely to be unbiased.

5.5 Semi-parametric methods

So far, we have considered estimation methods where K(p) is modelled as a polynomial

in the propensity score. This is a parametric approach but is flexible and, quoting French

and Taber (2011, p. 578), “By letting the terms in the polynomial get large with the

sample size, this can be considered a nonparametric estimator.”However, it is also com-

mon for researchers to use a semiparametric approach such as the semiparametric LIV

approach of Carneiro, Heckman and Vytlacil (2011). This approach retains a probit or

logit first stage but estimates the main equation using Robinson’s Double Residual ap-

proach (Robinson, 1988) and takes a local (rather than global) polynomial approach to

estimating the relationship between Yi and p̂. The LIV version proceeds as follows:18

17One should not read too much into this finding based on one simple Monte Carlo experiment. Because
Xi is drawn from a standard normal distribution, Xi and X2

i are uncorrelated which typically implies
greater bias from the incorrect omission of X2

i than if they were positively correlated.
18The separate approach can also be implemented using a similar semiparameteric approach (Brinch

et al., 2017).
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1. Estimate p̂ using a probit (or logit model).

2. Construct Ỹi ≡ Yi − E(Yi|p̂) and X̃ik ≡ Xik − E(Xik|p̂) for each component, k of

Xi.

3. Do a linear regression of Ỹi on X̃i and p̂X̃i to get β̂1 and β̂0.

4. Nonparametrically regress Yi −Xiβ̂0 −Xi(β̂1 − β̂0)p̂ on p̂ using a local polynomial

approach.

Given that E(Yi − Xiβ0 − Xi(β1 − β0)p̂|p̂) = K(p̂), the MTE can be estimated by

taking the derivative with respect to p̂:

MTE(UDi = p̂, Xi = x) = Xi(β̂1 − β̂0) +
∂K̂(p̂)

∂p̂
. (40)

Unlike a global polynomial, the MTE can be estimated with this method only over the

common support of p̂, which may not span [0, 1] so it may not be possible to estimate the

standard treatment parameters (ATE, ATT, ATUT) without making further assumptions

and extrapolating. Figure 5 shows results for the linear model and Figures 6 and 7 show

results for the quadratic model.19 Clearly, misspecification can lead to serious biases in

both cases. Interestingly, the semiparametric LIV approach is very biased even without

misspecification.

6 What Can Researchers Do?

Given the findings that MTE estimators are sensitive to omitted higher powers of X,

what are the best approaches to deal with this potential problem? I consider two broad

strategies: The first is to use a method that is not vulnerable to this bias; the second is

to do robustness checks to evaluate whether the problem is likely present in a particular

application.

19There are many choices that can be made in estimating the semiparametric model such as the choice
of bandwidth and the degree of the local polynomial. I use the default settings in MTEFE which imply
a rule of thumb bandwidth and a local quadratic polynomial.
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6.1 Methods Without this Problem

6.1.1 Estimate the Model without Covariates

One approach is to omitX from the model so that p̂ is not a function ofX. An example of

this approach is provided by Brinch et al. (2017) and by Doyle (2007) who both show how

the MTE can be estimated without using covariates. However, this approach potentially

leads to misspecification of the first stage and inconsistent estimates if identification relies

on conditional independence of the instrument. Also, the X variables are often required

in the first stage to enable p̂ to span [0, 1] for both treatment and control group so this

approach is likely to lack precision in many applications and, because of a limited range

of the estimated propensity score, also may heavily rely on extrapolation based on a low

order global polynomial.

6.1.2 Saturate the Model in X

Another possible solution to this problem, if feasible, is to saturate the model in X.

This can be done if the X variable(s) are discrete by including all possible levels and

interactions in the model. If variables are continuous, they could be discretized so that

the model can be saturated. With a saturated model, there cannot be any omitted higher

order powers so the problem disappears. If X is high-dimensional, this approach may

not be feasible or desirable given the large number of resulting variables and hence the

loss of degrees-of-freedom. Additionally, continous X variables can be useful to enable

p̂ to span [0, 1] for both treatment and control groups. In practice, researchers do not

saturate the model in X when estimating marginal treatment effects.

6.1.3 Estimate a Fully Nonparametric Model

If researchers are willing to forego assumption 2 (equations (8) and (9)) and have access to

one or more continuous instruments with a large range of variation within cells of Xi = x,

then an MTE can be estimated for each specific subsample defined by each unique set of
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values of X, thereby conditioning nonparametrically on X.20 Unfortunately, while much

discussed in the literature, this approach is never feasible with the sets of instruments and

covariates available in practice. Recent research suggests promising approaches that aim

for interval rather than point estimation of the MTE (Mogstad and Torgovitsky, 2018)

but these methodologies are not commonly used by applied researchers.

6.2 Check Robustness To Specifying Covariates More Flexibly

Rather than use a method that is robust to omitted higher order covariate terms, an

alternative strategy is to evaluate the robustness of MTE estimates to adding higher

order functions of X as additional covariates in equation (23) for LIV and equations (25)

and (26) for the Separate Approach. One flexible way of doing this is to add a set of

high order polynomials and interactions between them. Assessing stability of the MTE

estimates after adding higher order and interaction terms in X provides an indication of

whether the estimates are robust to this type of misspecification. While researchers tend

to do many robustness checks, assessing robustness to higher order functions of X is very

rare in the literature.

An alternative, which may be infeasible due to the "curse of dimensionality" when

there are several X variables, is to estimate these regressions (equation (23) for LIV

and equations (25) and (26) for the Separate Approach) using an estimator that is non-

parametric inX. One way to avoid the dimensionality problem is by being non-parametric

in a single index ofX in equation (23) for LIV and equations (25) and (26) for the Separate

Approach. A natural choice for that single index is one that uses a similar function of X

as is used in the first stage to estimate p̂ as this is most likely to reduce contamination

from correlation of p̂ with nonlinear functions of X. Denote the single index as f̂(Xi).

If a probit first stage is used to estimate p̂, f̂(Xi) could be the predicted value from a

probit regression of the treatment status on X. Note that f̂(Xi) differs from p̂ in that it

comes from a regression of D on X rather than a regression of D on X and Z. Then,

20As described by Cornelissen et al. (2016, page 55): "If a continuous instrument with a large range of
variation within cells of Xi = x is available, then the analysis can proceed in subsamples defined by the
values of of Xi = x, thus conditioning perfectly and nonparametrically on X, and identifying a separate
MTE curve for each value of Xi = x."
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in equation (23) for LIV and equations (25) and (26) for the Separate Approach, the

effect of f̂(Xi) could be estimated nonparametrically in a partially linear model using,

for example, the double residuals estimator introduced by Robinson (1988), which is

consistent and effi cient. If this procedure led to different MTE estimates compared to the

basic model, it would suggest biases from omitted nonlinear functions of X.

A simple approach to assess robustness to higher order powers of X is to add a

polynomial in f̂(Xi) into the equations (equation (23) for LIV and equations (25) and

(26) for the Separate Approach) as additional controls. This may make particular sense

for the LIV model as the bias comes from correlations between the included polynomial

in p̂ and excluded higher powers of X. Once again, if the addition of polynomials in

f̂(Xi) in equation (23) for LIV and equations (25) and (26) for the Separate Approach

have little effect on the MTE estimates, this suggests that there is little bias from omitted

higher order powers of covariates.

7 Conclusions

This note argues that standard methods used to estimate marginal treatment effects are

inconsistent in the presence of omitted higher powers of X and demonstrates this using

simple Monte Carlo simulations. The greater information provided by MTEs requires

strong assumptions and estimates may be misleading if these do not hold. Assessing the

stability of estimates to additional controls for nonlinear functions of X may be useful to

address this problem in practice.
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Figure 1: Common Support 

 
Note: This figure shows the degree of common support in the linear model without 

misspecification. The analogous distributions are very similar for the quadratic model and for 

all specifications.  



Figure 2: MTE Curve: Linear Model 

 

 

Note: Average estimates from 100 Monte Carlo simulations on a sample size of 100,000. The 

“Linear Model” line is the true MTE curve. LIV05 denotes Local Instrumental Variables with  
𝜃1 = 0.05, LIV-05 denotes Local Instrumental Variables with 𝜃1 = −0.05, SEPA05 denotes 

the Separate Approach with 𝜃1 = 0.05, SEPA-05 denotes the Separate Approach with 𝜃1 =

−0.05. All estimators impose a linear MTE curve. 
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Figure 3: MTE Curve: Quadratic Model (𝜃1 varied) 

 

 

Note: Average estimates from 100 Monte Carlo simulations on a sample size of 100,000. The 

“Quadratic Model” curve is the true MTE curve. LIV05 denotes Local Instrumental Variables 

with 𝜃1 = 0.05, LIV-05 denotes Local Instrumental Variables with 𝜃1 = −0.05, SEPA05 

denotes the Separate Approach with 𝜃1 = 0.05, SEPA-05 denotes the Separate Approach 

with 𝜃1 = −0.05. All estimators impose a quadratic MTE curve. 
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Figure 4: MTE Curve: Quadratic Model (𝜃2 varied) 

 

 

Note: Average estimates from 100 Monte Carlo simulations on a sample size of 100,000. The 

“Quadratic Model” curve is the true MTE curve. LIV02 denotes Local Instrumental Variables 

with 𝜃2 = 0.02, LIV-02 denotes Local Instrumental Variables with 𝜃2 = −0.02, SEPA02 

denotes the Separate Approach with 𝜃2 = 0.02, SEPA-02 denotes the Separate Approach 

with 𝜃2 = −0.02. 𝜃1 = 0 throughout. All estimators impose a quadratic MTE curve.  
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Figure 5: MTE Curve: Linear Model using Semiparametric Method 

 

 

Note: Average estimates from 100 Monte Carlo simulations on a sample size of 100,000. The 

“Linear Model” line is the true MTE curve. LIV0 denotes Local Instrumental Variables with 

𝜃1 = 0, LIV05 denotes Local Instrumental Variables with 𝜃1 = 0.05, LIV-05 denotes Local 

Instrumental Variables with 𝜃1 = −0.05, SEPA0 denotes the Separate Approach with 𝜃1 =

0, SEPA05 denotes the Separate Approach with 𝜃1 = 0.05, SEPA-05 denotes the Separate 

Approach with 𝜃1 = −0.05. 
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Figure 6: MTE Curve: Quadratic Model using Semiparametric Method (𝜃1 varied) 

 

 

Note: Average estimates from 100 Monte Carlo simulations on a sample size of 100,000. The 

“Quadratic Model” line is the true MTE curve. LIV0 denotes Local Instrumental Variables 

with 𝜃1 = 0, LIV05 denotes Local Instrumental Variables with 𝜃1 = 0.05, LIV-05 denotes 

Local Instrumental Variables with 𝜃1 = −0.05, SEPA0 denotes the Separate Approach with 

𝜃1 = 0, SEPA05 denotes the Separate Approach with 𝜃1 = 0.05, SEPA-05 denotes the 

Separate Approach with 𝜃1 = −0.05. 
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Figure 7: MTE Curve: Quadratic Model using Semiparametric Method (𝜃2 varied) 

 

 

Note: Average estimates from 100 Monte Carlo simulations on a sample size of 100,000. The 

“Quadratic Model” line is the true MTE curve. LIV0 denotes Local Instrumental Variables 

with 𝜃2 = 0, LIV02 denotes Local Instrumental Variables with 𝜃2 = 0.02, LIV-02 denotes 

Local Instrumental Variables with 𝜃2 = −0.02, SEPA0 denotes the Separate Approach with 

𝜃2 = 0, SEPA02 denotes the Separate Approach with 𝜃2 = 0.02, SEPA-02 denotes the 

Separate Approach with 𝜃2 = −0.02. 𝜃1 = 0 throughout. 
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Table 1: Average Estimates from the Linear Model 

 True Value LIV LIV LIV SEPA SEPA SEPA 

𝜃1  0 0.05 -0.05 0 0.05 -0.05 

𝜃2  0 0 0 0 0 0 

MTE Slope 1.00 1.00 -0.33 2.33 1.01 -0.10 2.11 

ATE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

ATT -0.16 -0.16 0.26 -0.58 -0.16 0.17 -0.49 

ATUT 0.16 0.16 -0.26 0.58 0.16 -0.16 0.49 

�̂�1 − �̂�0 0.00 0.00 -0.37 0.37 0.00 -0.27 0.27 

Standard Error ATE  0.02 0.02 0.02 0.02 0.02 0.02 

Standard Error ATT  0.04 0.04 0.04 0.03 0.03 0.03 

Standard Error ATUT  0.04 0.04 0.04 0.03 0.03 0.03 

Standard Error MTE Slope  0.14 0.14 0.14 0.08 0.08 0.08 

Standard Error �̂�1 − �̂�0  0.02 0.02 0.02 0.01 0.01 0.01 

𝑅2 without 𝑋2 included  0.77 0.77 0.77 0.77 0.77 0.77 

𝑅2 when 𝑋2 included  0.77 0.77 0.77 0.77 0.77 0.77 

 

Note: Average estimates from 100 Monte Carlo simulations on a sample size of 100,000. LIV 

denotes Local Instrumental Variables. SEPA denotes the separate approach to MTE 

estimation. 

 

Table 2: Average Estimates from the Quadratic Model (𝜃1 varied) 

 True Value LIV LIV LIV SEPA SEPA SEPA 

𝜃1  0 0.05 -0.05 0 0.05 -0.05 

𝜃2  0 0 0 0 0 0 

ATE 0.67 0.67 0.67 0.67 0.67 0.67 0.67 

ATT 0.67 0.67 1.09 0.25 0.67 0.77 0.57 

ATUT 0.67 0.66 0.24 1.08 0.67 0.57 0.77 

�̂�1 − �̂�0 0.00 0.00 -0.37 0.37 0.00 -0.19 0.19 

Standard Error ATE  0.03 0.03 0.03 0.02 0.02 0.02 

Standard Error ATT  0.04 0.04 0.04 0.03 0.03 0.03 

Standard Error ATUT  0.04 0.04 0.04 0.03 0.03 0.03 

Standard Error �̂�1 − �̂�0  0.02 0.02 0.02 0.01 0.01 0.01 

𝑅2 without 𝑋2 included  0.74 0.73 0.73 0.74 0.73 0.73 

𝑅2 when 𝑋2 included  0.74 0.74 0.74 0.74 0.74 0.74 

 

Note: Average estimates from 100 Monte Carlo simulations on a sample size of 100,000. LIV 

denotes Local Instrumental Variables. SEPA denotes the separate approach to MTE 

estimation. 

  



Table 3: Average Estimates from the Quadratic Model (𝜃2 varied) 

 True Value LIV LIV LIV SEPA SEPA SEPA 

𝜃1  0 0 0 0 0 0 

𝜃2  0 0.02 -0.02 0 0.02 -0.02 

ATE 0.67 0.67 0.77 0.57 0.67 0.90 0.44 

ATT 0.67 0.67 0.77 0.57 0.67 0.90 0.44 

ATUT 0.67 0.66 0.76 0.56 0.67 0.90 0.44 

�̂�1 − �̂�0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Standard Error ATE  0.03 0.03 0.03 0.02 0.02 0.02 

Standard Error ATT  0.04 0.04 0.04 0.03 0.03 0.03 

Standard Error ATUT  0.04 0.04 0.04 0.03 0.03 0.03 

Standard Error �̂�1 − �̂�0  0.02 0.02 0.02 0.01 0.01 0.01 

𝑅2 without 𝑋2 or 𝑋3 included  0.74 0.76 0.71 0.74 0.76 0.71 

𝑅2 when 𝑋2 and 𝑋3 are included  0.74 0.76 0.71 0.74 0.76 0.71 

 

Note: Average estimates from 100 Monte Carlo simulations on a sample size of 100,000. LIV 

denotes Local Instrumental Variables. SEPA denotes the separate approach to MTE 

estimation. 
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