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Abstract

Samuelson (1963) conjectured that accepting multiple independent gambles you would reject on
a stand-alone basis violated expected utility theory. Ross (1999) and others presented examples
where expected utility maximizers would accept multiple gambles that would be rejected on a
stand-alone basis once the number of gambles gets large enough. We show that a stronger re-
sult than Samuelson’s conjecture applies for DARA preferences over wealth. Expected utility
maximizers with DARA preferences have threshold levels of wealth such that those above the
threshold will accept N positive expected value gambles while those below will not and these
thresholds are increasing with N .
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1. Introduction

Life regularly offers individuals and businesses opportunities that are on average profitable but that

risk losses. In a famous paper, Paul Samuelson (1963) discussed the question of how people should

behave when offered multiple simultaneous such opportunities. Samuelson described a conversation

in which he “offered some lunch colleagues to gamble each $200 to $100 that the side of a coin they specified
would not appear at the first toss. One distinguished scholar—who lays no claim to advanced mathematical
skills—gave the following answer: I won’t gamble because I would feel the $100 loss more than the $200 gain.
But I’ll take you on if you promise to let me make 100 such gambles.” Their explanation was “One toss is
not enough to make it reasonably sure that the law of averages will turn out in my favor. But in a hundred
tosses of a coin, the law of large numbers will make it a darn good bet.”

Samuelson believed his colleague was engaging in a “fallacy of large numbers.” He argued that

an expected utility maximizer who turns down a gamble as a stand-alone proposition should also

reject an offer of multiple such gambles. Samuelson used an inductive argument: “If you will not
accept one toss, you cannot accept two – since the latter would be thought of as consisting of the (unwise)
decision to accept one plus the open decision to accept a second. Even if you were stuck with the first outcome,
you would cut your further (utility) losses and refuse the terminal throw. By extending the reasoning from 2
to 3 = 2 + 1, . . . . and from n− 1 to n, we rule out my sequence at all.”

This paper describes the optimal decision rules for accepting or rejecting multiple independent

identical gambles of an expected utility maximizer with decreasing absolute risk aversion (DARA)

preferences over wealth. DARA is a standard assumption that includes the constant relative risk

aversion (CRRA) utility functions typically used in modern economic theory. It has empirical support

from experimental evidence (Levy, 1994, Huber et al, 2023) and from studies based on financial asset

holdings (Chiappori and Paiella, 2011, Calvet and Sodini, 2014, Meeuwis, 2022).

Samuelson included a qualification in a footnote—“I should warn against undue extrapolation of my
theorem. It does not say that one must always refuse a sequence if one refuses a single venture: if, at higher
income levels the single losses become acceptable, and at lower levels the penalty of losses does not become
infinite, there might well be a long sequence that it is optimal.” Here, Samuelson was suggesting that

declining risk aversion might over-turn his result.

We show that DARA preferences do not over-turn Samuelson’s “theorem” and are actually con-

sistent with a stronger version of it. Specifically, we show that for once-off gambles that might be

accepted at some wealth level, DARA preferences imply a threshold level of wealth W ∗N such that

only those with W ≥ W ∗N will accept N independent such gambles and this threshold is increasing

with N . Increasing the number of gambles makes it less likely that people with DARA preferences

will accept an offer, so some people will accept one gamble but not two, while others will accept

two gambles but not three and so on. We prove this analytically for local gambles and illustrate it

numerically by showing how various multiple gambles will be considered by people with CRRA
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preferences.

Our results run counter to those presented by Nielsen (1985), Hellwig (1995) and Ross (1999).

These papers provided conditions (with Ross’s being the most general) under which expected utility

maximizers who turned down a once-off gamble with a positive expected value would accept N of

them once N was sufficiently large, which Ross termed the “eventual acceptance property”. Our

paper differs in assuming DARA preferences, which Ross noted did not satisfy the conditions he

outlined for an eventual acceptance property to hold. Our numerical calculations also differ in ruling

out gambles that could lead to negative values of wealth. We do not consider this possibility because

of the difficulty in interpreting negative wealth and also because the CRRA utility functions that we

use for illustration are not defined for negative wealth.

The paper is structured as follows. Section 2 presents the theoretical results on local gambles.

Section 3 contains our numerical calculations. Section 4 discusses our findings.

2. Theory

Pratt (1964) defined utility functions as exhibiting DARA if r′ (W ) < 0 where

r (W ) = −U
′′ (W )

U ′ (W )
(1)

Dybvig and Lippman (1983) showed DARA preferences implied that for any risky gamble with a

positive expected value, there is a threshold level of wealth such that those with wealth above this

level will accept the gamble and those below it will not. Here, we show how the thresholds for

accepting multiple gambles can depend positively on the number of gambles.

Ross (1999) described how the conditions for eventually accepting an offer of multiple positive

expected value gambles as the number of gambles gets large required a lower bound on utility losses

from losing gambles and that utility gained from winning gambles was unbounded. The following

simple result, however, shows that increasing the number of positive expected value gambles does

not generally make offers more attractive for people with concave utility.

Proposition 1: Let U (W ) be a twice-differentiable concave utility function of wealth. For positive

expected value gambles small enough that second-order Taylor series approximations to the utility

function around initial wealth accurately describe utility outcomes from accepting multiple gambles,

an expected utility maximizer with utility function U (W ) that is indifferent between accepting or

rejecting an offer ofN independent positive expected value gambles will reject offers ofN+k gambles

where k > 0.

Proof. Consider a gamble defined by a profit X that has a mean of µ > 0 and a variance of σ2.
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Expected utility for someone with initial wealth W from taking one of these gambles can be written

as

E [U (W +X)] = U (W ) + U ′ (W )E (X) +
U ′′ (W )

2
E
(
X2
)

(2)

Using the relationship between the second moment and the variance

E
(
X2
)
= σ2 + µ2 (3)

this can be written as

E [U (W +X)] = U (W ) + U ′ (W )µ+
U ′′ (W )

2

(
σ2 + µ2

)
(4)

Denote the outcome from accepting N independent gambles of this type as XN . This has mean Nµ

and variance Nσ. The expected utility from accepting this offer is

E [U (W +XN )] = U (W ) + U ′ (W )Nµ+
U ′′ (W )

2

(
Nσ2 +N2µ2

)
(5)

Now consider someone with wealthW ∗N such that they are indifferent between accepting or rejecting

an offer of N independent gambles, so E [U (W ∗N +XN )] = U (W ∗N ). This means

U ′ (W ∗N )Nµ+
U ′′ (W ∗N )

2

(
Nσ2 +N2µ2

)
= 0 (6)

So this person’s coefficient of absolute risk aversion is

r (W ∗N ) = −
U ′′ (W ∗N )

U ′
(
W ∗N

) =
2µ

σ2 +Nµ2
(7)

Their expected utility from accepting N + k gambles would be

E [U (W ∗N +XN+k)] = U (W ∗N ) + U ′ (W ∗N ) (N + k)µ+
U ′′ (W ∗N )

2

(
(N + k)σ2 + (N + k)2 µ2

)
= U (W ∗N ) + U ′ (W ∗N ) (N + k)

[
µ−

r (W ∗N )

2

(
σ2 + (N + k)µ2

)]
Substituting in the formula for the coefficient of absolute risk aversion from equation 7, this becomes

E [U (W ∗N +XN+k)] = U (W ∗N ) + U ′ (W ∗N ) (N + k)µ

[
1− σ2 + (N + k)µ2

σ2 +Nµ2

]
< U (W ∗N ) (8)

which is the required result.
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This result holds because, relative to accepting N gambles, the positive first-moment term due

to accepting N + k gambles increases by a factor of N+k
N while the negative second-moment term

increases by more. The result does not imply that all expected utility maximizers with concave utility

who would reject a single gamble should reject two such gambles. Tversky and Bar-Hillel (1983)

and Nielsen (1985) presented counter-examples involving concave utility functions with kinks at a

specific value of wealth such that at that value, people would turn down some single gambles while

accepting two of them. These examples worked because neither the first or second derivative of

the utility function were defined at the kink point, so the Taylor series approximation we have used

could not apply in these cases.

However, for the traditional assumption of DARA preferences, such that r′ (W ) is always defined

and negative, the result has strong implications. Ross (1999) noted that the conditions for multiple

gambles to be eventually accepted once N became large enough were not satisfied by people with

DARA preferences. In fact, for local gambles the opposite result applies. Stated formally, the result

is as follows.

Proposition 2: Under the conditions for utility functions and gamble size described in Proposition 1,

DARA preferences imply that the threshold level of wealth for being willing to acceptN independent

positive value gambles is increasing in N .

Proof. Monotonicity of r (W ) ensures there is a unique mapping from r (W ) toW . The level of wealth

at which people are indifferent between accepting or rejecting N independent gambles is defined

implicitly by equation 7. The indifference level of r (W ) falls as N increases. DARA means the

indifference level of wealth rises as N increases and that everyone below this level of wealth will

decline the offer of N gambles and everyone above it will accept.

This result means that for a specific positive expected value gamble and a given distribution

of wealth among a population of expected utility maximizers with DARA preferences, the fraction

of people that will accept N gambles will decline with N . This does not mean that increasing the

number of favorable gambles can’t at some point be considered a good thing. The following result

shows this property applies for DARA preferences once wealth reaches a certain level.

Proposition 3: Under the conditions for utility functions and gamble size described in Proposition

1, DARA preferences imply that for each value of N , there is a threshold level of wealth such that

above this threshold, larger multiples of positive expected value gambles are preferred to multiples

of size N .
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Proof. Define

F (W,N) = U ′ (W )

(
Nµ− r (W )

2

(
Nσ2 +N2µ2

))
(9)

Larger multiples will be preferred if ∂F
∂N > 0. This can be calculated as

∂F

∂N
= U ′ (W )

(
µ− r (W )

2

(
σ2 + 2Nµ2

))
(10)

This will be positive if

r (W ) <
2µ

σ2 + 2Nµ2
(11)

DARA preferences imply that there will eventually be a level of wealth such that r (W ) is below this

value, so above that threshold people will prefer larger to smaller multiples. Also, the level of r (W )

defined in equation 11 is lower than the one defined in 7. This means there will be an interval of

wealth in which people will be willing to accept multiple gambles of a certain size but would prefer

smaller ones.

These results support Samuelson’s conjecture that an expected utility maximizer who turns down

one gamble should turn down multiple such gambles. But they do so without his assumption that

the once-off gamble would always be turned down across the full range of wealth values being

considered. Instead, DARA preferences mean someone could turn down a gamble at one value of

wealth and accept it if wealth was higher. The results also tell us more about how people would

behave than Samuelson’s conjecture. Some people who would accept one of these gambles would

turn down two of them and some who would accept two would reject three. For these people,

increasing the number of gambles makes the offer less attractive, not more. And some people who

would accept four gambles would prefer to accept three. But then, for high enough wealth, people

will prefer larger multiples to a smaller one.

Our proof method differs from Samuelson’s and raises questions about his inductive approach to

assessing offers of multiple independent gambles. Samuelson’s argument implied that when think-

ing about whether to accept N gambles, someone may start from the point of view of having already

decided to accept at least N − 1 gambles and then deciding whether to raise this to N .

Samuelson was correct that if someone would reject a stand-alone gamble, then the outcome of

this thought experiment would be to reject the N th additional gamble, and then to reflect that they

should also reject the (N − 1)th gamble and so on. But we also have a converse result. Willingness

to accept a once-off gamble does not mean accepting an N th gamble conditional on having already

accepted N − 1 of them. In fact, we have shown there are people who would accept the once-off

gamble but decide to limit the number of gambles they will accept to N − 1 rather than accept an

N th gamble. This shows that, as a general matter, decision-making about aggregated risks cannot
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be modeled as a sequence of separate once-off decisions and solved via backward induction. A

commitment to accept at least N − 1 gambles affects the tolerance for risk when considering adding

another gamble.

But what about larger gambles? One could flag two different concerns about the second-order

approximation used here. The first is that we are evaluating attitudes to potentially large risks using

relative risk aversion at initial wealth and this may not be a good way to consider whether or not

one would accept N + 1 gambles given you are willing to accept N . If you already know you would

accept N positive expected value gambles, you may factor in that you are probably going to be

sufficiently wealthy for your attitudes to taking an additional risk to be different than at your current

wealth level. This concern is easily addressed. In an appendix, we derive the same findings as here

by comparing the decisions to accept either N or N + 1 gambles using a Taylor expansion around

W + µN , the expected wealth from accepting N gambles.

Still, if the amounts involved are large enough, it may be that no second-order approximation

is accurate. From Pratt (1964), we know that DARA requires the utility function to have a positive

third derivative so could adding third-order terms deliver different results than the second-order

approximation? Our numerical calculations below show that at least for CRRA utility, the answer is

no.

3. Numerical Calculations

Here we report some numerical illustrations illustrating that the results for local gambles just pre-

sented generalize to gambles that can be large relative to initial wealth.

3.1. Calibration

We didn’t needed stronger assumptions than DARA to prove the results about local gambles but

to assess attitudes towards larger gambles, we use numerical calculations and thus specific utility

functions. As discussed by Pratt (1964), one can construct non-CRRA examples of DARA utility

functions but they tend to be relatively unintuitive, so we will restrict ourselves to the CRRA class

U (W ) =
W 1−γ

1− γ
(12)

which have the property that r (W ) = γ
W and thus satisfy DARA.

In assessing the appropriate levels of γ for modeling someone who would turn down the kind

of offer made by Samuelson, it should be noted that the amounts in the offered gamble were not as

trivial as they might seem from today’s perspective. The CPI has increased by a factor of 10 since

1960, so in today’s money the offer would be an equal chance of winning $2,000 and losing $1,000.
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However, even assuming modest levels of wealth, turning down this offer would require a relatively

high level of relative risk aversion. Given this, our reported calculations will have γ > 1, which

implies more risk aversion than the log utility function that various empirical studies have found to

be a good approximation to real-world risk aversion.1

CRRA utility functions with γ > 1 are bounded from above by zero and tend to minus infinity

as wealth goes to zero. These are the opposite of the features Ross (1999) showed were required

for people who would not accept once-off gambles to accept multiple independent gambles once N

became large enough. As such, it should not be surprising that our numerical calculations do not

display the eventual acceptance property. Instead, they confirm that the local results just described

also apply to larger gambles without relying on Taylor approximations.

3.2. Restriction to Positive Wealth

As noted above, our calculations do not consider offers that have the potential for people to lose all

(or more) of their wealth. There are two reasons for this restriction.

First, from a practical perspective, for the CRRA utility functions that we use for our calculations,

the possibility of even one negative outcome for wealth produces complex-valued expected utilities

which cannot be interpreted. In any case, for the γ > 1 examples we will use for illustration, people

would never consider taking a gamble that could potentially (even with a very small probability)

reduce their wealth to (close to) zero. The almost-infinite potential losses in utility in close-to-worst

outcomes would always outweigh any potential gain. In this case, gambles involving losing more

than one’s wealth are irrelevant.

Second, there are various problems with interpreting negative wealth. The literatures on both

multiple gambles and St. Petersburg paradoxes have debated how to interpret the possibility of neg-

ative wealth, considering issues such as whether the possibility of bankruptcy places a lower bound

on utility for very bad outcomes.2 For CRRA utility functions with 0 < γ < 1, one could construct a

continuous real-valued “extension” to the utility function that generates negative utility values, for

example by assuming U (−x) = −U (x) where x > 0 but this is ultimately an ad hoc approach and

does not work for γ > 1 because it implies non-monotonic utility functions.

There is also a question of realism and enforceability of gambles that result in negative wealth.

While people can certainly have negative net wealth in the real world, these cases generally occur

because they are expected to pay off this debt using future labor income. This suggests it is best

to interpret wealth here in the broadest possible sense—as both the sum of current financial assets

and the present discounted value of future labor income. Under this interpretation, our restriction

1See Chetty (2006), Layard, Mayraz and Nickell (2008) and Gandelman and Hernandez-Murillo (2013) for various
estimates of γ using different methodologies.

2See Samuelson (1977) and Ross (1999) for discussions of this issue
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could be interpreted as allowing the consideration of gambles that could wipe out someone’s current

financial wealth but not ones that had the potential to also take away the lifetime value of their labor

income.

3.3. Results

Our numerical calculations describe how expected utility maximizers behave when offered multiple

independent gambles with equal chances of winning G or losing L where G > L. We calculate exact

expected utilities from accepting multiple independent gambles using the true binomial distributions

of all possible outcomes. In other words, we assume people will accept an offer of N gambles if

U (W ) < E [U (W +XN )] =

(
1

2

)N N∑
i=0

(
N

i

)
U (W + iG− (N − i)L) (13)

and report the smallest value of W for which people will accept the offer.

Table 1 reports calculations for γ = 1.5 and γ = 2 and gambles with equal chance of losing 100 and

winning one of three different values of G (Samuelson’s offer of 200 and also 150 and 110). We only

consider gambles for which the worst possible outcome is to be left with W = 1 and model decisions

at integered values of wealth.3 The table shows the lowest integer-valued levels of wealth required

to accept N independent gambles. It can be seen from each of the columns that thresholds rise with

N and the magnitude of this effect is often big. For γ = 2 and G = 200, the threshold rises from 401

for a once-off gamble to 1103 for 11 independent gambles.

The limitation on gambles to those that do not potentially generate negative wealth has an impact

on the calculations as N rises. For example, for γ = 1.5 and G = 200, the table ends with the value

of 801 for N = 8. This means that everyone that can be offered 8 independent gambles will take the

offer. Calculations show that once we have reached a value of N for which this is true, it is also true

for higher values ofN . For gambles with smaller expected gains, the percentage rise in the thresholds

for accepting larger multiples are smaller but it takes higher values of N to get to the point where the

largest allowable multiple will be accepted.

The figures in Table 1 are thresholds such that everyone above this level will accept N indepen-

dent gambles. But at the thresholds listed here, the agents will generally prefer a smaller multiple

than one of size N . Table 2 shows the preferred multiple sizes at each of these thresholds. For ex-

ample, with γ = 1.5, G = 110 and W = 1719, the table shows that N = 12 will be accepted, but this

person’s favorite offer would be N = 6. Perhaps in this case, rather than accepting the largest feasible

multiple, this person may attempt to negotiate a smaller one. As wealth grows, for each gamble we

eventually reach a point where the preferred offer is the largest one allowable, as suggested for local

gambles by Proposition 3.
3The results are essentially the same if we allow smaller worst possible levels of wealth.
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These results show that a property that looks a little bit like the “eventual acceptance property”

applies for DARA utility. Once people are wealthy enough to be able to consider large gambles,

then compounding makes the offers more attractive. But this does not refute Samuelson’s argument

because it does not show that people poor enough to turn down one gamble would find multiple

independent gambles more acceptable. Indeed, if Samuelson’s colleague had DARA preferences,

then not only should he have been unwilling to accept multiples of the rejected gamble at his current

wealth level but we could construct an increasing set of payments to him as N rose such that, even

after receiving these payments and thus having lower absolute risk aversion, he should still have

turned down the offers of multiple independent gambles.

We also did these calculations for values of γ < 1. The results are consistent with our other

findings but less interesting. For example, for γ = 0.9, the threshold for accepting one, two and three

gambles are W = 181, W = 234 and W = 306 but for larger multiples, everyone eligible to accept

does so. These utility functions satisfy Ross’s conditions when applied to positive wealth values but

they still do not imply that increasing the number of gambles makes the offers more attractive for

those with low wealth. Ross’s results allowed those with low wealth to consider a large number

of independent gambles that could lead to large negative wealth outcomes. We restrict the set of

options to offers that rule out negative wealth and, within the restricted choice available, those who

would turn down a one-off gamble will also turn down the larger feasible multiple gambles available

to them.

One thing to note about our tables is the number of gambles considered falls well short of the

colleague’s counter-offer to take 100 gambles. This is because, in our calculations, people who are

wealthy enough to be feasibly offered large multiples are all willing to accept them at levels of N

well below 100. As Rabin (2000) has pointed out, the N = 100 offer with G = 200 and L = 100 seems

incredibly attractive. It has an expected value of $5000 and a probability of only 0.00004 of losing

money. Rabin argued that nobody would turn down this gamble. In our calculations, since we are

not considering negative wealth outcomes, the N = 100 option can only be offered to people with

W > 10,000. It takes extremely high levels of risk aversion for anyone with these wealth levels to

turn down this offer. ForW = 10, 001, it takes γ > 8.5 to turn it down, well above the levels estimated

from empirical studies.

This suggests the greater culprit in the violation of expected utility theory in the story is probably

not the willingness to accept the large multiple but rather the rejection of the once-off gamble. A

CRRA expected utility maximizer withW = 10,001 should only turn down theG = 200, L = 100 once-

off gamble if they had γ > 48. The colleague cannot simultaneously have had both γ < 8.5 and γ >

48.
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Table 1: Threshold wealth levels for accepting N independent gambles with equal chances
of winning G and losing 100 for different values of G and γ

γ = 1.5 γ = 2

N G = 200 G = 150 G = 110 G = 200 G = 150 G = 110

1 299 450 1650 401 600 2201

2 338 475 1656 435 622 2205

3 386 503 1662 475 646 2210

4 446 538 1668 523 673 2215

5 520 581 1674 580 704 2221

6 608 638 1680 648 741 2226

7 703 714 1686 728 788 2231

8 801 804 1693 815 849 2236

9 901 1699 908 924 2241

10 1706 1005 1012 2247

11 1712 1103 1106 2252

12 1719 1202 1203 2258

13 1726 1301 1302 2263

14 1734 1401 2269

15 1741 2275

16 1749 2280

17 1757 2286

18 1801 2292

19 2298

20 2304

21 2310

22 2317

23 2324

24 2401
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Table 2: Preferred multiple size for threshold wealth levels for accepting N independent
gambles with equal chances of winning G and losing 100 for different values of G and

γ = 1.5

Will Accept G = 200 Preferred G = 150 Preferred G = 110 Preferred

1 299 1 450 1 1650 1

2 338 1 475 1 1656 1

3 386 2 503 2 1662 2

4 446 3 538 2 1668 2

5 520 4 581 3 1674 3

6 608 5 638 4 1680 3

7 703 6 714 6 1686 4

8 801 7 804 7 1693 4

9 901 8 901 8 1699 5

10 1001 9 1001 9 1706 5

11 1101 10 1101 10 1712 6

12 1201 12 1201 11 1719 6

13 1301 13 1301 13 1726 7

14 1401 14 1401 14 1734 8

15 1501 15 1501 15 1741 8

16 1601 16 1601 16 1749 9

17 1701 17 1701 17 1757 9

18 1801 18 1801 18 1801 13

19 1901 19 1901 19 1901 18

20 2001 20 2001 20 2001 20
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3.4. Comparison with Rabin (2000)

These calculations bear some resemblance to those in Rabin’s (2000) famous paper on risk aversion.

In an approach similar to Samuelson’s theorem, Rabin assumes that if people turn down a specific

gamble, then they will turn it down at all possible values of wealth. Based on this assumption, he

illustrates, based only on concavity of the utility function, how turning down small positive expected

value gambles would imply turning down larger gambles with much higher expected values that it

might be imagined most people would take.

The structure of our problem is different. Rabin considers gambles with two possible outcomes

while accepting N independent gambles implies N + 1 possible outcomes. But our calculations also

show how turning down one kind of gamble can imply turning down larger gambles with greater

expected value and the economics underlying why people turn down these larger gambles is similar.

For example, consider someone with W = 299 and γ = 1.5. Table 1 shows they will just about

accept a gamble with equal chances of gaining $200 and losing $100 but will not accept two of these

gambles. A quick calculation shows that this person would not accept an equal chance of winning

$4050 and losing $200. So we should not be surprised that people who are essentially indifferent

between winning $200 and losing $100 will turn down two of these gambles, which implies a one-

quarter chance of winning $400, a half chance of winning $100 and a one-quarter chance of losing

$200. Similar calculations of how turning down equal chances of winning $200 or losing $100 implies

an extreme aversion to losing $200 can be obtained from Rabin’s non-parametric method without

assuming a particular form for the utility function. A key difference, however, is that our numerical

results do not rely on any global assumption about rejecting certain gambles.
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4. Discussion

Samuelson’s paper has been discussed often over the years. A common reaction has been to consider

his colleague’s response to be perfectly reasonable. After all, people who accept multiple positive

expected value gambles will generally be better off than those who reject them. Psychologist Lola

Lopes (1996) described Samuelson’s colleague’s counter-offer as “eminently sensible” and viewed

the story as an illustration of the flaws inherent in expected utility theory. In other cases, such as

the previous literature on multiple gambles discussed here, it has been argued that perhaps the col-

league’s preferences were consistent with expected utility theory. This appears to have been the

colleague’s preferred explanation. Samuelson noted that his colleague assured him that he “wants to
stand with Daniel Bernoulli, Bentham, Ramsey, v. Neumann, Marschak and Savage on this basic issue” of

being an expected utility maximizer.

What we can say is that if the colleague was an expected utility maximizer, then it seems his pref-

erences did not satisfy DARA and as such were unusual. We have also shown that you do not need

to invoke Samuelson’s assumption that someone would turn down a gamble at all wealth levels to

obtain the result that turning down one gamble should imply turning down multiple such gambles.

In addition, we have described how the inductive method he used to arrive at his conclusion is not

generally the right way to evaluate whether to accept multiple independent gambles. And contrary

to Samuelson’s footnoted qualifier, DARA preferences do not over-turn his theorem but actually

strengthen it.

Two final points are worth making about this question. First, there is a possible alternative in-

terpretation of Samuelson’s colleague’s counter-offer. If the colleague had in mind that they had the

option to stop taking gambles at some point then Gollier (1996) has shown that an expected utility

maximizer with DARA preferences will accept gambles as part of a sequence that they would not

accept on a standalone basis. The possibility of multiple wins combined with being able to stop after

losses makes the offers more attractive as part of a sequence than when presented alone or as part

of a bundle of independent gambles. Gollier showed that the wealth threshold for accepting gam-

bles gets lower as there are more rounds remaining. This provides one way to possibly view the

colleague as still being an expected utility maximizer with DARA preferences. This interpretation

however, runs counter to the colleague’s request to “let me make 100 such gambles” and the appeal

to the law of large numbers, since ending a sequence early would rule out the sample getting large

enough to invoke this law.

Second, as an MIT professor in the early 1960s, the colleague almost certainly earned at least

$10,000 a year and likely had a comfortable lifestyle. Our calculations suggest he was either joking

or was not an expected utility maximizer. Most likely, Benartzi and Thaler (1996) and others who

have put down his reluctance to take the once-off gamble as being due to loss aversion are right. But

I guess we will never know.
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A Alternative Taylor Expansion

Here is an alternative way to prove the theoretical results in Section 2 that does not rely on using the

level of wealth when rejecting the gamble to calibrate risk aversion. Rather than assess the expected

utility from multiple independent gambles by approximating around W , we can compare the the

option to take N or N + 1 gambles by approximating around W +Nµ, the expected value of wealth

when accepting N gambles.

Writing XN as the outcome from accepting N independent gambles, expected utility can be writ-

ten as

E [U (W +XN )] = U (W +Nµ) +
U ′′ (W +Nµ)

2
Nσ2 (A.1)

Writing XN+1 as the outcome from accepting N + 1 gambles, expected utility is

E [U (W +XN+1)] = U (W +Nµ) + µU ′ (W +Nµ) +
U ′′ (W +Nµ)

2
E (XN+1 − µN)2 (A.2)

This last term can be written as

E (XN+1 − µN)2 = E (XN+1)
2 − 2µNE (XN+1) +N2µ2

= (N + 1)σ2 +
[
(N + 1)2 − 2N (N + 1) +N2

]
µ2

= (N + 1)σ2 +
[
2N2 + 2N + 1− 2N2 − 2N

]
µ2

= (N + 1)σ2 + µ2 (A.3)

Someone will prefer accepting N gambles to N + 1 if

µU ′ (W +Nµ) +
U ′′ (W +Nµ)

[
(N + 1)σ2 + µ2

]
2

≤ U ′′ (W +Nµ)Nσ2

2
(A.4)

which simplifies to

µU ′ (W +Nµ) +
U ′′ (W +Nµ)

(
σ2 + µ2

)
2

≤ 0 (A.5)

So the smaller multiple will be preferred if

r (W +Nµ) ≥ 2µ

µ2 + σ2
(A.6)

For a fixed value of N , DARA means this condition is more likely to be satisfied for smaller values

of W , meaning people with wealth below a specific threshold will prefer the smaller multiple. As

wealth rises, this inequality will be reversed so eventually people prefer larger multiples. One can

use these results to calculate a set of threshold levels of wealth rising in N for being willing to accept

multiple gambles of various sizes.
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