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Abstract

Regressions using data with known locations are increasingly used in empirical
economics, and several standard error corrections are available to deal with the fact
that their residuals tend to be spatially correlated. Unfortunately, different corrections
commonly return significance levels that vary by several orders of magnitude, leaving
the researcher uncertain as to which, if any, is valid. This paper proposes instead an ex-
tremely fast and simple procedure to derive standard errors directly from the spatial
correlation structure of regression residuals. Importantly, because the estimated co-
variance matrix gives optimal weights to predict each residual as a linear combination
of all residuals, the reliability of these standard errors is self-checking by construction.
The approach extends immediately to instrumental variables, and balanced and un-
balanced panels, as well as a wide class of nonlinear models. A step by step guide to
estimating these standard errors is given in the accompanying tutorials.

Keywords: Spatial regressions. Direct standard errors.

1 Introduction.

Cross-sectional and panel regressions that use data from neighbouring spatial locations
are an increasing staple of empirical economics. Although the residuals from these re-
gressions tend to be spatially correlated, the researcher has a choice of well established
standard error corrections to deal with this. Most commonly, residuals are simply clus-
tered into natural groups but, if desired, more explicitly spatial corrections are available,
notably the HAC adjustment of Conley (1999) and the large cluster approach of Bester,
Conley and Hansen (2011). However, at this stage things start to become complicated.
For concreteness, suppose that the data are from US counties. Should they be clustered
by states or by the larger census divisions? Should the standard errors then be corrected
using the default Stata adjustment or the Bell and McCaffrey (2002) procedure advocated
by Imbens and Kolesér (2016)? If one chooses the HAC path, should the correlation cutoff
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be set at 100 km, or 500 km or 1,000 km? Or if the large cluster approach advocated by
Barios et al. (2012) is used, should the data be sliced into two, three, four or more groups?
In practice, most studies cluster at the lowest level available using Stata defaults, the im-
plicit assumption being that other adjustments would return standard errors that are fairly
similar.

Unfortunately, this is not the case in general: different corrections commonly lead to
substantially different standard errors. To illustrate this, Table 1 gives the results of a re-
gression using some variables from Autor, Dorn and Hanson (2013). Clustering at state
level, the significance level of the main variable changes from 0.00004 using Stata defaults
to 0.01 using a Bell-McCaffrey correction; and to 0.04 if the residuals are clustered by census
division, again using Bell-McCaffery. If the Bester, Conley and Hansen (2011) correction
is used, the significance level changes from 0.03 with four clusters to 0.21 with three.

Which adjustment then is the correct one? Monte Carlo simulations in the Appendix
indicate that, when it comes to the probability of Type 1 errors, the Bester, Conley and
Hansen (2011) approach with three clusters is fairly robust for varying patterns of spatial
correlation. The performance of other corrections varies widely according to the under-
lying spatial pattern of the data, and they tend to reject noise regressions far too rarely.
However, the very high t values needed for a Bester ef al adjustment to be significant sug-
gest that its power is low, and this turns out to be the case.

The very different significance levels of these standard adjustments, then, makes them
of questionable utility in practice. This paper proposes instead an alternative approach of
estimating standard errors directly from the spatial correlation structure of the regression
residuals. Start with the vector of normally distributed regression residuals U ~ N (0, X)
where ¥ has generic entry ¥;;. The approach is to impose some functional form on the
covariance matrix, so ¥;; = f (h, m) where h is the distance between the locations of i and
J, and 7 is a vector of parameters. Once we have chosen a functional form f we can esti-
mate the parameters 7 straightforwardly by maximum likelihood. This gives an estimated
covariance matrix 3 that allows us to derive regression standard errors in the usual way.

The immediate question is how can we know that these standard errors are any more
trustworthy than existing ones? The answer is simple: the estimated covariance matrix by
gives optimal forecasting weights to predict each residual as a linear combination of all
residuals. By comparing the actual residuals with these predicted values we can judge the
plausibility of the assumed functional form, and the reliability of the estimated standard
errors.

The procedure extends to longitudinal regressions, where the covariance matrix is
computed as a Kronecker product of temporal and spatial autocorrelations. There is one
complication: fixed effects will absorb some degree of the spatio-temporal correlations in
the residuals, leading to unreliable estimates of the covariance matrix. A simple two step
procedure can be used to deal with this. First, residuals are computed from a regression
without fixed effects. These raw residuals are used to generate an estimated covariance
matrix. Coefficients are then estimated from a regression with fixed effects, and the first



stage covariance matrix is used to compute standard errors. For unbalanced data, the rows
and columns of the covariance matrix corresponding to the missing observations are sim-
ply removed before estimating the standard errors.

Turning to nonlinear regressions where y = g(X, 6) and 6 is a vector or parameters.
Direct standard errors may be calculated in cases where X and 6 only enter g in the form
X'6. This covers most regressions in common use including generalized linear models
(logistic, Poisson, and gamma); negative binomials (along with hurdle and zero inflated
extensions) for counts, survival models, and beta regressions for proportions. Direct stan-
dard errors must be applied cautiously in these cases however. The empirical densities of
residuals from these regressions will typically not resemble Gaussian ones closely, so it is
necessary to check that the predicted residuals are a reasonable match for the actual ones
before deciding how much trust in the estimated spatial covariance matrix.

The rest of the paper is as follows. Section 2 shows how different choices of spatial
correction can lead to widely different standard errors. This provides the motivation in
Section 3 to estimate standard errors from a parametric covariance matrix and to show
how these standard errors can be validated by comparing actual and predicted residuals.
This procedure is extended to panel and nonlinear regressions in Sections 4 and 5. The
technique is illustrated using a variety of examples from well known studies in Sections 6
to 8. An accompanying set of tutorials demonstrates the simple code used to apply these
techniques.

2 The Impact of Spatial Robustness Adjustments

To illustrate the large changes in significance levels resulting from different ways to adjust
for spatial correlation, I apply standard tests to some of the China Shock variables used by
Autor, Dorn and Hanson (2013). The dependent variable is the change in manufacturing
employment share and the equation is estimated with OLS using data for the 2000-2007
period, and unweighted observations for 722 Commuting Zones.

Table 1 shows the effect on significance levels of applying a variety of standard error
corrections. Although it is increasingly realized that significance levels are a poor route to
understanding regression results, because of the very low degrees of freedom involved in
some corrections it is uninformative to report standard errors on their own, and confidence
intervals would make the table too cluttered to be easily comprehensible.

The first column presents the commonest approach to such corrections, clustering at
the state level and using the default Stata robustness correction (where the estimated co-
variance matrix is multiplied by 4=~ <°; where N, K and S are the numbers of observa-
tions, explanatory variables, and clusters respectively). The second column uses the Bell
and McCaffrey (2002) correction recommended by Imbens and Kolesar (2016). The next
two columns use the same adjustments, but clustering at the level of Census Divisions.
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The next set of columns apply the HAC correction of Conley (1999), with a rectangu-
lar kernel and cutoffs of 100, 500 and 1000 kilometres (the median distance between the
centroids of commuting zones is 1300 km, 10 per cent are within 500 km of each other, and
only 0.5 per cent within 100 km). The last set of columns implements the small number
of large clusters approach of Bester, Conley and Hansen (2011), advocated by Barios et al.
(2012). As the Appendix shows, this procedure has a reasonably correct size when three
clusters are used. The data here are divided into three and four groups with the same
number of observations, clustered by longitude.

What can be seen immediately is how these, probably equally plausible, corrections
produce radically different significance levels. Taking the Chinese imports variable, clus-
tering at the level of states with a Stata correction returns a significance level of 0.00004
that changes to 0.01 after applying a Bell-McCaffrey correction at state level, and to 0.04 at
the level of census divisions.

Applying the Bester, Conley and Hansen (2011) procedure with three clusters increases
significance to 0.23 whereas a HAC correction with a 500 km cutoff changes the significance
level to 0.002. HAC corrections with long ranges can return covariance matrices with neg-
ative diagonal elements, as can be seen for the 1000 km cutoff.

3 Covariance Matrix Estimation and Validation.

Given the substantially different significance levels returned by existing covariance correc-
tions , it is worth exploring a parametric approach of specifying the functional form of the
covariance matrix and estimating its parameters by maximum likelihood.

Our starting point is a vector of normally distributed regression residuals u ~ N (0, X)
where ¥ has generic entry ¥;;. The approach is to assume some functional form for the
covariance matrix, so ¥;; = f (||i — j||, m) where [|i — j|| is the distance between points ¢
and j and 7 is a vector of parameters. Once we have chosen a functional form f we can
estimate the parameters 7 by maximum likelihood. From the estimated covariance matrix
32 we can derive regression standard errors in the usual way.

The natural objection to this procedure is how can we know that the assumed func-
tional form is a valid one. It turns out that we can test this straightforwardly.

Suppose that we wish to predict V, the values of a variable at some unobserved sites,
based on actual values U at some observed sites. Assuming that these observations are

normally distributed
UN n((© Yuuv Yuv
\% 0 ’ Xvu Zvv

then the conditional distribution of V' given U (see for example Gneiting and Gutthorp
2010) is
(VIU) =N (Suv £54; U, Svv — Zov S5 Sve) - (1)



The covariance function is assumed further to decompose into a systematic spatial part
and idiosyncratic noise so ¥ has generic entry

2ij = 0?C([li — jll, m) + 771 (2)

where C is a correlation function, ||i — j|| is the distance between i and j, and the indicator
1;; = 1 when i = j and 0 otherwise. In matrix terms, Xy = 0*Cyy + 721.

This means that if we have a holdout sample of residuals V' # U, then their predicted
values are V = o2Cpy (0’2CUU + 727 ) ~1U. If the assumed functional form of ¥ is unreli-
able, the predicted values V will differ substantially from the observed ones.

An analogous procedure applies when making smoothed predictions of the original
observations U except that the idiosyncratic noise 72 is omitted from the estimate: Cressie
(1991, 127-129).! This leads to the predicted residuals

U = o*Cyy (6*Coy +721) " UL (3)

By comparing the predicted value of the regression residuals with their actual values, we
can gauge the validity of the assumed functional form of the correlation matrix ¥ and,
through this, the reliability of the standard errors derived from it.

3.1 The Functional Form of the Covariance Matrix.

Having come up with a straightforward way to evaluate the performance of a parametric
covariance matrix, it is now necessary to choose a specific functional form. There are,
naturally, a large number of potential choices but the most common is based on the Whittle-
Matérn function where the correlation between sites at distance % apart is

cmpﬁ(ﬁ)nm (Z) (k> 0,p>0) (4)

where I' is a gamma function and K, is a Bessel function of the second kind.? The pa-
rameter ~ denotes the smoothness of the function, and p is a scale parameter giving the
correlation range.® Specifically, when two sites are separated by a distance h = p/+/8x, the
correlation between them is 0.14: this distance is commonly called the effective range and

'In cases where idiosyncratic variance is included in the forecast, so we are interpolating rather than
smoothing, the reliability of the covariance matrix may be evaluated instead very simply through leave one
out cross validation. Define Q = X~ with (i, j) -th entry ¢;;. Then the leave one out prediction of the i-th
residual 4—; = — ) qiju;/qi; (Dubrule, 1983). For the examples below, these predictions are highly corre-

JF

lated with those from (3) but estimates for large negative residuals are too low, and for large positive ones too
high: fitted values “regress” away from the mean.
Other correlation functions that are occasionally used include the double exponential; and the Cauchy
which can capture the long tails encountered, for instance, in meteorology: Gneiting and Gutthorp (2010).
*Notation varies: in place of p some authors and statistical packages use p’ = p/v/8k.



is the range that is reported for the regression examples below. The decay of correlation
with distance is controlled by «. For x = 3, correlation decays exponentially. Setting the
scale p = 1, C'(h) = exp(—h). Whenx = 3, C(h) = (14 h)exp(—h); and for k = 3,
C(h) = (1 +h+ %2) exp (—h). As k goes to infinity C falls off as a Gaussian curve.

To recall, for a given vector of regression residuals u ~ A (0, ¥) the covariance matrix
has the form ¥ = 02C (k, p) + 721 where C has functional form (4), ||i — j| is the distance
between i and j, and the indicator 1;; = 1 when ¢ = j and 0 otherwise. The four param-
eters giving the spatial structure of the residuals—the correlation range p, smoothness &,
variance o2 and noise 72 can be estimated by maximum likelihood. Once the parameters
have been estimated, the covariance matrix 3. can immediately be calculated from equa-

tions (4) and (2) and the standard errors of the coefficients are the usual diagonal elements
of (X'X)"! (X 'mX ) (X'X)~'. This approach extends immediately to instrumental vari-

ables, using projected X values.’

As noted above, correlation between sites equals 0.14 when they are a distance h =
p/\/8k apart. This means that is not feasible to estimate smoothness x and range p si-
multaneously, as the effects of increasing x and reducing p largely cancel out. The usual
approach is therefore to set x over a range of values, typically from 0.5 to 2.5 in incre-
ments of 0.5, and choose the value that maximizes the likelihood, or alternatively the one
that minimizes the sum of squared errors between the actual and predicted residuals. In
practice it is usual to find exponential falloff of correlation with distance (x = 0.5).

It can be seen that covariance breaks down into a systematic spatial component and
idiosyncratic noise. The spatial structure parameter

o2
T2 ®)
gives the share of spatial correlation in the variance of the residuals, a signal to noise ratio
reflecting the amount of (Gaussian) spatial structure present. In cases where s is small,
the predicted residuals (3) will match the actual residuals poorly.

So far we have supposed that the correlation between residuals is isotropic, or equally
strong in all directions. In general, however, the falloff of correlation with distance will
vary by direction: the isocorrelation contours will not be circles but ellipses at angle ¢ to
the horizontal whose major axis is r times as long as their minor one. These parameters
can be estimated, for instance by the nonparametric approach of Chorti and Hristopulos
(2008) that I apply below, and used to stretch and rotate the original spatial coordinates
of the observations prior to estimating the spatial covariance parameters in (2).

*The Whittle-Matérn function is the solution to a stochastic differential equation that is the continuous
analogue of an ARMA process. This is the basis of the Integrated Nested Laplace Approximation (INLA)
approach of Lindgren, Rue and Lindstrom (2011) to solving the parameters of (4).

5We will ignore here the fact that 3 is computed using estimated coefficients and that the computed stan-
dard errors should reflect this extra uncertainty by, for instance, repeatedly sampling from the estimated dis-
tributions of these coefficients.



4 Panel Regressions

We can now consider a panel regression
Yit = Prit + Ji + ke + uit

where j; and k; are individual and time fixed effects. Residual covariance is assumed to be
separable between space and time: for each period the vector of residuals u;, ~ N (0, X)
and for all sites the vector of residuals u; = au_1 + €.°

This gives the temporal autocorrelation matrix”

1 a o al
« 1
A= a2 a2
: 1 «
ol o a2« 1

which, combined with the spatial covariance matrix X leads to the longitudinal covari-
ance matrix

The spatial covariance matrix X is for all sites, and the temporal autocorrelation matrix
A is for all time periods, so that ¥, gives the spatio-temporal covariance for a balanced
model, whether the original data are balanced or not. To compute the covariance matrix for
an unbalanced panel, the rows and columns of ¥, corresponding to missing observations
are simply deleted.

When predicting residuals using (6), the procedure is simplified numerically because
¥ ! = A~ @ £, In the case where the panel is unbalanced however, the full covariance
matrix X, is calculated as before as the product A ® ¥ and the rows and columns cor-
responding to missing observations are then removed. In this case ¥; must be inverted
directly.®

4.1 Fixed Effects.

In computing the parameters for A and X empirically, one complication is that fixed effects
for individuals and time periods will absorb some fraction of the spatial and temporal

%See Gneiting, Genton and Guttorp (2006) for a survey of non-separable covariances. These are important,
for instance, in meteorology where the weather changes in upwind places before downwind ones.

7 Allowance can be made for the fact that the temporal covariances o may vary between periods, so that
the first row of A becomes (1, a1, @12, ...) and so on.

*In general spatial covariance matrices ¥ are not sparse, increasing the difficulty of inverting them by a
standard Cholesky decomposition. A common technique to generate a sparse approximation without com-
promising accuracy is tapering, where a cutoff distance is chosen so that each site has around 50 nearest
neighbours, with longer correlations being set to zero: Furrer, Genton and Nychka (2006).



p = 0.05 Panel Residuals Raw Residuals

~ ~

«  Cluster Direct & 62 63 & &2

0.2 0.190 0.076 —0.011 0.845 0.170 0.339 0.999
0.5 0.164  0.094 0.241 0.705 0.304 0.504 0.932
0.9 0.184 0.176 0.545 0.269 0.665 0.877 1.012

The first two columns give the proportion of noise regressions that are sig-
nificant at 5 per cent when clustering on individuals, or when using direct
standard errors computed from fixed effect residuals. These are reported for
different degrees of temporal autocorrelation c.. The block of columns under
Panel Residuals give the estimated values of temporal autocorrelation, spa-
tial residual variance (this should equal one) and fixed effect spatial variance
based on fixed effect residuals. The fil block gives estimated values of tem-
poral autocorrelation and spatial variance when these are estimated directly
with "raw residuals” from a first stage regression with no fixed effects.

Table 2: Simulations of panel regressions showing how individual and time fixed effects
absorb some of the spatio-temporal structure of regression residuals, which means that
estimated covariance matrices must be based on the residuals of a first stage regression
without fixed effects.

autocorrelation structure of the residuals. This will lead to underestimates of o and 2.
The simulations in Table 2 illustrate this difficulty.

The observations are over 100 randomly distributed individual sites on a unit square
over ten time periods. Correlation falls off exponentially (x = 0.5) and the effective corre-
lation range (2p) is 0.2. The spatial variance o = 1 and there is no idiosyncratic variance
so 72 = 0. The Table gives the results of 1000 simulations where one noise series with
these spatio-temporal characteristics is regressed on another, for three different values of
temporal autocorrelation o = 0.2,0.5,0.9.

The first two columns give the percentage of these fixed effect noise regressions with
fixed effects that are significant at 5 per cent, for two cases. The first is the standard ap-
proach of clustering by individuals, using a Bell-McCaffery adjustment. It can be seen that,
as expected, considerably more than five per cent of regressions are significant: around one
fifth in fact. The second column computes direct standard errors using the fixed effect re-
gression residuals to estimate the average temporal autocorrelation (by averaging over the
coefficients from 9 regressions of residuals on those from the previous period) and spatial
autocorrelation parameters. These direct standard errors also perform poorly, with almost
one fifth being significant when the temporal autocorrelation is 0.9.

The reason for this misbehaviour can be seen in the second block of columns, labelled
Panel Residuals. This shows first that the estimated autocorrelation coefficient & is too
low. Similarly, the estimated variance 42 is also severely underestimated: instead of 1 it
falls successively from 0.84, to 0.7, and to 0.27 as the temporal autocorrelation increases



from 0.2 to 0.9. At the same time, if we compute the spatial autocorrelation parameters of
the individual fixed effects 5‘1%E, their variance rises from 0.17 to 0.3 to 0.27. In other words,
we can see that these two estimated variances between them add up to the true value: the
fixed effects are absorbing a large share of the spatial structure of the residuals.

The final block of columns, labelled Raw Residuals, uses the residuals computed with-
out fixed effects to compute the spatial and temporal autocorrelations. It can be seen that
the values returned here are correct. These values can then be used to compute the covari-
ance matrix for the fixed effect regressions.

In summary, a two step procedure separating the estimation of the coefficients and co-
variances is needed. First, the regression is run with no fixed effects, and its residuals used
to compute the spatial and temporal autocorrelation statistics. These parameters in turn
are used to compute the spatio-temporal covariance matrix ¥, in (6). Then, the regression
is run with the fixed effects to get the true coefficients, and the first step covariance matrix
is used to construct the standard errors.

5 Nonlinear Regressions

The analysis extends to a large class of nonlinear models.” There is an objective function
U (y, X, 0) that has an estimating function

ov (y,X,0)

Y (y,X,0) = 50

(7)

Inference is based on a central limit theorem of the form /n (é - 9) — N (0,5 (0)) where

the covariance matrix S () can be written in sandwich form as

S(6) = B(O)M () B(0). (8)

, ~1
The “bread” and “meat” of the sandwich are B (0) = (E (—1/1 (y, X, 0))) and M (0) =

Cov (¢ (y, X, 0)) respectively.

To apply direct spatial standard errors it is necessary that ¥ (y, X, 6) takes the form
U (y,m) where n = X'6. In that case where y depends X and # ony through a linear
predictor the estimating function can be written

" (y X’e) - ?717'3;’ — wX 9)

where the entries w (y,n) = 0¥ /0n are sometimes called the working residuals.

The terminology here closely follows Zeileis (2006).

10



R , A -1 .
The bread is calculated as B = (% Yo=Y (y, X, 6?)) . The conventional approach,
ignoring spatial correlation, is to estimate the meat as

M= % (X’WX) (10)

where W is a diagonal matrix with elements ;2.

Computing direct standard errors simply involves computing the spatial parameters of
the working residuals « as before and using them in turn to compute a spatial covariance
matrix 3. This covariance is then used to replace W when calculating M in (10).

The procedure applies directly to logistic regressions, Poisson and negative binomial
counts (including hurdle and zero inflated extensions), survival models, and beta regres-
sions of proportions. When the procedure is applicable, a complication arises from the
fact that the empirical density of the working residuals will often not look very normal. It
is therefore particularly important to ensure that the predicted residuals are a reasonable
match for the actual ones before basing any inference on the estimated standard errors.

6 Illustrations: OLS regressions

The procedure to generate standard errors and to ascertain their reliability, then, is ex-
tremely straightforward. Take the estimated regression residuals, estimate their spatial
structure parameters (adjusting for anisotropy if necessary) and then generate a covari-
ance matrix with these parameters. We now take some examples to illustrate the process.

6.1 Ashraf and Galor (2013)

The first illustration comes from an equation in Ashraf and Galor (2013) which regresses
GDP per capita on a measure of genetic diversity and diversity squared. Given the need to
remove spatial trends prior to estimating the spatial structure of the regression residuals,
Iinclude two directional variables that are routinely used in such studies in an attempt to
control for the impact of omitted variables: distance from the equator, and longitude.
Results are presented in Table 3, and the residuals are plotted in Figure 1: the strong
autocorrelation over long distances is apparent. After the coefficients, the second column
of the Table presents familiar robust standard errors. Several diagnostics are presented
below. The first is the significance level of the standard test for spatial autocorrelation,
Moran’s I
N D igj Wiuitij
where w;; are weights and W = }_, ; w;;. Here we give the 5 nearest neighbours, by great
circle distance, a weight of one, and others zero. Changing this range rarely alters the re-
sults materially: the statistic is not intended as a yes-no, “significant-insignificant” test of

I= (11)

11



Figure 1: The residuals from Ashraf and Galor (2013) show correlation over long dis-
tances.

autocorrelation, but to serve as an indicator of possible spatial structure in residuals. In
most cases the significance level tends either above 0.2 or below 107°. In this instance, the
significance level is of the order 10~23. With cross-sectional regressions it is very often the
case that the reported results are driven by a handful of extreme outliers. The Table there-
fore reports a standard influence measure, the largest Cook’s distance of the observations.
As a rule of thumb a value above 0.1 suggests an observation with substantial influence,
which is not the case here.

The equation also reports the maximum likelihood estimates of the covariance param-
eters in (4) and (2). As noted above, changing the smoothness parameter x does not af-
fect the results markedly as range p moves in compensation. Here, changing smoothness
from 0.5 to 4.0 caused the log likelihood to increase from —157.2 to —156.3 but caused the
squared correlation between actual and fitted residuals to fall to 0.80. The estimated stan-
dard errors were effectively unchanged. The Table reports results for exponential falloff
of correlation x = 0.5. The reported range parameter is 2p, the effective range where cor-
relation has fallen to 0.14. Spatial structure is the share of spatial signal in the variance
of the residuals from (5): large values convey similar information to a significant Moran
statistic, that there is substantial spatial structure present. The anisotropy ratio and angle

12



Actual versus predicted residuals.

Predicted Residuals
3

-2 -1 0 1 2
Residuals

Figure 2: Actual residuals versus the values predicted by the estimated spatial covariance
matrix for Ashraf and Galor (2013).

give the stretching and rotation of the major correlation axis to give equal correlation in
each direction, prior to estimating the covariance parameters.

Naturally, before we can put any faith in this estimated covariance matrix we need to
know that it is accurate, by comparing the predicted value of the residuals from (1) with
their actual values. This is done in Figure 2. It can be seen immediately that the two match
closely, with predicted residuals regressing towards the origin as expected.

Given that we can place reasonable faith in our estimated covariance matrix ¥, the
third column of Table 3 reports the estimated direct standard errors: the square root of

the diagonal terms of the sandwich matrix (X’X) ™' (X 'SX ) (X’X)™". It can be seen that

they are about twice as large as the original robust ones for the explanatory variables, and
three times as large for the directional ones.

6.2 Acemoglu, Johnson and Robinson (2001)

Now lillustrate a case where regression residuals have no spatial structure, making direct
residuals superfluous. The data come from Acemoglu, Johnson and Robinson (2001) on
the impact of European mortality on institutional quality measured by appropriation risk.
I make two adjustments. First, regions with a mortality rate of over 250 are capped at
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Coef RobustSE Direct SE

(Intercept) -53.887 (28.763)  (62.064)
Diversity 182286  (81.898) (177.145)
Diversity Squared -134.711 (58.028) (126.006)
Longitude -0.003 (0.001) (0.003)
Abs Latitude 0.041 (0.004) (0.012)
R? 0.445
Moran 0.000
Cook 0.070
Residual Fit 0.941
Spatial Structure 0.782

140 observations. Effective range is 1747 kilometres, and the
anisotropy ratio and angle are 1.12 and 6 degrees. Moran is the p
value of the I statistic. Cook is the maximum Cook’s distance of
the observations. Residual Fit gives the squared correlation be-
tween the regression residuals and their predicted value based
on the estimated spatial covariance matrix. Structure is the share
of spatial structure in residual variance given in equation 5.
Table 3: Summary statistics for a regression of income on genetic diversity from Ashraf

and Galor (2013) giving robust and direct standard errors.

250: if this is not done, extreme outliers distort the residuals and lead to a spuriously large
Moran statistics. Second, based on Cook’s Distances, five observations (Australia, Canada,
New Zealand, Singapore, and the United States) distort the regression estimates and are
omitted from the reported results.

It is immediately evident that there is no spatial structure in the residuals: the p value
of the Moran statistic is 0.67. Similarly, the spatial structure parameter (5) is 0.00004. As
a result, the direct residuals are effectively identical to the unadjusted ones, and the pre-
dicted residuals are unrelated to the actual ones as Figure 3 indicates.

6.3 Autor, Dorn and Hanson (2013) and Chetty et al. (2014)

Next I examine two studies using data for US commuting zones. The first continues the
Autor, Dorn and Hanson (2013) example in Table 1 of Section 2 which demonstrated how
different spatial corrections returned significance levels that varied by several orders of
magnitude. The second uses data on the determinants of inter-generational mobility due
to Chetty et al. (2014).

The Autor, Dorn and Hanson (2013) results are shown in Table 5. It can be seen that
there is strong autocorrelation in residuals (the significance level of the Moran statistic is

14



Coef RobustSE Direct SE

(Intercept) 7.954 (1.045) (1.101)
Mortality -0.385 (0.204) (0.208)
Longitude 0.000 (0.002) (0.002)
Abs Latitude 0.005 (0.013) (0.015)
R? 0.080
Moran 0.630
Cook 0.104
Residual Fit 0.197

Spatial Structure  0.000

60 observations. Effective range is 6360 kilometres, and the
anisotropy ratio and angle are 1.36 and 39 degrees. Moran
is the p value of the I statistic and Cook is the maximum
Cook’s distance of the observations. Residual Fit gives the
squared correlation between the regression residuals and
their predicted value based on the estimated spatial covari-
ance matrix. Spatial structure is the share of spatial struc-
ture in residual variance given in equation 5.

Table 4: Acemoglu, Johnson and Robinson (2001): Impact of European mortality on ap-
propriation risk.

of the order 10757, and the spatial structure parameter is 0.66). There is no anisotropy in
the residuals, and the effective range (where residual correlation falls to 0.14) is 129 km.

Importantly, the Residual Fit, the squared correlation between the residuals and their
predicted values based on the estimated spatial covariance matrix, is 0.93. The table shows
standard errors clustered by state using the default Stata standard error correction, the
same that were used in the first column of Table 1, and the direct standard errors. What
can be seen is that, for the spatial structure of these data, the original clustered standard
errors are almost identical to the direct standard errors. Naturally, this behaviour does
not occur in general, even with data for the same commuting zones, as the next example
shows.

Table 6 gives the results of a regression of inter-generational mobility on a variety of
social and inequality indicators from Chetty et al. (2014) for commuting zones, again clus-
tered at state level. Here the relationship between clustered and direct standard errors is
more interesting, with the size of direct standard errors varying from 0.7 to 1.8 times the
size of the original cluster ones.
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Actual versus predicted residuals.

0.00010
0.00005
%)
[}
>
S
[%]
i
< 0.00000
(0]
9
Q
©
o
a
-0.00005
-0.00010
-2 -1 0 1 2
Residuals

Figure 3: Actual versus predicted residuals for a case where there is no spatial correlation
in the data: Acemoglu, Johnson and Robinson (2001).

7 Illustration: An Unbalanced Panel

I now give an example of direct standard errors for an unbalanced panel, based on Don-
aldson (2018). This paper examines the impact of railroad construction on Indian devel-
opment from 1870 to 1929. I focus on the first column of Table 4 which regresses the log of
real agricultural income of each district on a dummy variable for whether or not the district
had a railroad, with fixed effects for district and year. Standard errors were clustered by
district using the default Stata adjustment. Including longitude and latitude coordinates
here did not alter the results materially and led to occasional problems of convergence
due to strong multicollearity with district dummies, so they are not used in the reported
results.

It is necessary to decide on values for the temporal autocorrelation parameter o and
the parameters underlying the spatial covariance matrix ¥. Using the raw (no fixed effect)
regression residuals, the mean correlation between residuals across consecutive years was
a = 0.94.

For spatial correlation, the parameters of the covariance function we estimated for each
year and the median used to calculate . Applying an exponential covariance x = 0.5,
the median range 2p was 256 km, the spatial variance o2 was 0.3, and the spatial structure
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Coefficient Clustered SEs Direct SEs

(Intercept) 7.369 (5.471) (4.956)
Chinese Imports -0.121 (0.027) (0.027)
Mfg Employment -0.060 (0.012) (0.010)
College Educated 0.031 (0.019) (0.017)
Foreign Born -0.009 (0.016) (0.017)
Female Employment 0.089 (0.028) (0.028)
Routine Tasks -0.344 (0.047) (0.043)
Longitude -0.007 (0.019) (0.021)
Latitude -0.133 (0.069) (0.070)
Longitude*Latitude -4.240 (2.957) (2.800)
R? 0.564
Moran 0.000
Cook 0.116
Residual Fit 0.923
Spatial Structure 0.663

Clustered SEs denote standard errors clustered by state using the default
Stata correction. 722 observations. Effective range is 129 kilometres, and the
anisotropy ratio and angle are 1.03 and 9 degrees. Moran is the p value of
the I statistic. Cook is the maximum Cook’s distance of the observations.
Residual Fit gives the squared correlation between the regression residuals
and their predicted value based on the estimated spatial covariance matrix.
Structure is the share of spatial structure in residual variance given in equa-
tion 5.

Table 5: Autor, Dorn and Hanson (2013). Impact of China Shock.

parameter 02 /(02 +7%) was 0.6. The median anisotropy of residuals across years involved a
ratio of 1.3 and an angle of 17 degrees: imposing a ratio of one and an angle of zero degrees
(isotropy) reduced the standard error estimates by 1 per cent and these uncorrected results
are reported here.

The data are heavily unbalanced: of a potential 11,520 entries there are 7086 observa-
tions. This unbalancedness reflects in particular the sparseness of early data: before 1890
there are 991 data points. Table 7 therefore reports results for each sub-period as well as for
the entire sample; giving the estimated impact of having a railway, the original clustered
standard error, and the direct standard error. Because the data are longitudinal, no Moran
statistic is reported, although in each year the autocorrelation is substantial as shown by
the estimated spatial structure parameter of 0.6.
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Coef RobustSE Direct SE

(Intercept) 94.763 (31.430)  (38.697)
Gini Bottom 99 -0.056 (0.050) (0.065)
Fraction Short Commute 0.245 (0.032) (0.057)
High School Dropout Rate -0.108 (0.047) (0.035)
Social Capital Index 0.173 (0.041) (0.050)
Fraction Single Mothers -0.417 (0.060) (0.051)
Longitude -123.296 (41.443)  (50.959)
Longitude squared 44179 (15.351)  (18.797)
Longitude cubed 0.000 (0.000) (0.000)
R? 0.811
Moran 0.000
Cook 0.075
Residual Fit 0.956
Spatial Structure 0.852

580 observations. Effective range is 162 kilometres, and the anisotropy ra-
tio and angle are 1.3 and 31 degrees. Moran is the p value of the I statistic.
Cook is the maximum Cook’s distance of the observations. Residual Fit
gives the squared correlation between the regression residuals and their
predicted value based on the estimated spatial covariance matrix. Struc-
ture is the share of spatial structure in residual variance given in equation
5

Table 6: Chetty et al. (2014): Determinants of Inter-generational Mobility.

The reliability of the assumed covariance matrix, measured by the squared correlation
between actual and predicted residuals, ranges from 0.83-0.84. The direct standard errors
in each case range from 1.16 to 2 times the original clustered ones.

8 Illustration: A Logistic Regression

The illustration here comes from Table 1 of Alsan (2015) and regresses the presence or ab-
sence of indigenous slavery on an index of Tsetse fly suitability and some climate controls.
Whereas the original regression assumed a linear model, I will use a logistic function here
as an example of a non-linear model. The second column of 8 gives standard errors clus-
tered at the level of province using Stata defaults as in the original study. The residuals
show strong spatial autocorrelation, and the residual fit and spatial structure statistics of
0.8 and 0.55 suggest that the estimated spatial covariance structure is not unreasonable.
The direct standard error on the Tsetse variable is about two thirds larger than the clus-
tered estimate.

18



1870-1929 1870-1889 1890-1929

Coefficient  0.1636 0.1107 0.0787
Clustered SE  (0.0501  (0.0711)  (0.0491
Direct SE (0.0581)  (0.1458)  (0.0845)

R? 0.9996 0.9999 0.9996
Cook 0.0428 0.0601 0.0456
N 7086 991 6095

Residual Fit  0.8355 0.8160 0.8410

Cook is the maximum Cook’s distance of the observations.
Residual Fit gives the squared correlation between the regres-
sion residuals and their predicted value based on the esti-
mated autocovariance matrix. The covariance matrix is based
on the averages across all years, with a temporal autocorre-
lation of 0.94, smoothness x = 0.5, effective range 2p = 128
km, variance o = 0.3 and structure ¢*/(¢* + 7°) = 0.6. No
correction for anisotropy was applied.

Table 7: Donaldson (2018). Impact of railways on real agricultural income.

Actual versus predicted residuals.
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Figure 4: Actual and predicted residuals from the estimated spatial covariance matrix from
Donaldson (2018).
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Coef RobustSE Direct SE

(Intercept) -6.368 (8.837)  (11.313)
Tsetse SI 0.767 (0.374) (0.606)
Tropics 3.252 (1.728) (1.742)
Temperature 0.132 (0.357) (0.425)
Humidity 0.037 (0.160) (0.210)
Temperature*Humidity -0.001 (0.006) (0.009)
Long -0.002 (0.041) (0.061)
Abs Lat 0.145 (0.080) (0.104)
Long*Abs Lat -0.001 (0.002) (0.003)
Moran 0.000
Cook 0.067
Residual Fit 0.824
Spatial Structure 0.551

423 observations.  Effective range is 358 kilometres, and the
anisotropy ratio and angle are 1.1 and -58 degrees. Moran is the
p value of the I statistic. Cook is the maximum Cook’s distance of
the observations. Residual Fit gives the squared correlation between
the regression residuals and their predicted value based on the es-
timated spatial covariance matrix. Structure is the share of spatial
structure in residual variance given in equation 5.
Table 8: Logistic regression of the impact of Tsetse fly suitability on the presence of in-

digenous slavery from Alsan (2015).

9 Conclusions

With the growing popularity of regressions using spatial data it is worth bearing in mind
Tobler’s (1970) First Law of Geography: “everything is related to everything else, but near
things are more related than distant things.” Spatial data, in other words, tend to be au-
tocorrelated. Although there exist a variety of standard error corrections to handle this,
in practice as we have seen, their results can vary substantially. This paper instead pro-
posed a simple technique to estimate standard errors directly from the spatial correlation
structure of regression residuals and showed how their reliability can easily be tested by
comparing the actual values of the residuals with the values predicted by the assumed
covariance matrix.
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Actual versus predicted residuals.
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Figure 5: Actual and predicted residuals from the estimated spatial covariance matrix for
a logistic regression based on Alsan (2015)

Appendix

This Appendix looks at the size of various standard error corrections, based on regressing
two spatial noise series on one another. Each noise series is generated as a Whittle-Matérn
process with smoothness « = 1, variance 0?2 = 1and idiosyncratic variance 72 =0, ata
variety of scales. We use three patterns of points. The first is 100 points spread at random
over a square with sides of length 100. The second uses the pattern of the 722 commuting
zones in the 48 contiguous US states from Autor, Dorn and Hanson (2013), and the third is
522 African tribal areas from Alsan (2015). The last two are rescaled to turn the maximum
east-west and north-south distances to 100.

Table Al reports the fraction of 1000 simulations where a f statistic significant at 5 per
cent was returned. First, an unadjusted standard error is given. Next, standard errors
are clustered and corrected using a Bell-McCaffrey adjustment. For the random data, the
data are clustered into 16 squares, for commuting zones they are clustered by state, and
tribes are clustered by district. Next are Bester, Conley and Hansen (2011) large clusters,
where the data are divided into two, three and four vertical stripes, and a Bell-McCaffrey
correction again applied. Finally there are Conley (1999) corrections with a rectangular
kernel of varying cutoff lengths.
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Several things are immediately apparent. The first is that, when it comes to random
noise regressions, uncorrected and clustered standard errors are a good deal too small.
The Conley HAC correction works fairly well when the data have a short scale, but in gen-
eral its performance depends strongly on knowing the correct cutoff to use, and tends to
disimprove at longer scales. The most reliable performance for random sites and commut-
ing zones comes from the Bester et al correction when the data are split into three clusters,
although it tends to accept more regressions with the African pattern of points.
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