
 
 
 
 
 
 
 
 
 
 
 

UCD CENTRE FOR ECONOMIC RESEARCH 
 

WORKING PAPER SERIES 
 

2020 
 

 
 

Boosting Renewable Energy Technology Uptake in Ireland:  
A Machine Learning Approach 

 
Sanghamitra Mukherjee, University College Dublin 

  
WP20/27 

 
September 2020 

 
 
 
 

UCD SCHOOL OF ECONOMICS 
UNIVERSITY COLLEGE DUBLIN 

BELFIELD DUBLIN 4 



1 
 

Boosting Renewable Energy Technology Uptake 

in Ireland: A Machine Learning Approach 
Sanghamitra Chattopadhyay Mukherjee a, b, 1 

a UCD School of Economics, Newman building, University College Dublin, Dublin 4, Ireland. 
b UCD Energy Institute, O'Brien Centre for Science, University College Dublin, Dublin 4, Ireland. 

 

Abstract: This study explores the impact of socio-demographic, behavioural, and built-environment 

characteristics on residential renewable energy technology adoption. It provides new insights on factors 

influencing uptake using nearest neighbour and random forest machine learning models at a granular spatial scale. 

Being computationally inexpensive and having good classification performance, these models serve as useful 

baseline prediction tools. Data is sourced from an Irish survey of consumer perceptions of three key technologies 

– electric vehicles, solar photovoltaic panels, and heat pumps – and general attitudes towards sustainability, 

innovation, risk, and time. We demonstrate that utility bills, residence period, attitudes to sustainability, 

satisfaction with household heating, and perceptions of hassle have the biggest influence on current uptake. Urban 

areas, typically having better access to information and resources, are likely to see the biggest uptake first. 

Additionally, compatibility of household infrastructure, technical interest, and social approval are the most 

important predictors of potential uptake. These results may inform policy in other early adopter markets as well. 

Overall, policy makers must be cognisant of the stage of adoption their country is currently at. Accordingly, a 

holistic approach to tackling low adoption must include measures that not only enhance adoption capabilities via 

rebates and financial measures, but also support the opportunity and intent to purchase such technologies.   

 

Keywords: Renewable energy technology adoption, consumer behaviour, machine learning, heat pumps, solar 

PVs, electric vehicles 

JEL codes: D1, D9, O3, Q4  

 

1. Introduction  
In accordance with the IPCC’s projections and targets, the European Commission’s revised Renewable 

Energy Directive mandates that EU nations must fulfil at least 32% of their total energy needs with 

renewables by 2030 [1,2]. Much of this transition away from fossil fuels will involve a State-led re-
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organisation of energy production towards renewables and large-scale electrification of heat and 

transport [3]. Part of the transition will also entail the adoption of microgeneration technologies for 

electricity, heat, and transport such as electric vehicles (EVs)2, heat pumps, and residential solar 

photovoltaic (PV) panels nudged along by market interventions to boost their uptake [3]. This work 

aims to deepen understanding of the latter, generating insights into consumer behaviour to facilitate and 

predict the use of these technologies, and outline favourable policy options to boost uptake.   

As EVs, solar PVs, and heat pumps are technologies that have already been tried and tested in Europe, 

they are of specific interest to Irish policy makers. Norway is currently the European leader in EV 

uptake with the highest market share at 64% in January 2020 [4,5]. Meanwhile, Germany has the largest 

PV capacity installed in Europe at 49GWp by the end of 2019 [6]. In 2018, Sweden, Estonia, Finland, 

and Norway had the highest market penetration rates of residential heat pumps at around 25 sales per 

1000 households [7]. Nonetheless, heat pumps still meet only about 5% of residential heat demand 

worldwide [7].  There is, however, a recent push in countries such as the United Kingdom to increase 

their installed heat pump capacity to as much as 19 million units by 2050 to be on target to meet their 

national target of net zero emissions by 2050 [8,9].    

Although the EU as a unit seems well placed to meet the 2030 targets, individual countries are at 

different stages of renewable energy technology (RET) uptake [2,10]. Whilst Germany and Scandinavia 

may be considered RET giants in the European context, most other nation states are merely beginning 

this journey and have some way to go before they catch up [11]. Ireland too is still in the early stages 

with regard to the uptake of EVs, solar PVs, and heat pumps [12,13]. However, an accurate picture of 

adoption remains incomplete, as barriers and drivers relating to the uptake of individual technologies 

and their implications for electricity security are still ill understood, although some work has started to 

emerge in this area in the past year [14–16]. This research provides new insights for the Irish residential 

sector by employing appropriate machine learning models on rich primary data on consumer attitudes, 

socio-demographics and building characteristics, official census, and detailed geo-spatial data, to 

estimate the likely adoption patterns of these energy technologies at scale.  The resulting outputs are 

expected to be useful to policymakers for rolling out incentive packages and necessary infrastructure to 

support the transition to innovative technologies by 2030.  

Machine learning has a wide range of applications in decision-making. Several machine learning 

algorithms are ideally suited for prediction problems as they provide a quick, simple, and intuitive 

approach to identifying trends and patterns in data, which can be continuously improved with 

subsequent training with new data. Machine learning has been applied in the energy domain for several 

 
2 Abbreviations: EV : Electric vehicle; PV: Photovoltaic; RET: Renewable energy technology ; SAPS: Small area 

population statistics; CSO: Central statistics office; IG: Information gain; TP: True positive; TN: True negative; 

FP: False positive; FN: False negative; OOB: Out of bag; WGS: World Geodetic System  
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types of predictive tasks.  Whilst deep learning models such as artificial neural networks, support vector 

machines, and genetic algorithms have been most frequently used, these are generally ‘black-box’ 

models and not easily interpretable [17]. We therefore chose the simpler decision tree, random forest 

and nearest neighbour approaches instead as they produce more interpretable solutions, such that our 

analysis is more meaningful for policy makers [18]. See Ghoddusi et al. (2019) for a detailed discussion 

of alternative machine learning methods and their applications in energy economics.   Table 1 lists the 

relevant economics, management and finance literature that have influenced this work. We have 

grouped these into five subgroups: modelling energy demand/consumption (e.g. buildings) [19–29], 

predicting prices and risk management (e.g. stock markets) [30–37], forecasting problems (e.g. 

exchange rates) [38–42], decision support and policy analysis (e.g. credit card fraud) [43–49], and data 

mining and data management (e.g. social media) [50–54].    

 

Applications List of papers Relevant methods used 

Modelling energy demand/consumption 
 

 

 

 

 

 

 

 
 
 
 
Predicting prices, risk management 
 
 
 
 
 
 
 
 
Forecasting problems 
 
 
 

Walker et al. (2020) 

Al-dosary et al. (2019) 

Chen et al. (2019) 

Chang et al. (2018) 

Vialetto & Noro (2019) 

Wang et al. (2018) 

Zhang et al. (2018)  

Mashhadi & Behdad (2018)  

Ahmad et al. (2017) 

Zagar et al. (2015) 

Tsanas & Xifara (2012) 

 

Durica et al. (2019) 

Dogah & Premaratne (2018) 

Sun et al. (2018) 

Liu et al. (2017) 

Dey (2012) 

Fan et al. (2006) 

Fernández-Rodríguez et al. (2004) 

Aparicio et al. (2002) 

 

Alvarez-Diaz & Mateu-Sbert (2011) 

Biau & D’Elia (2009) 

Alvarez-Diaz (2008)  

Kumar & Thenmozhi (2006) 

Random forest 

Nearest neighbour 

Random forest 

Random forest 

Nearest neighbour 

Random forest 

Random forest 

Random forest 

Random forest 

Nearest neighbour 

Random forest 

 

Decision tree 

Random forest 

Decision tree ensemble 

Decision tree 

Decision tree 

Decision tree 

Nearest neighbour 

Nearest neighbour 

 

Nearest neighbour 

Random forest  

Nearest neighbour  

Random forest 
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Decision support, policy analysis  
 
 
 
 
 
 
 
Data mining, data management  

Pedersen & Satchell (2000) 

 

Mercadier & Lardy (2019) 

Antipov & Pokryshevskaya (2012) 

Bozsik & Kormendi (2011) 

Lin et al. (2017) 

Liu et al. (2015) 

Sohn & Kim (2012) 

De Reyck et al. (2008) 

 

Long et al. (2017) 

Kusuma et al. (2016) 

Jiang et al. (2016) 

Delen et al. (2013) 

Wu et al. (2006) 

Nearest neighbour 

 

Random forest  

Random forest 

Decision tree 

Random forest 

Random forest 

Decision tree 

Decision tree 

 

Random forest 

Decision tree 

Random forest 

Decision tree 

Decision tree 

Table 1 Applications of relevant machine learning algorithms in economics and related domains 

Finally, planning for and facilitating new consumer technologies requires a thorough understanding of 

the adoption and diffusion patterns of these and related technologies into a country’s techno-economic 

system. Roger’s illustration of diffusion as a social learning process is the most cited innovation 

diffusion framework in the literature [55]. A symmetric bell-shaped curve describes the distribution of 

adopters over time whilst a symmetric S-shaped pattern represents the cumulative number of adopters. 

Accumulation of knowledge results from interactions between past and potential adopters. As a result, 

five categories of adopters emerge at various stages of uptake – innovators, early adopters, early 

majority, late majority, and laggards. Figure 1 depicts this behavioural model. Importantly, whilst 

innovators tend to be independent decision-makers, interpersonal interactions have a much more 

profound impact on later adopters. Furthermore, the groups vary in their degree of resistance to change 

due to differing expectations, experience, and psycho-social characteristics. As adoption progresses, 

consumer segments tend to become relatively more price sensitive, older, and of lower social status and 

educational levels. Moreover, later adopters tend not to embrace novelty, have lower levels of product 

knowledge, and have comparatively less expertise in consumption than previous groups. Thus, 

motivations for uptake vary considerably depending on the adoption stage.  
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Figure 1 Technology adoption and technology diffusion curves 

Source: Adapted from Everett Rogers, Diffusion of Innovations, 1962 

The rest of this paper is structured as follows. Section 2 describes the data and 

machine learning algorithms used. Section 3 presents our RET adoption predictions for Ireland and their 

spatial representations. Finally, section 4 provides concluding remarks and policy implications.  

 

2. Data and methods 
This section presents the data and methods used for analysis.  

2.1 Data 
This work uses a combination of datasets derived from primary sources, the Irish census, and a national 

address database. We conducted a nationally representative online survey of Irish households to 

understand consumer perceptions of electric vehicles, solar PVs, and heat pumps, and general attitudes 

towards sustainability, innovation, risk, and time [56]. In this paper, we apply our machine learning 

toolkit to this rich dataset to generate the top predictors for RET adoption. Table 2 shows the 

representativeness of the survey data against key national statistics.  

 

Sample attributes % in survey % in Ireland 

Age 

18-24 

 

11 

 

11 
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25-34 

35-44 

45-54 

55+ 

Gender 

Male 

Female 

Socio-economic status* 

ABC1F50+ 

C2DEF50- 

Region 

Dublin 

Leinster 

Munster 

Connaught/Ulster 

18 

21 

17 

32 

 

49 

51 

 

47 

53 

 

29 

26 

27 

18 

18 

21 

17 

32 

 

49 

51 

 

46 

54 

 

28 

27 

27 

18 

Table 2 Demographic profile: Survey data  

Notes: Ireland uses a system of demographic classification based on the occupation of a household’s chief income 

earner. ABC1 collectively refers to employers, managers, and professionals, whilst C2DEF refers to non-manual, 

skilled manual, and semi-skilled working classes.  

 

We used the small area population statistics (SAPS)3 dataset associated with the 2016 national Census 

of Ireland to generate binary adoption/non-adoption predictions for each small area, based on the key 

predictors identified from the survey and the average characteristics of each small area [57]. 

Encompassing between 80 and 120 dwellings, the SAPS dataset is the most disaggregated level for 

which key socio-demographic data are available for Ireland. All socio-demographic and building 

characteristics that were expected to influence uptake and were available for both the census and the 

survey were included in the model. The remaining psycho-social and behavioural features form part of 

the policy frameworks that we put forward in this paper to facilitate RET uptake. Table 3 summarises 

the variables from the SAPS database that were used to generate predictions.  

We also used geolocations from the Irish GeoDirectory database to plot the predictions on the Irish map 

by small area and census boundaries [58]. The GeoDirectory is a proprietary database developed by An 

 
3 The SAPS dataset published by the Central Statistics Office (CSO) contains data relating to sex, age, marital 

status, families, housing, education, commuting, and occupation, providing an in-depth picture of the socio-

economic conditions for each of 18,641 Small Area communities in Ireland. The CSO has collected Census data 

every five years since 1926.  
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Post and Ordnance Survey Ireland and provides access to 2.2 million commercial and residential 

building addresses. Since this study is for the Irish residential sector, any purely commercial or 

undefined addresses were deleted, resulting in 973,316 residential addresses in our final dataset. Using 

the centroid coordinates for each small area, 17,747 of the 18,641 small areas were geocoded. The final 

dataset merging the survey, census and GeoDirectory databases was pre-processed to address several 

data quality issues. See Appendix A for a detailed discussion on our data cleaning and preparation 

process. This included feature selection to reduce the number of features as well as range normalisation 

and over-sampling of the survey data to avoid distortion of outputs due to measurement of input 

variables on different scales, and to equalise the distribution of the levels of the target variable such that 

the majority class does not dominate our model-based predictions. The model results presented in 

section 3 are for this processed dataset averaged over 100 random draws of the data. 
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Categorical variable Count % 

Miss. 

Card. Mode Mode freq. Mode % 2nd mode 2nd mode freq. 2nd. Mode 

% 

County 

Province 

Occupation 

 

Employment status 

 

Educational level  

Gender 

Family size 

 

Family cycle 

 

Property type 

Building era 

18,641 

18,641 

18,641 

 

18,641 

 

18,641 

18,641 

18,641 

 

18,641 

 

18,641 

18,641  

0 

0 

0 

 

0 

 

0 

0 

0 

 

0 

 

0 

0 

26 

4 

4 

 

4 

 

5 

2 

4 

 

4 

 

3 

6 

Dublin 

Leinster 

Managerial, technical, or 

professional 

At work 

 

Secondary 

Female 

Families with up to 2 

children 

Single- or multi-adult 

household 

House or bungalow 

2001-10 

4,882 

5,144 

11,810 

 

17,062 

 

13,849 

10,798 

16,304 

 

9,369 

 

16,900 

8,302 

26.19 

27.60 

63.35 

 

91.53 

 

74.29 

57.93 

87.46 

 

50.26 

 

90.66 

44.54 

Cork 

Dublin 

Others 

 

Unemployed, student, 

home-keeper, or carer 

Third level 

Male 

Families without children 

Parent(s) with children 

 

Flat or apartment 

Pre-1980 

2,186 

4,882 

4,314 

 

1,231 

 

3,527 

7,843 

2,277 

 

7,918 

 

1,733 

6,435 

11.73 

26.19 

23.14 

 

6.60 

 

18.92 

42.07 

12.22 

 

42.48 

 

9.30 

34.52 

(a) Categorical model inputs  

Continuous Variable Count % Miss. Card. Min 1st Qtr. Mean Median 3rd Qtr. Max Std. Dev. 

Number of children  18,641 0 270 0 60 90.26 87 117 552 43.74 

Number of bedrooms 18,641 0 5 1 5 4.84 5 5 5 0.61 

(b) Continuous model inputs before normalisation 

Table 3 Summary statistics: model inputs from CSO SAPS database  
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2.2 Machine learning algorithms 
We used two non-parametric supervised machine learning algorithms for our binary classification 

predictive analysis: the nearest neighbour and the random forest models. 0/1 corresponds to non-

adopter/adopter classifications. All analyses were conducted using R statistical software [59]. We 

describe each algorithm in turn below. 

2.2.1 Similarity-based learning: the nearest neighbour algorithm 

The inductive bias underpinning similarity-based algorithms is that similar instances have the same 

target feature values. Each instance in the dataset is mapped to a point in the feature space based on the 

values of its descriptive features. The distance between two points in the feature space measures the 

similarity of the descriptive features of the two instances. We used the Euclidean distance to compute 

the distances between features. The Euclidean distance between two instances a and b in an m-

dimensional feature space is defined as in Eqn. (1).   

!"#$%&'()((, ,) = /0(([%] − ,[%])!
"

#$%
																																																																																																	!5). (1) 

The steps to implement the algorithm are listed below. 

Algorithm 1: Nearest Neighbour [60]. 

1. Define a set of training instances and a query to be classified 0/1. 

2. Iterate across instances in memory and find the instance that is at the shortest distance from the 

query position in the feature space. 

3. Make a prediction for the query equal to the value of the target feature of the nearest neighbour.  

When the algorithm searches for the nearest neighbour using Euclidean distance, it partitions the feature 

space into a Voronoi tessellation and decides which Voronoi region the query belongs to. The Voronoi 

region belonging to a training instance defines the set of queries for which the prediction will be 

determined by that training instance. The algorithm creates a set of local models, or neighbourhoods, 

across the feature space, each model being defined by a subset of the training dataset. It then creates a 

global prediction model based on the full dataset as determined by the decision boundary4 within the 

feature space.  

 
4 The decision boundary is the boundary between regions of the feature space in which different target levels will 

be predicted. It is generated by aggregating the neighbouring local models that make the same prediction. 
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The nearest neighbour algorithm is sensitive to noise as any errors in the labelling of training data results 

in errors in local models and predictions. To reduce dependency on one individual instance, we used 

the k-nearest neighbour algorithm. This model predicts the target level with the majority vote from the 

set of k nearest neighbours to the query q, as described in Eqn. (2). Eqn. (3) defines a distance weighted 

k nearest neighbour approach. The contribution of each neighbour to the prediction is a function of the 

inverse distance between the neighbour d and the query q, as in %
&#'((*,&)!.  

8-(5) 	= 09(:# , $)
-

#$%.∈01210'(()

345"36

																																																																																																																!5). (2) 

8-(5) = 0 1
&%<:(5, &)! × 9(:# , $)																										

-

#$%.∈01210'(()

345"36

																																																													!5). (3) 

2.2.2 Information-based learning: the decision tree algorithm 

The nearest neighbour algorithm is likely to be affected by the curse of dimensionality [61,62]. 

Information-based learning automatically prunes the data and builds predictive models by identifying 

and splitting the dataset into pure sets based on the most informative features first and may therefore be 

more suitable for high-dimensional data when prediction speeds are important [63]. Figure 2 illustrates 

a decision tree.  
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Figure 2 Sample decision tree showing root, interior, and leaf nodes  

The steps to implement the algorithm are listed below. 

Algorithm 2: Decision Tree [64]. 

1. Define a set of training instances and a query to be classified 0/1. 

2. Conduct a test at each root and interior node on each of the query’s descriptive features.  

3. Specify a predicted classification for the query at each leaf node.  

The decision tree is built in a recursive, depth-first manner, using entropy to test the purity of a set. A 

high outcome probability for a random selection from the set corresponds to low entropy, whilst a low 

probability corresponds to high entropy. We used the Shannon’s entropy model presented in Eqn. (4), 

which is a weighted sum of the logs of the probabilities of each possible outcome.  

?(:) = −0(@(: = %)
0

#$%
× $AB!(@(: = %)))																																																																																											!5). (4) 

The algorithm then uses information gain as a measure of the reduction in the overall entropy by testing 

on the target feature, calculated as in Eqns. (5-7). 

Step 1: Calculating the entropy for a dataset with respect to the target feature: 

?(:, D) = − 0 E@(: = $) × $AB!F@(: = $)GH 																																																																								!5). (5)
0∈01210'(()

 

Where levels(t) is the set of levels in the domain of the target feature t, and P(t = l) is the probability of 

a randomly selected instance having the target feature level l.  

Step 2: Computing the entropy remaining after partitioning the dataset on descriptive feature d. 

J'K(&,D) = 0 |D&$0|
|D| × ?(:, D&$0)																																																																																								!5). (6)

0∈01210'(&)
 

Where |8"#$||8|  denotes the weighting determined by the size of each partition, and ?(:, D&$0) denotes the 

entropy of partition D&$0. A larger partition contributes more to the overall remaining entropy. 

Step 3: Calculating the information gain (IG) from splitting the dataset D using the feature d. 

NO(&, D) = ?(:, D) − J'K(&,D)																																																																																																												!5). (7) 

The model makes a predicted classification when one of three situations occur: 

1. All instances have the same classification: model returns a leaf node tree with that classification.  

2. No features left to test: model returns a leaf node tree with the majority class as its classification. 
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3. The dataset is empty: model returns a leaf node tree with the majority class at the parent node.  

We used decision trees as part of an ensemble, viz., Random Forests, first proposed in Breiman (2001) 

[65]. Random forests make predictions based on a set of induced decision tree models by returning the 

majority vote or median.  

2.2.3 Model evaluation metrics 

We employed a k-fold cross validation experiment implying that k separate evaluation experiments were 

performed. In the first evaluation experiment, the data in the first fold was used as the test set, and that 

in the remaining k - 1 folds were used as the training set. This process was repeated 10 times, i.e. k=10. 

Figure 3 illustrates the model training, testing, and evaluation process.  

 

Figure 3 Workflow for predictive models 

We implemented multiple performance measures as part of our evaluations to avoid erroneous 

judgements on the real performance of our models. Eqns. (8-11) list our measures of choice.  

Q$(<<%R%#(:%A)	(##"J(#S = 	T"K,'J	AR	#AJJ'#:	UJ'&%#:%A)<VA:($	UJ'&%#:%A)<	

= 	 (V@ + VT)
(V@ + VT + X@ + XT) 																																																																																										!5). (8) 

Z'#($$ = V@
(V@ + XT) 																																																																																																																																	!5). (9) 

\]'J(B'	#$(<<	(##"J(#S9: = 1
|$']'$<(:)| 0 J'#($$0

0∈01210'(()
																																																							!5). (10) 

\]'J(B'	#$(<<	(##"J(#S;: = 1
1

|$']'$<(:)| ∑
1

J'#($$#0∈01210'(()
																																																			!5). (11) 
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Although classification accuracy is one of the most intuitive metrics, it is sensitive to class imbalance. 

In contrast, average class accuracy corrects for class imbalance by computing the accuracy of each class 

separately and averaging the results (using either arithmetic or harmonic mean) thus allowing each class 

to have equal weight when computing the metric. Hence, we present these first. True positive (TP), true 

negative (TN), false positive (FP), and false negative (FN) are components of a confusion matrix as 

illustrated in Figure 4. TP is an outcome where the model correctly predicts the positive class, TN is an 

outcome where the model correctly predicts the negative class, FP (also called a type 1 error) is an 

outcome where the model incorrectly predicts the positive class when it is actually negative, and FN 

(also called a type 2 error) is an outcome where the model incorrectly predicts the negative class when 

it is actually positive.     

 

Figure 4 Structure of a confusion matrix 

 

3. Results  
This section reports our model predictions for RET uptake in Ireland and their spatial representation.  

3.1 Model predictions 

We ran the algorithms for each of our two target variables – adopters of RET and potential adopters of 

RET5. We chose not to re-run the models for individual technologies (i.e. EVs, solar PVs or heat pumps) 

due to low sample sizes for each subgroup. The train and test sets were split in the ratio 3:1. We did a 

10-fold cross validation on the train sets and then evaluated on the test sets.  

3.1.1 Similarity-based learning: the nearest neighbour algorithm 

We ran the k-nearest neighbour algorithm using two independent variables – number of children and 

years of education. These were selected based on the feature selection process detailed in Appendix A. 

 
5 A potential adopter is defined as a survey respondent who either owns an RET (and are thus likely to purchase 

more RETs in the future) or demonstrated a strong interest in purchasing one (by self-proclaiming that they were 

likely to purchase one in the future). An adopter is defined as a survey participant who owns at least one type of 

RET. Both adopter and potential adopter are binary outcome variables, i.e. they take on a value of 0 for non-

adoption and a value of 1 for adoption. 
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The optimal value of k was based on the average class accuracy for each value of k tested. Figure 5 

plots this selection process. Tables 4 and 5 present the confusion matrices and model evaluation metrics 

for dependent variables adopter and potential adopter, respectively. At between 0.5 and 0.6, the average 

class accuracy metrics are not too high. However, this is unsurprising due to limitations in data 

availability.  

 
(a) Adopter (optimal k = 1) 

 
(a) Potential adopter (optimal k = 1) 

 Figure 5 Optimal k values for the k-nearest neighbour algorithm using average class accuracy 

 

k = 1 Predicted Evaluation metrics 

Actual  Non-adopter Adopter Average class accuracy (arithme
tic mean) 
= 0.608 

Non-adopter 116  135 Average class accuracy (harmon
ic mean) 
= 0.573 

Adopter 62 189 Classification accuracy 
= 0.608 

Table 4 Confusion matrix and evaluation metrics, k-nearest neighbour, Adopter 

 

k = 1 Predicted Evaluation metrics 

Actual  Potential non-adopter Potential adopter Average class accuracy (arithmetic 
mean) 
= 0.53 

Potential non-adopter 120 80 Average class accuracy (harmonic 
mean) 
= 0.521 

Potential adopter 108 92 Classification accuracy 
= 0.53 

Table 5 Confusion matrix and evaluation metrics, k-nearest neighbour, Potential adopter 

 

3.1.2 Information-based learning: the decision tree algorithm 

We built a decision tree-based ensemble model, the random forest model, using the top 30 features (as 

identified in the feature importance plots for the full dataset) that had corresponding data available in 
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the SAPS dataset6.  The optimal number of trees generated, ntree, was calculated by minimising the out 

of bag (OOB) error rate7. Figure 6 illustrates the selection process for the optimal number of features in 

the construction of each tree, mtry8, for the corresponding ntree values.   

 
(a) Adopter (optimal mtry=6, ntree=100) 

 
(b) Potential adopter (optimal mtry=3, 

ntree=900) 

Figure 6 Optimal mtry and ntree values for training a random forest model for the CSO dataset 

The feature importance plots for the CSO dataset are presented in Figures 7 and 8. Mean decrease in 

Gini impurity was used to measure information gain to rank variables in terms of importance; the 

absolute values are not important. Tables 6 and 7 present the relevant confusion matrices and model 

evaluation metrics. The models perform well, with average class accuracy figures of 89% and 83% for 

adopter and potential adopter, respectively9. Due to better model performance than the k-nearest 

neighbour approach, we investigate the random forest model further in Section 3.2 where we illustrate 

the spatial representations of the random forest model predictions. For reference, we also present the 

feature importance plots for the full dataset in Figures 9 and 10 as we use insights from these for our 

policy discussion later.  The corresponding confusion matrices are presented in Tables 8 and 9. Across 

 
6 Refer to Table 4 for the full set of variables. The variables children over 17 and children under 17 were combined 

to form a new variable - the total number of children - due to differences in the cut-off age used to determine who 

a child is in the survey and CSO datasets.  

7 The OOB error rate is equal to the number of points in the training set that were misclassified divided by the 

total number of observations. 

8 These features were selected at random. The default value for classification is sqrt(number of features). 

9 Due to concerns around using random forests to learn imbalanced data [78], we ran the models on oversampled, 

undersampled, and weighted data. Undersampling and weighting produced slightly lower classification accuracies 

than oversampling. Although oversampling risks overfitting the data, undersampling is prone to losing important 

information in the majority class [79]. Since our dataset was small to begin with, we decided that oversampling 

was the better solution in our context.   
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all models, predictions for non-adopters were better than for adopters, implying that false negatives 

were minimised.  

 

 

Figure 7 Feature importance as measured by a Random Forest, CSO dataset, Adopter  

 

 

Figure 8 Feature importance as measured by a Random Forest, CSO dataset, Potential adopter 

 

Random forest Predicted Evaluation metrics 

Actual  Non-adopter Adopter Average class accuracy (am) 
= 0.892 

Non-adopter 238 13 Average class accuracy (hm) 
= 0.889 
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Adopter 41 210 Classification accuracy 
= 0.892 

Table 6 Confusion matrix and evaluation metrics for the Random Forest model, CSO dataset, Adopter 

 

Random forest Predicted Evaluation metrics 

Actual  Potential non-adopter Potential adopter Average class accuracy (am) 
= 0.838 

Potential non-adopter 175 25 Average class accuracy (hm) 
= 0.836 

Potential adopter 40 160 Classification accuracy 
= 0.838 

Table 7 Confusion matrix and evaluation metrics for the Random Forest model, CSO dataset, 

Potential adopter 

 

 

Figure 9 Feature importance as measured by a Random Forest, Full dataset, Adopter 
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Figure 10 Feature importance as measured by a Random Forest, Full dataset, Potential adopter 

 

Random forest Predicted Evaluation metrics 

Actual  Non-adopter Adopter Average class accuracy (am) 
= 0.976 

Non-adopter 251 0 Average class accuracy (hm) 
= 0.976 

Adopter 12 239 Classification accuracy 
= 0.976 

Table 8 Confusion matrix and evaluation metrics for the Random Forest model, Full dataset, Adopter 

 

Random forest Predicted Evaluation metrics 

Actual  Potential non-adopter Potential adopter Average class accuracy (am) 
= 0.91 

Potential non-adopter 187 13 Average class accuracy (hm) 
= 0.909 

Potential adopter 23 177 Classification accuracy 
= 0.91 

Table 9 Confusion matrix and evaluation metrics for the Random Forest model, Full dataset, Potential 

adopter 
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Overall, the model for the full dataset identified residence period, knowing other RET users, 

sustainability, compatibility, being an EV fan, utility bills, satisfaction, the hassle factor, and county as 

the key predictors for current adoption, and compatibility, being an EV fan, social approval, residence 

period, sustainability, the hassle factor, satisfaction, utility bills, and county as the top predictors for 

potential adoption. Thus, behavioural factors featured prominently for both current and potential uptake. 

We used the socio-demographic, locational and building characteristics identified from our predictions 

for the full dataset for our mapping exercise that follows. 

 

3.2 Spatial patterns of RET adoption  
We used Esri’s cloud-based GIS mapping software, ArcGIS Online [66], to map the random forest 

model predictions by small area and county boundaries and corresponding point density plots for 

adopters and non-adopters classified by standard deviations. We used the standard World Geodetic 

System (WGS84) reference coordinate system for all maps [67]. Figure 11 depicts a reference map of 

Ireland showing the major cities and road network in Ireland. Dublin, Cork, Limerick, Galway, and 

Waterford are the largest and most populous cities in Ireland in that order. The road network connects 

the capital city, Dublin, with other major Irish towns and cities.  

 

Figure 11 Map of Ireland showing small area centroids, major cities, and road network 
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Figures 12-13 depict the spatial representations of our predicted distributions for variables adopter and 

potential adopter, respectively. We do not present maps of adoption by socio-demographic 

characteristics as these did not show any significant variation across regions. This homogeneity in 

socio-demographics is expected as average values were used to characterise areas. Being a reasonably 

small country with a small population10, regional average values are likely to be similar.  

 

 
(a) Predicted values of adopter/non-adopter 

classifications by small area boundaries 

 
(b) Predicted values of adopter/non-adopter 

classifications at county level 

 
(c) Point density plots for current RET adopters 

by small area centroids  

 
(d) Point density plots for current RET non-

adopters by small area centroids 

 

 
10 The Republic of Ireland has a population of 4.9 million and a land area of 70,273 km² divided into four 

provinces encompassing 26 counties.  
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Figure 12 Adopter and non-adopter classifications, Random forest algorithm, Adopter 

 
(a) Predicted values of adopter/non-adopter 

classifications by small area boundaries 

 
(b) Predicted values of adopter/non-adopter 

classifications at county level 

 
(c) Point density plots for potential RET 

adopters by small area centroids 

 
(d) Point density plots for potential RET non-

adopters by small area centroids 

 

Figure 13 Adopter and non-adopter classifications, Random forest algorithm, Potential adopter 

 

For our predicted variable Adopter, the model predicted that adopter regions are located primarily in 

the north. The density plots detected adopter clusters around Dublin and several other towns in the 

province of Leinster. Most non-adopters seem to cluster around the populous regions of Dublin, Cork, 

Limerick, and Galway, rather than Kilkenny and the north-east, regions where adopters appear to 

cluster. For our predicted variable Potential adopter, the model predicted all regions as being potential 

RET adopters except for areas in the west of the country surrounding County Galway and the east of 
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the country surrounding Dublin city. Potential adopter clusters were detected around Dublin, Cork, and 

Limerick. Potential non-adopter clusters appeared primarily around Dublin, Cork, Limerick, Waterford, 

and Galway. 

 

4. Discussion  
From the key predictors identified in Section 3.1, it appears that RET adopters are not only better 

educated and in higher professional jobs, but are also quite satisfied with their household insulation 

(and thus utility bills) and heating/cooling infrastructure11 12 before they adopt an RET. Besides, 

adoption is linked to lower residence periods which may either correspond with newer houses that have 

the infrastructure in place to install new technologies, or point to the fact that younger generations are 

more willing to adopt RETs as they are typically more technically competent and/or more likely to 

accept a higher level of uncertainty surrounding new technology. Age, however, did not figure as a key 

predictor in the feature importance plots. Furthermore, families with children are more likely to 

currently adopt RETs. In terms of attitudinal predictors, sustainable behaviours appear to have had a 

negative influence in the recent stages of adoption implying that current adopters are less 

environmentally minded than non-adopters. Finally, current adopters display technical inclinations in 

terms of in-depth knowledge of EVs, for instance, and enjoy personal contact with other RET users.  

These observations imply that the decision to adopt has thus far not been an outcome of dissatisfaction 

with previous infrastructure, high energy bills, or environmental concern, but has perhaps stemmed 

from an interest in new technology, an ability to pay for them, and a need based on the perceived benefits 

of RET for a larger family, maintaining lower utility bills and/or the positive experiences of other RET 

users in adopters’ own social circles. Importantly, although social approval has not figured in current 

uptake in any meaningful way, it was predicted to play a major part in potential uptake. This may 

indicate that the Irish customer base is presently transitioning from the early adopter to the early 

majority stage, as peer-to-peer communication is much more influential in the later phases of adoption 

when opinion leadership diminishes markedly [55]. Overall, it is important to note that the motivations 

for purchasing a technology change as technologies continuously evolve and the customer base matures 

[68]. Therefore, any new market based instruments must be flexible and reflect the changing needs of 

 
11 This may be because good insulation and infrastructure are necessary prior to installing RETs such as heat 

pumps. Any additional heating and cooling benefits that these technologies provide add to the utility derived from 

owning them but are not influential in the decision to adopt.  

 
12 We confirmed the direction of effect of all variables using a logistic regression model. See Appendix B for 

model outputs.   
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the buyer [69]. Like social processes, sustainable behaviours may co-evolve with RET take-up rather 

than play a static role over time [70]. Moreover, given that sustainability and social influence are often 

intertwined, policy design may also engage thought leaders from previous rounds of uptake to 

encourage the diffusion of environmental behaviours in subsequent stages [68]. These insights should 

be useful to policymakers as more and more governments now seek to apply behavioural insights to 

inform policy and improve public services [71,72].  

Spatial dependence is a recognised phenomenon in economic and social activity [73,74]. Spatial 

proximity is a key determinant of RET adoption, perhaps in the way it brings other RET users (and, 

thus, information and influence) and public infrastructure closer to the adopter. Our spatial analysis 

unearthed several insights for planners and policy makers, the implications of which are two-fold. 

Firstly, the maps for Adopters (Figure 12) illustrated the current distribution of RET adopters across the 

country. This includes regions that are currently adopting and those that are likely to adopt in the 

immediate future based on the average characteristics of current adopters. Current adopters are located 

primarily around Dublin, Kilkenny, and the north-east. Furthermore, clusters of adopters appear quite 

prominently in the province of Leinster. This makes sense as Leinster has the highest population [75] 

and is home to more people with high disposable incomes and third level education than other parts of 

Ireland [76]. Planners can compare uptake in these high uptake regions with the availability of relevant 

electricity grid infrastructure to plan for upgrades to strengthen capacity where needed. In contrast, most 

current non-adopters seem to cluster around Dublin, Cork, Limerick, and Galway. Dublin figures in 

both adopter and non-adopter clusters probably due to its high centred population and being the largest 

city in terms of size. Although Cork, Limerick, and Galway are the next biggest in size, they house far 

fewer people than Dublin [77] and, therefore, these cities are identifiable as non-adopter clusters 

possibly due to very low uptake numbers overall and sparse distribution of adopters. Policymakers have 

a role here to devise incentive packages to encourage uptake in these areas, such that no region is left 

behind due to barriers such as a lack of access to necessary resources or information. Low uptake 

regions may also indicate areas where idle resources could be re-structured or re-allocated.    

Secondly, the maps for Potential adopters (Figure 13) illustrated RET adoption based on the average 

characteristics of potential adopters in the survey. The results showed that with supportive policies and 

suitable infrastructure, most regions are likely to take up RET. This is good news for Ireland’s 

environmental commitments as it will enable the nation to move to a more sustainable future in the next 

decade and help meet Ireland’s 2030 renewable energy targets. Overall, it is no surprise that potential 

adopter clusters primarily surround populous urban locations such as Dublin and Cork. Adopter 

densities are tied to population densities and accessibility of information and resources (likely better in 

urban regions), as well as connectivity with major towns, especially for EVs, which cannot be used 

without an extensive road network and access to public charging facilities typically located on-street, 

in car parks, or at filling stations alongside major roads and motorways. Further research is needed on 
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the rural-urban divide in both current and potential RET uptake to analyse the presence of regional 

disparities. Either way, policies that aim to encourage uptake may need to be area-specific to be 

effective. We present the policy implications emanating from this research below.  

Policy implications 

EVs, solar PVs, and heat pumps are by this stage reasonably well established in Ireland. Owing to the 

importance of social processes identified in this work for future uptake, it is possible that these 

technologies are now in the tail end of the ‘early adopter’ stage, moving into the ‘early majority’ phase 

in the next five years. This knowledge is crucial as the early majority has very different needs and 

expectations compared with innovators and early adopters. Whilst innovators thrive on significant 

change and are typically wealthier and more willing to bear risk and higher levels of uncertainty, the 

early majority are generally not technology enthusiasts, and seek greater reliability, consistency, and 

predictability in the products they purchase. Thus, although most consumers would still accept a period 

of acclimatisation to a new technology, they would expect technologies to work efficiently and in a 

cost-effective manner without the need to understand the nuances of ever-changing operation and 

maintenance. Accordingly, familiarity with novel technologies is key, and support systems must already 

be in place that enhance RET buying, ownership, and after-sales experiences. Hence, an efficient policy 

design during this transition phase needs to enhance not only the capability of consumers in terms of 

their knowledge and financial ability to purchase but also their intent (and, thus, their willingness) and 

opportunity (and thus, the choices presented to them) to purchase and retain RET. As illustrated in 

Figure 14, we propose a novel three-pronged policy framework for the design of strategies to boost 

overall RET uptake, based on our predictive modelling and behavioural insights.  

 

 

Figure 14 Intent, Capability, and Opportunity: A holistic approach to boosting RET uptake 
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Firstly, regarding capability, the early majority is typically more price sensitive than the early adopters. 

Thus, for technologies that are still relatively expensive, consumers would inevitably assess value-for-

money primarily. Consequently, financial incentives based on consumer preferences that either 

subsidise RETs and/or tax fossil fuel consumption may make RETs significantly more attractive for the 

early majority than for any previous group of adopters. In addition, flourishing, viable and independent 

second-hand dealerships, such as those that sell used EVs refurbished to a recognised industry standard, 

would have greater appeal for this group than any others. It is favourable for EV ownership that 

standardised charging is becoming increasingly commonplace in Europe. However, the price to charge 

away from home must also remain reliable and consistent across the charging network. For solar PVs 

and heat pumps, homeowners have traditionally installed these technologies as part of major home 

renovations on the advice of building contractors. Most current adopters know very little about the make 

and operation of their installed units and rely largely on installers to guide their use and maintenance. 

Thus, when technologies are complex and/or the user base is not highly technically competent, the 

capability to adopt is also influenced greatly by the support of advisers.  Overall, financial incentives 

alone are not sufficient to encourage adoption; to enhance the capability to purchase and retain RET, 

not only must upfront costs be made financially manageable, but the pace at which advice and assistance 

on installation, use and maintenance is delivered must also be quick, consistent and reliable.       

Secondly, the notion of opportunity in purchase decisions relates to the accessibility and availability of 

RET-related information and infrastructure, as well as the opportunity to trial innovations before 

committing to purchase long-term. An extensive public charging network equipped with chargers of 

varying speeds and capacities within reasonable reach of a consumer would, for instance, encourage 

EV take-up by easing anxieties surrounding long distance commutes. It would also make EVs more 

accessible to communities without home charging facilities, such as for residents of compact cities and 

rental accommodation. Other opportunity-enhancing targets could include reducing queuing at public 

chargers to a minimum by introducing a tiered payment scheme, organising free technology 

demonstrations at regional trade fairs, extending product guarantees for new customers, and facilitating 

low-cost returns and swaps to promote trialability.  Additionally, it is important to note that whilst most 

innovators and early adopters would base their purchase decisions on opportunities to actively 

contribute to the development of innovations, the early majority will prefer ready-made solutions and 

rely much more on social processes for information, inspiration and reassurance. Accordingly, 

opportunities for adoption are likely to be created more and more by word-of-mouth and visibility 

within social circles. In that regard, strengthening brand reputations would help establish trust in these 

technologies, whilst encouraging peer-to-peer recommendations would help provide a platform for the 

sharing of personal experiences to assist potential RET users in such complex purchase decisions.                                                          

Finally, RET adoption entails significant behavioural change. Charging an EV, for instance, requires a 

vastly different approach to vehicle management than filling a conventional car at a gas station. 
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Moreover, the early majority would avoid extensive research to understand the nuances of EV charging 

and required changes in their driving behaviours. Therefore, rather than more charging facilities, the 

average EV owner may now seek a charging system that is simpler to navigate such that the 

practicalities of ownership are made significantly easier. Thus, once capability and opportunity are 

catered for, a consumer’s intent to purchase may depend on the range of accompanying supports 

available to ease their transition to new technologies.  Again, peer effects will play a prominent role for 

the early majority as most purchase decisions at this stage are based on the trust established from the 

decision-making of previous adopter segments. Moreover, social status may now be determined by 

being one of many RET owners rather than being one of few, which seemed to be a driving force in the 

niche innovator and early adopter groups. Hence, the spread of influence may well overtake the spread 

of knowledge when customers seek a low risk buying experience. Overall, along with policies that ease 

economic constraints and resolve accessibility issues for a diverse customer base, the transition to RETs 

must be made as easy as possible to strengthen the intent to purchase and prevent push back.       

 

5. Conclusion 
This work has used a novel dataset derived from primary survey data, and secondary census and geo-

location data to examine RET adoption at a granular spatial scale in Ireland. We defined RET users as 

residential consumers who own either an EV, solar PVs, or a heat pump in their homes. We developed 

RET adoption models based on machine learning approaches to predict and map both current and 

potential adoption patterns. Current adoption was based on the characteristics of current Irish RET 

adopters whilst potential adoption included, in addition, the attributes of survey respondents who do not 

currently own an RET but indicated a strong interest in purchasing RETs in the near future. Our 

methodological framework was particularly valid and useful as we had an imbalanced dataset to start 

with, which would normally produce biased results without suitable modifications such as oversampling 

and the application of appropriate predictive tools that can handle such computational adjustments. 

However, since every machine learning technique has its unique strengths and weaknesses, we tested a 

combination of approaches to analyse our data. The k-nearest neighbour and the random forest models 

were deemed the most informative for our context. Importantly, both k-nearest neighbours and random 

forests are easily interpretable, making these algorithms most suitable in policy settings. Based on the 

superior performance metrics of the random forest approach, we chose this model for our final 

predictive task of spatial analysis. The overarching aim of this work is to inform the design of policy 

incentives to encourage uptake in low uptake regions, and to help plan for any necessary infrastructure 

upgrades where a mismatch of capacity and technology use is identified. 

Both current and potential RET adoption were found to be influenced by several financial and non-

financial factors, including utility bills, occupation, residence periods, and the presence of other RET 
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users in one’s social circle. Several behavioural features such as perceptions of hassle, technical interest, 

and sustainability were also identified as being key to adoption. Interestingly, social approval appeared 

to play an important role in potential uptake but not in current uptake, implying that the Irish RET 

customer base is probably in transition, moving from the early adopter to the early majority phase. Thus, 

although the prospects for take-up look promising, the chasm between these two stages must be bridged 

before EVs, solar PVs and heat pumps can reach more widespread acceptance. As RETs become 

cheaper and markets for technologies become more open and increasingly decentralised, the difficulties 

in optimising resource use, capturing market niche, and maintaining momentum can be facilitated by 

holistically addressing consumers’ intent, capability, and opportunity to purchase.  Our study lays the 

foundation for understanding RET adoption in Ireland, by pinpointing regions where policy incentives 

and infrastructure upgrades are specifically required and demonstrating that efficient policy design can 

help boost adoption in low-uptake regions by focussing on the key predictors identified for incentive 

development. Our spatial findings should also assist planners in their audit of power grids and public 

EV charging facilities, such that RET users can have reliable access to key infrastructure without having 

resources lying idle for significant periods of time. Importantly, since this work utilised consumer 

characteristics, other early adopter markets that lack consumer behaviour data could use this 

information to inform their own RET uptake management policies.  

Limitations 

There are several limitations to our work. Firstly, our dataset for generating predictions was derived 

from three separate data sources that were merged to fit the project objectives. This was a non-trivial 

exercise and some information may have been lost in the process such as when recategorizing variables 

to equalise feature levels across datasets.  

Secondly, there were several granularity issues with the survey dataset that we had to contend with. The 

key issues were low sample sizes and the lack of geo-location information. We corrected the lack of 

geo-location data by merging information from external datasets, viz. the 2016 census database and a 

bank of addresses from the Irish GeoDirectory. Since we did not have any census information at the 

individual level, we used small area boundaries as our lowest level of disaggregated data. The 

GeoDirectory provided geographic coordinates for all 18,641 small area centroids. The characteristics 

of each area were defined by a measure of central tendency, the mode, that is, the highest category 

reported within each small area. However, no corrections could be made for low sample sizes for 

individual technologies and thus, we had to resort to studying overall RET uptake rather than explore 

the adoption patterns for specific technologies.   

Thirdly, any predictive modelling has several limitations. When projecting into the future with past 

data, the conditions prevailing such as those surrounding awareness and attitudes are implicitly assumed 

to continue, which is highly unlikely beyond a certain timeframe. Hence, to guarantee a reasonable level 
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of accuracy, our predictions relate only to the very near future, not beyond 5 years at most. Moreover, 

it is impossible to predict human behaviour fully without knowing all possible reasons to adopt RETs. 

Also, the occurrence of external shocks such as extreme and rare events are inherently unpredictable. 

An example of this is the recent impact of the SARS-CoV-2 pandemic on carbon emissions and 

behaviour. These events could potentially disrupt the predicted adoption patterns. Our models are, thus, 

not meant to be a general prediction method and our predictions are primarily useful as a baseline for 

policy development for this specific case study if the limitations of modelling are acknowledged and 

understood. The models would be best used in conjunction with up-to-date real-world adoption data; it 

is crucial to review and revise the model-based classifications as and when new data become available.  

Fourthly, our analysis reveals the presence of several RET adopter clusters defined by geographic 

location. However, clusters could also be experienced in time influenced by common exposures. Thus, 

for a more comprehensive picture of the regional trends in RET take-up, a spatio-temporal modelling 

approach is needed.   

Finally, RET take-up will be fundamental to, and yet only a fragment of, any large-scale climate 

response. Any micro-level strategies discussed here may have insufficient impact alone and must be 

considered only as part of a larger environmental policy package. Overall, nudging individual 

behavioural changes through market mechanisms such as financial signals and social cues must be 

coupled with wider State-led macro-measures that impact large-scale operations such as power 

generation and technology development to have any measurable impact on global carbon emissions.  

Further work 

Our predictive modelling should help utility companies, manufacturers, planners, and policy makers 

estimate and visualise the spread of RET uptake in Ireland in the very near future. Consequently, this 

should help them formulate suitable policies to boost utilisation in low uptake areas and devise strategies 

to revamp infrastructure in high uptake areas.  

Further work will include the collection of more detailed survey data with larger sample sizes for EV, 

solar PV and heat pump adopters such that similar analyses could be performed for individual 

technologies.  The updated survey would require collection of locational data such as respondents’ 

postal codes such that a more accurate representation of the spatial patterns of adoption and the 

relevance of socio-demographics can be attained. These would eliminate the need to use average 

regional values to generate predictions, thereby providing a more accurate picture of the heterogeneity 

in uptake such as the Irish rural-urban divide alluded to earlier. Furthermore, with updated survey data, 

a more detailed policy analysis examining adoption scenarios with varying levels of financial and non-

financial measures could be carried out.  
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However, until any new data becomes available, our plan for next steps is two-fold. We will first map 

our current predictions against real-world maps depicting the location of existing power grids, EV 

charging stations, and the housing stock, whereby infrastructural issues such as the possibility of power 

failure due to high regional uptake, the impact of excessive queuing times at public charge points on 

regional take-up, and potential low adoption due to market failures in rental accommodation, can be 

explored. We will also attempt to combine our spatial analysis with a temporal diffusion model such 

that spatio-temporal predictions can be calculated for RET uptake in Ireland.   
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