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The Trajectory of Obesity in a Cohort of Irish Children: An 

Application of Sequence Analysis  

 

 

1. Introduction 

There has been much concern about rates of obesity and overweight among children and young 

adults, in Ireland and abroad.  Ireland for example has seen an ongoing campaign entitled Let’s 

Take On Childhood Obesity, One Step at a Time, co-ordinated between  Safefood and the Irish 

Department of Health.  International concern is reflected in the report from The Lancet 

(Swinburne et al, 2019).  There is also evidence that, in some countries at least, child obesity 

rates may have plateaued (Keane et al, 2014, Abarca-Gomez et al, 2017). 

Childhood obesity is a major cause for concern and has been described as the primary 

childhood health problem in developed countries (Ebbeling et al, 2002).  It may be linked to a 

variety of serious conditions including cardiovascular dysfunction, type 2 diabetes, pulmonary, 

hepatic, renal and musculoskeletal complications.  The clustering of cardiovascular risk factors, 

sometimes referred to as insulin resistance syndrome has been identified in children as young 

as 5 years of age (Young-Hyman et al, 2002).  In addition, there are also likely to be adverse 

effects on health related quality of life and emotional states (Olds et al, 2011).  Moreover, the 

effects of childhood obesity may last well beyond childhood.  There is evidence that should 

obesity continue into adulthood, then there are increased risk factors for further serious 

conditions.1  For example, evidence from a British cohort suggests that being overweight in 

childhood increased the risk of dying from ischaemic heart disease in adulthood two fold over 

57 years (Gunnell et al, 1998). 

Much of the literature on obesity at adult and childhood level has been cross-sectional in nature, 

analysing obesity at a given point in time and comparing its incidence across factors such as 

age, gender and socioeconomic status.  The availability of high quality, longitudinal data, such 

as that available in child cohort studies however, enables analysis of the trajectory of obesity 

for children and young adults.  The availability of similar quality data for the principal carers 

(in almost all cases the biological mother) of these children allows comparison of trajectories 

 
1 For a comprehensive analysis of the health effects of obesity and overweight across all ages see GBD 2015 

Obesity Collaborators, 2017. 



 

 

for children and carers from the same family over time.2  Much of the analysis of the effect of 

maternal body mass index (BMI) on the trajectory of childhood obesity has focussed on pre-

conception BMI of the mother (see the reviews by Mattson et al, 2019 and  Heslehurst et al, 

2019). The analysis here differs from this research in that it instead compares trajectories of 

mother and child over the same time period. 

In this paper sequence analysis is employed to investigate the trajectory of obesity, using 

longitudinal data for Irish children/young adults aged 9, 13, 17 and 21, and for their mothers 

whose ages ranged from 26 to 50 when the child was aged 9.3  Sequence analysis has been used 

to analyse life-course events, though its use in studies of obesity is less commonplace.4 In 

sequence analysis it is the sequence of outcomes for each individual which is the basic unit of 

observation.  Thus while there could be, say, four waves of observations for 10,000 individuals, 

this only counts as 10,000 observations, rather than 40,000 observations, as would be the case 

with panel or repeated cross-sectional analysis.  The precise sequence is also important.  Thus 

imagine three possible categories, 1, 2 and 3 and four time periods.  In non-dynamic panel data 

analysis there is no distinction between an observation with a sequence of 1232 and one with 

a sequence of 2213.  In sequence analysis however, these sequences are treated distinctly. 

Sequence analysis also differs from mobility and transition analysis (for an application of these 

approaches to obesity data, see Madden, 2020).  These analyses focus upon transitions and 

mobility between different periods, rather than looking at the sequence as a whole.  Clearly the 

possible number of sequences will depend upon the number of periods of analysis and the 

possible outcomes for each period.  If there are t periods of analysis and s possible outcomes 

then the total number of possible sequences is 𝑠𝑡.  In particular, if there is a large number of 

periods, then the possible number of sequences can become very large indeed.  Typically, most 

individuals will only follow a subset of these sequences and it is often the case that some 

sequences are not observed at all.  Optimal matching analysis (OMA), which we outline in 

more detail below, can be used to obtain some metric of the “distance” between the sequences 

 
2 In nearly all cases in the data used here, the principal carer is the biological mother, so the terms “mother” and 

“maternal” will be employed. 

3 For simplicity we refer to the members of the GUI Child cohort as “children” even though by waves 3 and 4 

they are more accurately described as young adults. 

4 For a review of sequence analysis and other methods of life course analysis see Mikolai and Lyons-Amos 

(2017) and the refences therein. 



 

 

of different observations, and this information is contained in a dissimilarity matrix.  Following 

this, hierarchical cluster analysis can then be applied to the dissimilarity matrix to investigate 

patterns within the data.  If a clear number of clusters within the data can be identified (quite 

how to do this is discussed in more detail below) then these clusters can be used as dependent 

variables in multinomial analysis to investigate what observable characteristics are associated 

with membership of different clusters.  An example of this approach is McVicar and Anyadike-

Danes (2002) who examine transitions from school to work.  In their example, they have six 

possible outcomes and six periods, and hence 66= 646656 possible sequences. 

This is the approach followed here to analyse trajectories of obesity in our sample of Irish 

children and mothers.  These children and mothers are observed on four occasions and there 

are three possible outcomes in terms of their BMI category: “normal” body weight, overweight 

and obese (as defined by age and gender adjusted BMI)).  This implies there are 34=81 possible 

sequences, as the samples of children and mothers are analysed separately.  By applying OMA,  

followed by hierarchical cluster analysis, both samples are partitioned into different groups.  

and the partitions by children and by mothers can be compared.  This enables investigation of 

the degree to which sequences between mothers and children are correlated.  For example, if 

such a correlation is observed then it could be interpreted as reflecting the influence of a 

common environment.  It is also possible to analyse which observable covariates are associated 

with membership of particular groups and perhaps of most interest whether membership of a 

particular group for the mother is associated with membership of a given group for the child.   

What advantage does this offer over more “traditional” analysis of obesity?  Firstly, as outlined 

above, the unit of observation is the sequence, as opposed to individual episodes.  This arguably 

provides a different perspective on the dynamics of obesity, as opposed to the calculation of 

mobility indices, where, in some instances the mobility index may be independent of the 

direction of mobility.  Secondly, the cluster analysis enables the data to suggest different 

“types” or experiences of obesity dynamics which might not be revealed by standard regression 

analysis of obesity outcomes on covariates.  Following on from this, it is also useful to examine 

the statistical association between membership of these groups and observable covariates. 

The paper proceeds as follows.  In the next section similar work on obesity in Ireland and 

elsewhere is reviewed.  Sequence and cluster analysis are then discussed in more detail in 

section 3, explaining how OMA can be used to construct a dissimilarity matrix and then how 



 

 

to identify clusters using this matrix.  Section 4 discusses the data and present results before 

section 5 provides discussion and concluding comments. 

 

2.  Modelling BMI Trajectories 

Previous analyses of the dynamics of childhood obesity in Ireland have employed latent growth 

curve analysis.  For example, in the case of Ireland, McCrory et al (2019) estimated trajectories 

of childhood obesity from pooled GUI infant and child cohort data using latent growth curves5.   

This is a mixed hierarchical model with BMI for each child at time t a function of age and 

education levels.  Age is included as a quadratic and there are also interaction terms between 

age and education.   The analysis is also stratified by gender and maternal education.  This 

stratification of course differs from the approach here, where the data suggests the stratification 

via the cluster analysis. 

Another example of this type of analysis is Jabakhanji et al (2018) who analyse BMI 

trajectories across three waves of the GUI Infant cohort examining BMI at ages 9 months, 3 

years and 5 years.  The analysis is similar to McCrory et al except that a much wider range of 

covariates are employed in the model.  Again, the approach in this paper differs from the 

analysis here, for the same reasons as listed above for the McCrory et al paper. 

A feature of the above two approaches is that while individual variability is allowed for, the 

underlying assumption is that individuals belong to the same population, as represented by the 

single growth curve.  An approach closer in spirit to the analysis here is provided in Mattsson 

et al (2021) who use growth mixture modelling, which allows researchers to identify different 

subgroups and estimate growth curves for each subgroup.  Mattsson et al applied this approach 

to BMI measures for a sample of Irish children aged from birth to 5 years.  Three distinct 

classes were identified: normal, high BMI at birth followed by growth and then decline and 

finally slightly above median BMI at birth rising then to very high BMI by age 5.  Multinomial 

logit analysis is then carried out to investigate the association between class membership and 

various covariates.  While this approach has many similarities to sequence analysis, one 

 
5 There are two cohorts in the GUI study.  The infant cohort includes children born in 2008, while the child 

cohort includes children born in 1997-1998.  The analysis in this paper is of the child cohort.  The GUI dataset is 

discussed in more detail in section 4. 



 

 

important difference is that growth curve modelling is applied to the continuous BMI measure, 

whereas sequence analysis is applied to the distinct categories of normal, overweight and obese. 

In the international literature there are many applications of growth curve analysis to BMI 

trajectories for  both younger and older children (see the review by Mattsson et al, 2019, and 

references therein). 

Applications of sequence analysis to obesity categories are much less plentiful.  Lacey et al 

(2017) combine sequence analysis and growth curve modelling to analyse the impact of life 

course sequences on BMI trajectories.  Sequence analysis is used to construct ideal life-course 

sequences and the association between these sequences and BMI trajectories are then 

examined.  To the best of our knowledge, however, there are no direct applications of sequence 

analysis to sequences of BMI categories. 

One critical difference between the approaches adopted in the above mentioned papers and 

sequence analysis is the nature of the data employed. In the case of growth curve and growth 

mixture modelling, the data is continuous, typically raw BMI data or BMI z scores.  Sequence 

analysis however deals with categorical data, whereby each observation in each period belongs 

to a discrete, mutually exclusive and mutually exhaustive category.  There are advantages and 

disadvantages associated with both approaches.  The use of continuous BMI data does provide 

greater granularity and arguably employs more information.  However, this may come at the 

expense of loss of focus.  Thus growth curve analysis will be sensitive to changes in BMI which 

may be of limited clinical importance, as for example they may involve movements within the 

range of the “normal” weight category, movements which may have few health consequences.  

In the case of sequence analysis, only movements across key BMI thresholds will “count” as a 

change and these movements could be regarded as being of greater importance than movements 

within a category. 

There are also fundamental methodological differences between sequence analysis and latent 

growth curve analysis.  The former is algorithmically based, while the latter is a modelling 

approach with parametric assumptions to be made by the analyst.  As outlined below, sequence 

analysis also involves critical choices on behalf of the analyst and it is important to check for 

the sensitivity of results obtained to these choices.   



 

 

Finally, in the literature cited above it is typically childhood trajectories which are examined 

on their own, or at best, the influence of pre-pregnancy maternal BMI on these trajectories.  

This paper differs by explicitly analysing trajectories of children and mothers together and 

examining the degree of association between the different clusters obtained for mothers and 

children following the sequence analysis. 

We now turn to provide a brief account of sequence analysis and how the results can then be 

used to generate clusters. 

 

3.  Sequence Analysis and Cluster Analysis 

Sequence analysis is a form of analysis where the fundamental observation is a sequence of 

“states” or categories for each individual.  In its simplest case, where there is a balanced panel 

of individuals, there are n individuals, observed over t periods and there are s possible states.  

For each individual there will be a sequence and it is this sequence which is the key observation.  

The number of possible states is st so with higher values of t in particular it is clear that this 

number can run into thousands, though in practice it is often the case that only a subset of 

sequences are observed.  In the application in this paper there four waves of data and hence 

t=4, and there are three possible states, “normal weight”, “overweight” and “obese”, and hence 

s=3 and st=81.  Thus a typical sequence might be NNOvOb i.e. two states at normal weight, 

followed by a state overweight and then a state obese.  It is important to remember that the 

precise ordering of states is critical here, not just the frequency of states in a given sequence. 

Ultimately in most applications of sequence analysis the concern is whether individuals 

(children and mothers separately) with “similar” sequences can be grouped into clusters.  Such 

an approach only makes sense if there is some means of measuring the degree of similarity (or 

dissimilarity) between sequences.  The most common approach to measuring such 

dissimilarity, and which is adopted here, is Optimal Matching Analysis (OMA, Macindoe and 

Abbott, 2004).  Dissimilarity is defined in OMA in terms of the number, order and duration of 

states within sequences.  More specifically, given any two (different) sequences, how many 

operations does it take to transform one sequence into another.  Operations can be insertions 

(adding a state to the sequence), deletions (removing a state from the sequence) or replacements 

(one state is replaced by another).  In the case of a balanced panel, then it is replacements which 



 

 

are key, since  an insertion or deletion would never be required in isolation, as that would imply 

that sequences then become of unequal length.   

Critical to the application of OMA is the specification of a cost for each operation.  Costs may 

be defined on the basis of a priori information available to the researcher.  Another approach 

is to use the empirical transition rates from the data to generate the substitution cost matrix, 

and that is the approach adopted here.  A less frequently observed transition will then have a 

relatively higher substitution cost.   

Following the application of the OMA algorithm, an nxn matrix of the dissimilarity between 

each observation is obtained.  In practice many observations will share the same sequence and 

so many elements of this matrix will be zero.  Cluster analysis is applied to this matrix via the 

clustermat command in Stata which applies hierarchical cluster analysis to a dissimilarity 

matrix.  The hierarchical approach proceeds via a series of successive fusions of the sequences 

into groups.  Thus suppose initially there are G distinct sequences in the data.  The first stage 

of cluster analysis fuses the two most similar groups to form G-1 clusters and this process 

continues.  At each stage of the cluster analysis sequences which are most “similar” are fused 

into a group, with different approaches to fusing depending upon the different ways of defining 

similarity/distance between groups.  In this paper the Wards method is used which, at each 

step, finds the pair of clusters leading to the minimum within-cluster variance after merging.   

Initially all “clusters” have only one element and the distance between them is the squared 

Euclidean distance.  When clusters have been formed the distance is then the squared Euclidean 

distance between cluster centres.  The Wards method maximises the variation between clusters 

while minimizing that within clusters. 

Ultimately, the fusion into clusters could proceed until the entire sample has been fused into 

one group.  Hence some form of “stopping rule” is needed.  There is little in the way of 

definitive advice on choice of stopping rule, and a mixture of statistical stopping rules and 

researcher’s discretion is usually employed (Everitt et al, 2011).  The stopping rules employed 

here are the Calinski-Harabasz (CH) pseudo F, the Duda-Hart (DH) index and the pseudo T 

squared index.   

Suppose there are n observations in total and k clusters.  Then the CH index is given by 𝐶𝐻 =

(𝑇𝑆𝑆𝐷−∑ 𝑆𝑆𝐷𝑖
𝑘
𝑖=1 )/(𝑘−1)

(∑ 𝑆𝑆𝐷𝑖
𝑘
𝑖=1 )/(𝑛−𝑘)

 where TSSD is the total sum of squared distances, and SSDi is the sum of 



 

 

squared distances within group i.  Effectively this compares the sum of squared distances 

between the clusters relative to the sum of squared distances within the clusters, adjusting for 

the number of clusters.    If CH increases monotonically with k this is indicative of no clustering 

structure.  If CH declines monotonically with k then this indicates a hierarchical structure while 

if CH increases to a maximum at k this suggests the presence of k clusters. 

The other stopping rule utilized is the Duda-Hart index.  Consider the case where we have k+1 

and k clusters and let  𝐷𝐻 =
𝑆𝑆𝐷𝑘+1

𝑆𝑆𝐷𝑘
 represent the sum of squared distances for the data with 

k+1 clusters relative to the sum of squared distances with k clusters.  Higher values of the DH 

statistic indicate distinct clustering, so as with the CH index, if a maximum at k is observed, 

then this suggests k clusters.  Closely related to the DH index is the pseudo T squared index, 

which is the ratio of the between cluster sum of squares for k and k+1 to the sum of the within 

cluster sum of squares of k and k+1 clusters, adjusted for the number of observations in each 

cluster.  In this case a lower value of the pseudo T squared index indicates the presence of 

clustering. 

In common with other studies in this area subjective judgements on behalf of the researcher 

are also employed as the stopping rules can sometimes indicate a number of clusters which is 

not plausible or a number of clusters which is not helpful in terms of subsequent analysis 

(Everitt et al, 2011).   

The next section discusses the data and present the results of the analysis. 

 

4.  Data and Results 

The data in this paper comes from the first four waves of the GUI Child Cohort 98.  This tracks 

the development of a cohort of children born in Ireland in the period November 1997-October 

1998 (see Williams et al, 2009).  The sampling frame of the data was the national primary 

school system, with 910 randomly selected schools participating in the study.  Weight was 

measured to the nearest 0.5 kg using a medically approved flat mechanical scales and children 

were advised to wear light clothing.  Height was measured to the nearest mm using a height 

measuring stick.  The data also contains a wide range of information concerning the principal 

carers (in nearly all cases the biological mothers) of the children. 



 

 

In all, the original sample in wave 1 consisted of 8568 children.  Observations for where there 

were not valid height and weight measures were dropped, leaving a sample size from wave 1 

of 8136.  These children were then re-surveyed at ages 13, 17 and 21 for the second, third and 

fourth waves.  Since we wish to follow trajectories of BMI over the four waves, we choose to 

use a balanced panel i.e. only those paired observations of children and mothers who appear in 

all waves and for whom valid height and weight measurements are available.  That reduces the 

sample size to 4004 (2045 females and 1959 males). 

In making these adjustments the issue of attrition arises.   Attrition in surveys such as GUI is 

rarely random and this is confirmed in A Summary Guide to Wave 4 of Growing Up in Ireland’s 

Cohort ’98 (Child Cohort) at 20 Years of Age where it is shown that attrition tends to be higher 

for those with less advantaged socio-economic backgrounds.  Sample weights are available, 

however sequence analysis does not permit the use of such weights so the results below must 

be interpreted in this light. 

The categories, or “states” of obesity are calculated from BMI measures.  BMI is obtained by 

dividing weight (in kilos) by height (in metres) squared.  The World Health Organisation 

suggests a state of “underweight” for  BMI from 0-18.5, “normal” for BMI between 18 and 25, 

“overweight” for BMI between 25 and 30, “obese” for BMI between 30 and 40 and severely 

obese for BMI over 40.  We have very few observations with BMI either below 18.5 or above 

40, so we simply use three states: normal, overweight and obese. 

There is a further important issue which must be taken into account when using BMI to measure 

obesity in children.  While the BMI thresholds for adults have general acceptance and do not 

differ by age or gender, the same is not true for children, where BMI can change substantially 

with age and gender.  For example, at birth median BMI is around 13, this increases to 17 at 

age 1, decreases to 15.5 at age 6 and increases to 21 at age 20 (Cole et al, 2000).  Cole et al 

(2000) provide a set of obesity/overweight cutoff points for BMI for childhood based upon 

international data and which they suggest should be used for international comparisons.  They 

obtain these by drawing centile curves which pass through the adult cut-off points at age 18 

and which then can be traced back to provide “equivalent” cut-off points for different ages and 

genders.  The cutoffs are obtained by averaging data from large nationally representative 

surveys from Brazil, Great Britain, Hong Kong, the Netherlands, Singapore and the US, with 

in total nearly 200,000 observations aged from birth to 25. 



 

 

The cutoffs are provided at half-yearly intervals.  Thus for the first wave of data, the vast 

majority of children are aged 9.  Assuming that age is distributed approximately uniformly 

within the cohort of  9 year olds, it seems appropriate to take the cut-off for age 9.5.  Similarly 

for waves 2 and 3 of our data (who are mostly 13 and 17 year olds respectively) we use the cut-

offs for ages 13.5 and 17.5.  For the very small numbers of children who were aged 8 or 10 in 

wave 1 we use thresholds of (8.5, 10), (12.5, 14) and (16.5, 18) respectively for waves 1-3 and 

these cutoffs are presented in Table 1.  These cutoffs have also been used in previous studies 

which have analysed child obesity using GUI e.g. Layte and McCrory (2011).  Note that for 

wave 4, all observations are adults and so the WHO thresholds can be used.  Since the mothers 

in the sample are adults for all four waves, again the standard WHO thresholds are used. 

Before providing results from the sequence analysis it is useful to run through some summary 

statistics for the sample.   Tables 2a and 2b provides rates of obesity and overweight (i.e. 

overweight but not obese) for the total sample of mothers and children (also by gender for the 

children) for the four waves.  We see that for children, obesity rates increased in wave 3 and 

again in wave 4, especially for females (where obesity rates are generally higher across all 

waves).  The level of overweight also moves in generally the same direction, with little change 

between waves 1 and 3 and then increasing in wave 4.  The gender gap is less pronounced here 

and what seems to be happening is that for both genders BMI is increasing and children are 

shifting into higher categories.  However, in the case of females a greater proportion are 

ultimately moving into the highest category.6 

Similar trends are observed for the mothers in the sample, with the fraction obese doubling 

between waves 1 and wave 4.  Of course, the mothers are all 11 years older by wave 4 and BMI 

tends to increase with age (Ogden et al, 2006 and Yeom et al, 2009). 

What we are most interested in here are not just the levels of obesity and overweight, but rather 

the trajectory over four periods.  We have three different obesity “states” which an individual 

can be in: normal, overweight or obese.  We also have four observations for each individual: 

when the children are aged aged 9, 13, 17 and 20.  In terms of analysis each “observation” is 

the sequence of states for any given individual.  Thus if someone is in the normal weight 

 
6 We present summary statistics by gender for children.  However, for the sequence and cluster analysis we 

present results for the children as a whole, in order to save space.  Sequence and cluster analysis for the children 

by gender are available on request. 



 

 

category when aged 9, 13 and 17 and then is overweight aged 20 their sequence reads as: N-

N-N-Ov.  In all there are 34=81 possible sequences, but clearly some are likely to be more 

prevalent than others and some specific sequences may not be observed at all.  It should also 

be noted that the data is censored in the sense that we do not observe what category either the 

children or the mothers were in before wave 1 data was collected.  Nor do we observe any 

transitions which may have occurred and then be reversed between data waves.  Thus it is 

possible that a child transitioned from normal to overweight at age 10 and then back again to 

normal at age 12.  These transitions would not be observed. 

Table 3 shows the frequency table of sequences for the children and for the mothers, where we 

include only the top 11 sequences for brevity (sequence 10 and 11 were tied).  The sequences 

for the children are quite concentrated, with the top 5 sequences accounting for around three 

quarters of all observations.  Sequences are less concentrated for mothers, with the top 5 only 

accounting for just over half of the sequences.  In other words, there is a greater diversity of 

sequences observed for the mothers than for the children. 

The data can also be summarized graphically.  Figures 1a and 1b shows the sequence index 

plots for children and then for mothers as first proposed by Scherer (2001).  Each sequence is 

represented by a horizontal line, with a different colour for each state.  These figures show how 

dominant the sequence  N-N-N-N is for children, where N has the blue colour, though it is 

noticeable that it is less dominant for mothers. 

The next stage in the analysis is to apply OMA to determine the dissimilarity matrix which will 

then be used in the cluster analysis and this implies finding values for the substitution costs.  

We choose to use a data-driven substitution cost matrix based on the transition rates between 

the states.  For example, this process generated the following matrices for children and mothers: 

𝑆𝑐 = [
0 0.201 1.759

0.201 0 1.04
1.759 1.04 0

] 

𝑆𝑚 = [
0 0.896 1.535

0.896 0 0.569
1.535 0.569 0

] 

Row 1 and column 1 refer to “normal”, row and column 2 to “overweight” and row and column 

3 to “obese”.  Note the matrix is symmetric as it is assumed that substitution costs are the same 

regardless of the direction of the transition.  Thus for example, for children, the relatively low 



 

 

value of 0.201 reflects the fact that the most common transitions are between normal and 

overweight.  The high value of 1.759 reflects the fact a transition direct from normal to obese 

is very rare while the intermediate value of 1.040 is consistent with transitions from overweight 

to obesity.   

The final piece of information needed to apply OMA is the indel cost.  Here, indel costs are set 

at 75% of the highest substitution cost.  This implies that an insertion plus a deletion will always 

have a higher cost than the corresponding substitution.7 

OMA provides a distance or dissimilarity matrix between each sequence.  Clearly for many 

pairwise comparisons this distance will be zero since the sequences are the same and thus the 

corresponding element in the matrix will be zero.  Given the dissimilarity matrix, it is now 

possible to search for clusters, using a combination of results from the stopping rules and 

researchers discretion to identify the appropriate number of clusters.  Tables 4a and 4b show 

the values for the different stopping rule indices for each cluster value for children and mothers, 

with the “optimal” number of clusters for each stopping rule shaded.8  In choosing these cluster 

values a number of informal “rules” have been applied.  First of all, the CH index simply 

decreases monotonically as the number of clusters increases, and thus in both cases it indicates 

an optimal number of k=2 clusters.  The DH and pseudo T squared indices suggest optimal 

values in excess of two but we also apply discretion  to only consider cluster solutions equal to 

or below five, as a number in excess of five is regarded as too unwieldy for subsequent analysis 

and provides too much “noise”. 

For the children, the CH and DH indices suggest a value of k=2, while the pseudo T squared 

suggests k=4.  For mothers, CH suggests k=2, while DH and pseudo T squared suggest k=5. 

Examination of the sequence index plots for the different clusterings  on figures 2a-2d is helpful 

in terms of determining the characteristics of each group.  Take for example, the sequence 

index plot for children, when k=4, figure 2b.  One group consists of children who are in the 

normal category for every wave.  A second group consists of children who move between 

normal and overweight, though most are overweight by wave 4. The other two groups consist 

 
7 I am grateful to Brendan Halpin for discussion on this. 

8 By “optimal” is meant the number of clusters which the stopping rule suggests shows the most distinct 

clustering pattern. 



 

 

of a group who vary between overweight and obese, though by wave 4 most are obese, while 

the final group consists of children who have spent at least three of the four waves obese.  

Turning now to figure 2a, where k=2, we can see that the first two groups have been combined 

into a single group who have never been in the obese category, indeed many of them have been 

in the normal category for all four waves.  Meanwhile the latter two groups (from the k=4 

clustering) have now been combined into a group of children who have been obese at some 

stage of the four waves. 

Further information regarding how the groups are formed can be obtained from examination 

of the dendograms.  To economise on space, only the dendogram for children is presented.  The 

dendogram shows the hierarchical clustering in the data, where the horizontal distance between 

each cluster essentially shows the degree of dissimilarity between them.  In the case of 

hierarchical clustering, we start with as many clusters as observations and then keep combining 

groups which are “close” to each other.  Figure 3 shows the latter stages of this process as we 

move from ten to two clusters.  As a rule of thumb, the stopping rule is suggested as wherever 

a large horizontal gap appears on the dendogram.   In figure 3 the gaps for four and two 

clusterings (the optimal values as suggested by the stopping rules) are clearly visible.9   

We will now summarise the findings from the cluster analysis.  For the children, we presented 

the sequence index plots for k=2 and 4 and we have already discussed the qualitative difference 

between the two clusters.  As to which is the “better” or more informative clustering, much 

depends upon the level of granularity for which the analyst is seeking.  The judgement of this 

researcher is that the k=4 split does provide valuable extra information. 

For the mothers, stopping rules suggest an optimal value of k=2 or 5.  In the case of two groups, 

one consists of mothers who have never been in the normal weight category for the periods we 

observe them.  The other group, the larger group, consists of mothers who have been normal 

for at least one period.  The five group clustering is arguably the most complex split and 

interestingly the groups are more homogenous in size than is the case with the clusterings for 

the children.  There is a group where mothers are in the normal category in all four waves and 

there is also a group where mothers move between different categories but finish wave 4 in the 

normal category.  There are then two groups where mothers vary between overweight and 

 
9 Dendograms for the other clusterings are available on request. 



 

 

obese and the principal distinguishing characteristic here seems to be that for one of these 

groups, either the mothers predominantly spend time in the obese category, or else, in a small 

number of cases spend either wave 3 or 4 obese.  The final group, the largest one in absolute 

size, consists of mothers who have all spent at least one period in the normal category, but who, 

by wave 4, are either overweight or obese.  Again, we have taken the judgement that five is the 

upper limit for clustering.  It is arguable that the five group clustering provides too much 

granularity.  However, arguably the two group clustering provides too little granularity.  For 

the subsequent analysis we will examine the groupings of k=2,4 for children and k=2,5 for 

mothers.  A summary of the features of these clustering groups for children and mothers is 

provided in tables 5a and 5b. 

Given that sequence data for children and their mothers are available, it is also worth 

investigating if there is any correlation between the clusterings i.e.in terms of the cluster 

analysis, is there any correspondence between the groups to which mothers and their children 

are assigned.  This can be investigated via the Adjusted Rand Index (ARI) and Cohen’s kappa.  

Both measures indicate the extent of agreement between two different partitions of data and 

are expressed relative to that agreement which would arise purely by chance. Tables 6a and 6b 

show the indices for the 2, 3, 4 and 5 cluster solutions.  The ARI index shows very little 

correspondence between the partitions for children and mothers with all values less than 0.05 

and some even negative.  Cohen’s kappa shows relatively higher values but in no case does it 

exceed 0.11.10  It seems fair to say that in terms of sequences at least, there is very little 

correlation between mothers and children. 

The final analysis we carry out is to see what (if any) observable characteristics are associated 

with membership of the different clusters.  We do this in tables 7a-7c via multilogit analysis 

where the dependent variable is membership of a particular cluster and we do this for the cluster 

solutions suggested by the stopping rules.  Hence values of 2 and 4 for children, and 2 and 5 

for mothers.    For children, the independent variables are maternal education, maternal health, 

maternal diet, maternal BMI status, maternal age, child gender, child exercise and child health. 

All of these variables are evaluated at their wave 1 level as we choose to fix on the value of 

 
10 Values of Cohen’s kappa between 0.01 and 0.2 are regarded as indicating “…none to slight agreement” 

(McHugh, 2012). 



 

 

these variables from one wave only and wave 1 gives the values at the youngest age for the 

child when diet and exercise habits etc are becoming established. 

As additional right hand variables we also include mother’s group membership according to 

the two clusterings (k=2,5).  Thus we have two tables for children, tables 6a and 6b, but only 

one table for mothers (table 6c) as it seems less plausible that child group membership would 

influence mothers obesity trajectories.      

We first of all discuss results for children.  Table 7a deals with the two group clustering for 

children and the omitted group consists of children who have been either normal or overweight, 

while group 2 consists of children who have been obese in at least one wave.  Most variables 

in the regression are statistically significant and the signs are in the “expected” direction.  Those 

children who have been obese in at least one wave tend to have lower maternal education, are 

more likely to be female, exercise less, have mothers who smoke and who are or have been 

obese themselves.  Perhaps most interesting is that mothers cluster group 1 i.e. mothers who 

were either obese/overweight over the waves has little predictive power, given that mothers 

wave 1 obesity status is already included.  The next column has the same right hand variables 

except that now we use the five group clustering for mothers on the right hand side, and now 

mothers cluster membership is significant.  Note that the excluded mothers group is group 4 

i.e. those mothers who never become obese.  All other mothers groupings are now significant 

and associated with child membership of group 2 i.e. children who were obese in at least one 

wave.  It is noticeable however that the magnitude of the coefficients on mothers group 

membership are all quite similar. 

Turning now to table 7b, where we have k=4 for children, the omitted child group becomes 

group 2 (consisting of children who are normal in all waves) and then higher numbered 

indicating longer periods spent obese.  The pattern of results is qualitatively very similar to the 

case where k=2, with more pronounced effects (in the sense of coefficients which are higher in 

absolute value) observed as we move to higher groups.  The protective effect of higher maternal 

education becomes clear as does the effect of the mother being obese in wave 1.  In terms of 

the influence of mothers group membership, when we have only 2 groups for the mothers, a 

significant effect is only observed for children’s membership of group 3, where children spend 

the final two waves as obese, but which is not the most “severe” group for children in terms of 

obesity.   



 

 

In the most complex case where we have k=4 for children and k=5 for mothers, the largest 

coefficient is observed for the effect of mothers being in group 2 (highest incidence of obesity 

for mothers over the waves) on children being in group 3 (where they spend the final two waves 

being obese).  

For the case of mothers in table 7c we have fewer explanatory variables (as we cannot include 

mother’s weight category in wave 1 as we do with the children, and it is less plausible to include 

child cluster group membership).  For the case of two groups the omitted group is that which 

spends time either overweight or obese.  We see that membership of the other group, where at 

least one period is spent in the normal weight category is positively associated with higher 

education and negatively associated with dieting.  For the case of five groups, the omitted group 

again is those mothers who spent most waves as obese or overweight.  Higher education is 

associated with membership of groups spending more time in the normal weight category and 

we also see an effect for maternal diet. 

In table 7a and 7c results are also presented using approaches do not take explicit account of 

the sequences.  These are a random effects (RE) ordered logit panel model using the same right 

hand variables (with the exception of the variable for principal carer’s diet which is only 

available for three waves and hence cannot be included in the panel analysis), and a simple 

fixed effect (FE) OLS model where the categories are treated as a cardinal variable.11  A direct 

comparison of coefficients is complicated by the fact that the models from the cluster analysis 

are multinomial logits and interpretation of coefficients will depend upon the omitted group, 

and in addition the FE model is OLS rather than logit.  In this case it seems easiest to compare 

signs of coefficients and levels of significance.   

Going back to table 7a, the models from the clusters for children of both genders, the pattern 

of significance across coefficients shows a close correspondence between the cluster-derived 

multinomial logit models and the RE ordered logit.  Higher levels of maternal education are 

associated with being in the normal weight category, as is child exercise.  Having a mother 

who is overweight or obese is associated with being in the overweight or obese categories, and 

this is also the case for having a mother who smokes.  The FE model on the other hand does 

not show such a strong correspondence.  Maternal education is not significant at all, nor is 

 
11 A FE ordered logit model was also ran with qualitatively similar results which are available on request. 



 

 

maternal smoking status.  Significance levels for child health, exercise and maternal 

obesity/overweight status are all in line with the cluster and RE models. 

For table 7c, which refers to mothers, care must be taken regarding interpretation of coefficients 

here as the omitted group in the ML analysis is the group consisting mostly of overweight and 

obese.  Bearing that in mind, again we see a role for education in all models with higher 

education associated with being in the normal weight category and ill-health associated with 

membership of obese or overweight categories.  When dealing with mothers rather than their 

children, the effect of smoking is in the opposite direction.  For children, if the mother smoked 

this was associated with being overweight or obese but for the mothers themselves it appears 

to be associated with being normal.  It is also interesting to note that in this case the FE model 

is far more in agreement with the ML and RE ordered logit models. 

 

5. Discussion and Conclusion 

This paper has applied sequence and then cluster analysis to the trajectories of obesity of a 

sample of Irish adolescents and their mothers over an eleven year period.  The sequence 

analysis showed that only a limited number of the possible sequences were actually observed 

and that there was less diversity of experience among children than their mothers.  This is 

mainly explained by the relatively high proportion (over 57 per cent) of children who never 

experienced any wave outside of the “normal” weight category.  While this sequence of 

categories was also the most common for mothers, the proportion of mothers who remained in 

the normal category for all survey waves was markedly less, at 22 per cent.  Overall, there was 

a greater variety of sequences amongst the mothers. 

 

The subsequent cluster analysis showed signs of clustering amongst children and their mothers.  

In both cases two clustering solutions were suggested by the stopping rules:  one was very 

simply consisting of just two groups.  The other was more complex with four groups in the 

case of children, and five groups in the case of mothers.  Notably, the clustering patterns for 

children and mothers showed very little correlation, which could be interpreted as evidence 

against some common unobserved family factor.  For both mothers and children, the clusterings 

observed were plausible in the sense that each group had a commonality of experience with 

respect to the number of waves spent in each category, or in the pattern over time. 



 

 

 

Finally, investigation of what factors are associated with membership of each clustering group 

revealed roles for maternal education, diet and exercise.  The role of mothers group 

membership in terms of explaining child group membership was mixed, in the sense that for 

the broader clusterings (k=2 for both mothers and children) little association was found.  For 

the more granular clusterings, some statistically significant association was found, but the 

pattern of association was difficult to interpret.  It was also interesting to note that more 

traditional panel data analysis which did not exploit the sequences provided qualitatively 

similar results in terms of the effects of right hand variables. 

 

It seems fair to ask how much extra insight sequence and cluster analysis adds over the more 

traditional panel data analysis.  It encourages a more holistic analysis of the trajectory, in that 

the unit of observation is the complete sequence as opposed to panel data analysis whereby 

statistical associations arise from deviations from the within person mean over the sequence.  

Sequence analysis provides an attractive visualization of BMI trajectories via the sequence 

index plots and the sequence frequency tables provide a valuable summary of the differing 

concentration of sequences between children and mothers.   

 

Cluster analysis partitioned the sample into distinct groups and while the clusterings with only 

two groups arguably did not provide much extra insight, clusterings with four and five groups 

for children and mothers respectively were able to pick out subtle differences based not just on 

the number of waves spent in different categories, but also on the pattern over time e.g. the 

distinction between groups 3 and 5 for mothers, where for both groups there is time spent in 

all three categories, yet group 5 differs in that all members of this group spend the final wave 

in the normal category. 

 

In terms of the usefulness of the cluster analysis for policy purposes, much depends upon what 

we could regard as the “external validity” of the clustering.  Is the pattern of clustering 

discovered here typical for a cohort of children/young adults in a developed country or is it 

simply unique to this sample?  In this regard, application of the same analysis to the Infant 

cohort of GUI could be very helpful.  However, the factors associated with membership of 

different groups seem to be more or less the same factors for which association is found using 



 

 

more traditional analysis, and so to this extent, sequence/cluster analysis may offer relatively 

little extra insight to the policy-maker. 

 

Of course, the clustering solutions here also have potential use as explanatory variables for 

other aspects of life course analysis (e.g. Lacey et al, 2017).  That, however, is an issue for 

future research.   
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Table 1: Age and Gender Specific Cutoffs for Overweight and Obesity from Cole et al 

(2000) 

 Male Female 

Age Overweight Obese Overweight Obese 

8.5 18.76 22.17 18.69 22.18 

9.5 19.46 23.39 19.45 23.46 

10.5 20.20 24.57 20.29 24.77 

12.5 21.56 26.43 22.14 27.24 

13.5 22.27 27.25 22.98 28.20 

14.5 22.96 27.98 23.66 28.87 

16.5 24.19 29.14 24.54 29.56 

17.5 24.73 29.7 24.85 29.84 

18.0 25.0 30.0 25.0 30.0 

 

Table 2a: Obesity/Overweight rates by gender, waves 1-4 (standard errors in italics), 

N=4004. 

 Overall Male Female 

 W1 W2 W3 W4 W1 W2 W3 W4 W1 W2 W3 W4 

Ob .056 

.006 

.053 

.005 

.069 

.006 

.117 

.008 

.048 

.007 

.043 

.007 

.056 

.007 

.075 

.009 

.064 

.009 

.063 

.009 

.081 

.009 

.161 

.013 

Ov .190 

.009 

.193 

.009 

.196 

.009 

.233 

.009 

.173 

.012 

.180 

.012 

.187 

.012 

.244 

.014 

.213 

.013 

.211 

.013 

.212 

.013 

.221 

.013 

 

Table 2b: Obesity/Overweight rates for Mothers, waves 1-4 (standard errors in italics). 

 W1 W2 W3 W4 

Obese 0.194 

0.009 

0.256 

0.010 

0.313 

0.011 

0.403 

0.011 

Overweight 0.333 

0.011 

0.346 

0.011 

0.346 

0.011 

0.285 

0.010 

 

  



 

 

Table 3a: Frequency Table of Sequences - Children 

 

Sequence Pattern Frequency Percent Cumulative 

N-N-N-N 2,301 57.47 57.47 

N-N-N-Ov 283 7.07 64.54 

N-N-Ov-Ov 166 4.15 68.68 

Ov-N-N-N 122 3.05 71.73 

Ov-Ov-Ov-Ov 117 2.92 74.65 

N-N-Ov-N 72 1.80 76.45 

N-Ov-N-N 69 1.72 78.17 

Ov-N-N-Ov 64 1.60 79.77 

Ov-Ov-N-N 64 1.60 81.37 

Ob-Ob-Ob-Ob 57 1.42 82.79 

N-Ov-Ov-Ov 53 1.32 84.12 

Ov-N-Ov-Ov 53 1.32 84.12 

 

 

 

Table 3b: Frequency Table of Sequences – Mothers 

 

Sequence Pattern Frequency Percent Cumulative 

N-N-N-N 909 22.70 22.70 

Ob-Ob-Ob-Ob 453 11.31 34.02 

Ov-Ov-Ov-Ov 340 8.49 42.51 

N-Ov-Ov-Ov 199 4.97 47.48 

N-N-N-Ob 163 4.07 51.55 

Ov-Ov-Ov-Ob 157 3.92 55.47 

Ov-Ob-Ob-Ob 152 3.80 59.27 

N-N-Ov-Ov 144 3.60 62.86 

Ov-Ov-Ob-Ob 127 3.17 66.03 

N-N-Ow-N 99 2.47 68.51 

N-N-N-Ow 99 2.47 70.98 

 

  



 

 

Table 4a: Stopping Rule Indices - Children 

 

Number of Clusters CH Pseudo F Duda Hart Pseudo T squared 

1  0.5298 3552.18 

2 3552.18 0.6966 205.58 

3 2590.82 0.6004 2347.65 

4 2499.09 0.6163 139.48 

5 2438.98 0.4039 363.04 

6 2388.36 0.7311 451.21 

7 2427.37 0.6853 324.19 

8 2404.2 0.5514 82.18 

9 2442.19 0.5958 82.09 

10 2464.79 0.2625 1458.35 

11 2527.99 0.6059 290.75 

12 2623.11 0.0371 2152.64 

13 2709.44 0.247 265.28 

14 2840.91 0.5575 46.03 

15 2996.07 0.4391 328.33 

 

 

Table 4b: Stopping Rule Indices – Mothers 

 

Number of Clusters CH Pseudo F Duda Hart Pseudo T squared 

1  0.5844 2846.45 

2 2846.45 0.6691 1203.22 

3 2485.58 0.5578 1242.37 

4 2245.91 0.5598 1052.18 

5 2096.7 0.7137 438.42 

6 2107.8 0.5868 480.87 

7 2081.88 0.5341 791.31 

8 2071.09 0.7076 177.29 

9 2027.66 0.5478 336.79 

10 2030.45 0.6226 398.88 

11 2009.79 0.5259 310.15 

12 2018.65 0.6924 136.39 

13 2055.43 0.6436 251.39 

14 2081.35 0.5356 275.72 

15 2128.01 0.2682 867.51 

 

  



 

 

 

Table 5a: Features of Cluster Groupings, k=2 

 

 Children Mothers 

Group 1 Either normal or overweight in 

every wave. 

Either obese or overweight in every 

wave 

Group 2 Obese in at least one wave Normal in at least one wave 

 

Table 5b: Features of Cluster Groupings, k=4, 5 

 

 Children Mothers 

Group 1 Never obese in any wave, 

overweight in at least one wave 

Always obese or overweight.  Some 

only overweight 

Group 2 Normal in every wave Always obese or overweight, always 

obese in at least one wave.  Some 

only obese. 

Group 3 Obese in at least one, but never 

more than two waves.  Obese in 

wave 4 

Mixture of normal, overweight and 

obese, but either obese or 

overweight in final wave. 

Group 4 At least two waves spent obese.  

Never normal in any wave 

Normal in every wave 

Group 5  Mixture of normal, overweight and 

obese, but all normal in final wave. 

 

Table 6a: ARI index between Clustering for Children and Mothers 

Childrens 

Groups 

Mothers Groups 

 k=2 k=3 k=4 k=5 

k=2 0.0415 -0.0029 0.0163 0.0050 

k=3 0.0417 -0.0051 0.0161 0.0041 

k=4 0.0483 0.0064 0.0288 0.0133 

k=5 0.0484 0.0057 0.0287 0.0130 

 

Table 6b: Kappa max index between Clustering for Children and Mothers 

Childrens 

Groups 

Mothers Groups 

 k=2 k=3 k=4 k=5 

k=2 0.1140 0.0629 0.0556 0.0456 

k=3 0.0841 0.0429 0.0437 0.0352 

k=4 0.1140 0.0739 0.0681 0.0581 

k=5 0.1140 0.0760 0.0678 0.0557 

 

  



 

 

Table 7a: Multinomial Logistic Regression on Cluster Membership, children (k=2) 
 k=2 k=2 REOL FE 

Variables (all 

W1) 

Group 1 Group 1   

Leaving Cert -0.357** -0.351** -0.114 0.003 

 (0.145) (0.145) (0.142) (0.025) 

Non-degree -0.666*** -0.662*** -0.478*** -0.021 

 (0.160) (0.160) (0.154) (0.026) 

3rd Level -0.844*** -0.828*** -0.634*** 0.013 

 (0.165) (0.165) (0.154) (0.027) 

Maternal Age -0.007 -0.006 -0.031***  

 (0.010) (0.010) (0.011)  

Gender 0.239** 0.237** 0.172  

 (0.104) (0.104) (0.111)  

Mum Chr Hlth 0.033 0.039 0.100 0.003 

 (0.150) (0.150) (0.089) (0.013) 

Mum Smokes 0.552*** 0.536*** 0.305*** -0.006 

 (0.126) (0.126) (0.107) (0.016) 

Mum Diet 0.304** 0.287**   

 (0.119) (0.119)   

Child Exercise -0.203*** -0.202*** -0.200*** -0.024*** 

 (0.035) (0.035) (0.014) (0.002) 

Child Sick -0.118 -0.145 0.510*** 0.072*** 

 (0.469) (0.463) (0.174) (0.025) 

Mother Obese 1.013*** 0.816*** 0.718*** 0.039*** 

 (0.222) (0.251) (0.086) (0.011) 

Mother OW 0.350* 0.187 1.284*** 0.085*** 

 (0.187) (0.209) (0.104) (0.015) 

Mother group 1 0.217 0.649**   

 (0.186) (0.283)   

Mother group 2  0.736**   

  (0.288)   

Mother group 3  0.492***   

  (0.187)   

Mother group 5  0.451*   

  (0.255)   

Constant -0.970* -1.292**  1.378*** 

 (0.513) (0.522)  (0.025) 

     

Observations 4004 4004 4004 4004 

 

  



 

 

Table 7b: Multinomial Logistic Regression on Cluster Membership, children (k=4) 
 k=4 k=4 k=4 k=4 k=4 k=4 

Variables (all 

W1) 

Group 1 Group 3 Group 4 Group 1 Group 3 Group 4 

Leaving Cert 0.016 -0.135 -0.557*** 0.020 -0.126 -0.551*** 

 (0.123) (0.197) (0.202) (0.123) (0.197) (0.203) 

Non-degree 0.114 -0.383* -0.860*** 0.118 -0.373* -0.856*** 

 (0.126) (0.216) (0.232) (0.126) (0.215) (0.231) 

3rd Level -0.233* -0.786*** -1.039*** -0.228* -0.764*** -1.026*** 

 (0.126) (0.226) (0.233) (0.126) (0.225) (0.233) 

Maternal Age -0.013* -0.035** 0.013 -0.013* -0.035** 0.013 

 (0.007) (0.014) (0.015) (0.007) (0.014) (0.015) 

Gender -0.031 0.448*** -0.015 -0.030 0.448*** -0.016 

 (0.072) (0.142) (0.146) (0.072) (0.142) (0.146) 

Mum Chr Hlth -0.074 -0.015 0.020 -0.071 -0.006 0.025 

 (0.111) (0.200) (0.215) (0.111) (0.201) (0.215) 

Mum Smokes 0.232** 0.423** 0.883*** 0.221** 0.400** 0.865*** 

 (0.101) (0.168) (0.177) (0.101) (0.170) (0.177) 

Mum Diet 0.438*** 0.474*** 0.521*** 0.426*** 0.449*** 0.503*** 

 (0.094) (0.158) (0.172) (0.095) (0.159) (0.170) 

Child Exercise -0.077*** -0.146*** -0.323*** -0.076*** -0.146*** -0.321*** 

 (0.028) (0.050) (0.049) (0.028) (0.050) (0.049) 

Child Sick -0.006 0.443 -1.445 -0.030 0.397 -1.463 

 (0.336) (0.493) (1.090) (0.339) (0.488) (1.088) 

Mother Obese 0.486*** 0.643* 1.774*** 0.415** 0.373 1.611*** 

 (0.166) (0.329) (0.299) (0.181) (0.378) (0.330) 

Mother OW 0.261** -0.000 0.877*** 0.180 -0.213 0.720** 

 (0.125) (0.280) (0.253) (0.135) (0.315) (0.282) 

Mother group 1 0.147 0.565** 0.034 0.368** 1.066*** 0.511 

 (0.131) (0.281) (0.243) (0.179) (0.399) (0.407) 

Mother group 2    0.348* 1.208*** 0.532 

    (0.185) (0.411) (0.405) 

Mother group 3    0.247** 0.556** 0.563* 

    (0.108) (0.239) (0.296) 

Mother group 5    0.171 0.578* 0.399 

    (0.146) (0.331) (0.386) 

Constant    -0.007 -1.169* -1.530* 

    (0.400) (0.670) (0.781) 

       

Observations 4004 4004 4004 4004 4004 4004 

  



 

 

 

Table 7c: Multinomial Logistic Regression on Cluster Membership, Mothers 
 k=2 k=5 REOL FE 

Variables (all 

Wave 1) 

Group 2 Group 1 Group 2 Group 4 Group 5   

Leaving Cert 0.163 -0.034 -0.211 0.235 -0.244 -1.311*** -0.301*** 

 (0.111) (0.168) (0.147) (0.167) (0.188) (0.148) (0.039) 

Non-degree 0.240** -0.078 -0.299* 0.267 -0.268 -1.901*** -0.427*** 

 (0.115) (0.174) (0.153) (0.171) (0.194) (0.158) (0.043) 

3rd Level 0.497*** -0.106 -0.734*** 0.338** -0.326* -2.047*** -0.411*** 

 (0.115) (0.170) (0.156) (0.166) (0.189) (0.163) (0.049) 

Maternal Age -0.004 0.016 0.011 0.018* 0.020* -0.035***  

 (0.007) (0.010) (0.009) (0.009) (0.012) (0.011)  

Mum Chr. 

Health 

-0.185* 0.169 0.193 0.054 -0.117 0.383*** 0.047*** 

 (0.101) (0.148) (0.137) (0.141) (0.183) (0.076) (0.017) 

Mum Smokes 0.029 -0.248* -0.131 -0.324** -0.260 -1.048*** -0.260*** 

 (0.094) (0.138) (0.123) (0.128) (0.159) (0.104) (0.025) 

Mum Diet -1.458*** 0.882*** 1.404*** -0.969*** 0.048   

 (0.086) (0.125) (0.113) (0.172) (0.166)   

Constant 0.051* -0.930* -0.712 -1.452*** -1.874*** -1.452*** 2.204*** 

 (0.026) (0.496) (0.459) (0.469) (0.582) (0.469) (0.035) 

        

Observations 4004 4004 4004 4004 4004 4004 4004 

  



 

 

Figure 1a: Sequence Index Plot- Children 

 
 

 

Figure 1b: Sequence Index Plot- Mothers 

 

 
 

 



 

 

Figure 2a: Sequence Index Plots for Children, k=2 

 

 
Figure 2b: Sequence Index Plots for Children, k=4 

 

 
 

 

 

 

 

 



 

 

 

Figure 2c: Sequence Index Plots for Mothers, k=2 

 

 
 

Figure 2d: Sequence Index Plots for Mothers, k=5 

 

 
 

 

  



 

 

 

Figure 3: Dendogram for children 
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