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Abstract

It is still unknown whether there is some deep structure to modern
wars and terrorist campaigns that could allow reliable prediction of
future patterns of violent events. Recent war research focuses on size
distributions of violent events, with size defined by the number of people
killed in each event. Event size distributions within previously available
datasets, for both armed conflicts and for global terrorism as a whole,
exhibit extraordinary regularities that transcend specifics of time and
place. These distributions have been well modelled by a narrow range
of power laws that are, in turn, supported by a theory of coalescence
and fragmentation of violent groups. We show that the predicted event-
size patterns emerge in a mass of new event data covering conflict
in Africa and Asia from 1990 to 2014. Moreover, there are similar
regularities in the events generated by individual terrorist organizations,
1997-2014. The existence of such robust empirical patterns hints at
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the predictability of size distributions of violent events in future wars.
We pursue this prospect using split-sample techniques that help us
to make useful out-of-sample predictions. Power-law-based prediction
systems outperform lognormal-based systems. We conclude that there
is indeed evidence from the existing data that fundamental patterns
do exist, and that these can allow prediction of future structures in
modern wars and terrorist campaigns.

Keywords: Armed conflict, cross-validation, event data, power-law, terror-
ism

JEL codes: C46, C53, D74

Introduction

Polymath Lewis Fry Richardson showed, in a seminal work, that war sizes
follow a fat-tailed distribution which, he suggested, could be well captured by
a power law (Richardson, 1960). Later research has updated and confirmed
this finding using more rigorous statistical methods (Cederman, 2003; Clauset,
2017). It turns out that the Richardson insight for sizes of whole wars extends
to event sizes within wars. For this analysis the size of a discrete event, such
as a suicide bombing or a battle, is defined by the number of people killed
in the event. The distributions of event sizes within nine modern wars are
all well approximated by a power law with the estimated power coefficients
clustering around 2.5 (Bohorquez et al., 2009). The size distribution for
global terrorist events, merging together all events perpetrated by all terrorist
groups, is also well captured by a power law with a coefficient around 2.5
(Clauset et al., 2007). This latter finding has practical utility because the
identified empirical regularities can be used to predict the probability of a

terrorist attack comparable in scale to the 9/11 one (Clauset and Woodard,
2013a,b).

A theoretical conflict model driven by processes of coalescence and frag-
mentation of groups within warring organizations generates power-law distri-
butions for violent events in which the theoretically derived power coefficients
cluster around 2.5 (Bohorquez et al., 2009). Recent extensions and elabora-
tions of this coalescence-fragmentation framework confirm the robustness of
the tendency toward 2.5 while also providing further theory that can explain
power coefficients going as low as 1.9 and as high as 4.5 (Johnson et al.,
2013). It is difficult to observe the inner workings of necessarily secretive
insurgencies and terrorist organizations yet there is direct evidence that online



ISIS communities display the coalescence and fragmentation behaviours that
are central to the coalescence-fragmentation model (Johnson et al., 2016).

The present paper has four main objectives. First, we exploit a mass of
new event data on armed conflict and terrorism (Sundberg and Melander,
2013; National Consortium for the Study of Terrorism and Responses to Ter-
rorism (START), 2016) to offer the most complete exploration ever presented
of the empirical patterns in the size distributions of violent events within
the contexts of both armed conflict and terrorist campaigns. For our war
analysis we use the new version of the data employed in previous research
(Johnson et al., 2013), enabling us to extend our reach to no fewer than
202 armed conflicts, including more than 100 Asian conflicts never before
included in this research program. Our empirical work on terrorism innovates
by operating at the organization level, enabling us to demonstrate that the
size distributions of violent events perpetrated by 57 individual terrorist
organizations resemble the size distributions we find for belligerent groups
entangled in armed conflicts. This finding deepens an already identified link
between terrorist and insurgent organizations (Bohorquez et al., 2009), which
is reassuring given the notorious difficulty in separating the two types of
organizations conceptually (Moghadam et al., 2014). Indeed, although it
may be possible to draw valid distinctions between insurgent versus terrorist
organizations, e.g., concerning their ideologies, they both remain collections
of decentralized operatives that must adapt quickly to avoid detection and
annihilation. These common pressures should force both types of groups
into common David-versus-Goliath tactics that should tend to yield similar
attacking patterns and, indeed, we find this in our empirical work.

Our second objective is to evaluate the potential for the family of coalescence-
fragmentation models to cover the full range of empirical event-size distribu-
tions present in the event data for all of the conflicts and terrorist campaigns
we have to work with. We find that these models do perform well because, as
they predict, the many new estimated power-law coefficients cluster around
2.5, both for conflicts and for individual terrorist organizations. Nevertheless,
we identify a need for further theory that can handle coefficients between 1.5
and 1.9 that appear more than a few times in the data.

Our third objective is to exploit the regularities in the empirical event
patterns to make useful predictions about the mixtures of event sizes in future



wars, based on the range of empirical power-law coefficients we observe in the
data. For this project we keep score on the success rates for our predictions
and conclude that they are, indeed, useful. This predictability indicates that
we are developing good knowledge of a deep structure of modern wars.

Fourth, we test the predictive performance of the power-law model of
armed conflict events against that of a lognormal-based system, the most
obvious fat-tailed rival distribution, and find that power-law based prediction
systems outperform lognormal ones.

Materials and methods

We take our armed-conflict data from the Georeferenced Event Dataset (GED)
of the Uppsala Conflict Data Programme (Sundberg and Melander, 2013).
This is the most comprehensive and accurate georeferenced dataset on armed
conflict available that systematically collects information on the number of
people killed in each event (Eck, 2012; Weidmann, 2013, 2015). The GED
records details that include the location, timing, and severity of conflict events
along with information on the warring parties that generate these events.
The data collection effort covers conflicts between governments and rebel
groups, non-state based conflicts (also known as communal violence), and
violence perpetrated by the state or insurgency groups against civilians. We
use version 4 of the dataset which covers all conflicts in Africa and Asia
between 1989-2014. Although the GED offers a global dataset, conflicts in
Asia and Africa are covered better than those in Europe and Latin America
for which the coverage only extends back to 2005, thereby missing the Yu-
goslav Wars and much of the conflict in Colombia. The Syrian civil war is
currently not included in the GED data. The GED coding rules exclude some
low-intensity conflicts by imposing a minimum fatality threshold of 25-battle
related deaths in a given year. However, this restriction hardly matters for us
since it excludes only minor conflicts that may have been excluded anyway
due to not having enough events to allow us to reliably fit a power law to the
size distribution their violent events.

We include only true single events in our analysis, removing a small num-
ber of aggregate fatality counts that are not broken down to the event level.
We also drop conflicts with fewer than 30 events. These screens leave us with
98 African conflicts with 21,239 events and 104 Asian conflicts with 60,162



events. For Afghanistan we split the state-based data into two separate con-
flicts so that the fighting after the beginning of Operation Enduring Freedom
is treated separately from the pre-invasion conflict.

We offer a parallel analysis of terrorist incidents since, as noted above,
there is evidence suggesting that terrorist organizations may behave similarly
to insurgent groups (Bohorquez et al., 2009; Hammes, 2006; Robb, 2007). For
this work we use the Global Terrorism Database (GTD), which is provided
by the National Consortium for the Study of Terrorism and Responses to
Terrorism (START). A novel feature of the GTD dataset is that it includes
both domestic and trans/inter-national terrorist incidents. The GTD is
updated annually and provides the most comprehensive dataset on terrorist
events that is publicly available. The GTD covers the period from 1970 to
2015 and includes detailed information on incident times, locations, fatality
counts and, when identifiable, the perpetrating group or individual. We
include only events that are definitely acts of terrorism according to the
coding, that are attributed to a known organization and that caused at least
one fatality. Finally, we use only events occurring after 1997 because the
GTD coding procedures changed in that year. This leaves us with 13,859
terrorist attacks carried out by 57 groups between 1998-2015.

Results

We use the "poweRlaw" package in R (Gillespie, 2014) to fit the model M s
to the data for each conflict above an estimated cut-off value s,,;, using
maximum likelihood estimation (Clauset et al., 2009; Johnson et al., 2013)
where s denotes the number of fatalities in an event, « is the power-law
coefficient and M is a normalisation factor ensuring that the cumulative
probability distribution sums to unity. Figure 1 provides an example one such
fit, this one for the Palestinian-Israeli conflict. Figure 2 plots the estimated o
values for the African and Asian conflicts against the p-values of bootstrapped
tests of the hypotheses that their data are generated by the fitted power laws
for these conflicts. To be clear, each data point in figure 2 summarizes a
power law fit for a particular conflict such as the one in figure 1.

The reported p-values are based on bootstrap resampling using 1000 iter-
ations. Most conflicts do have size distributions for their violent events that
are well fit by power laws with coefficients clustering around 2.5. At the same
time, some conflicts do display « values far from 2.5. Moreover, some conflicts
have very low p-values, thereby deviating from the empirically and theoreti-
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Figure 1: A power law fit for the violent events in the Israeli Palestinian con-
flict. Logged event sizes on the X axis are plotted against logged probabilities
that events are at least as big these sizes.

cally grounded patterns uncovered in earlier research (Bohorquez et al., 2009;
Clauset and Woodard, 2013a,b) by suggesting that the power-law hypothesis
should be rejected. Low p-values are not necessarily a serious worry since no
distribution of violent conflict events will be, literally, generated by an exact
power law so we would normally expect to reject the power-law hypothesis
with enough data even when this distribution is still useful for modelling the
event-generating process of a conflict. Estimated «’s far from 2.5, on the
other hand, are a more important challenge to the received wisdom in the
field. These results could stem from data problems, e.g., not having enough
data or having serious flaws in the data-gathering processes for particular
conflicts. In fact, in earlier research (Johnson et al., 2013) the conflict in
Angola had a very high value of a but now, with a few more years’ worth of
data, Angola’s « has settled in right at 2.5. Or it could be that some modern
conflicts really are fundamentally different from the great majority of conflicts
we have encountered so far in this research program.

Figure 3 provides the same sort of p versus o information given in figure 2
but this time for terrorist groups using the GTD data. Note that the nature
of these results is substantially different from earlier work fitting power laws
to global terrorist events (Clauset et al., 2007) because we fit a separate power
law to each terrorist organization whereas the previous work merged together
all the events generated by all terrorist organizations. It shows that power
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Figure 2: Estimates of o parameters versus p values for power-law hypotheses
for African (top) and Asian (bottom) conflicts.

laws with « values that cluster around 2.5 also tend to fit well the distributions
of violent events generated by terrorist organizations. Thus, there appear to
be close parallels in the behavior of terrorist and insurgent organizations, at
least with respect to the processes that generate their violent events. This
empirical commonality is reassuring given the blurred distinctions between
the two types of organizations (Moghadam et al., 2014) which often seem to
be almost arbitrary in practice.

We now exploit the above theoretically grounded empirical findings dis-
played in figure 2 to make predictions about event sizes. We proceed by
generating out-of-sample predictions for the expected ratios of event counts
for various pairs of size ranges. We then calculate the successes and failures
of these predictions. Specifically, we implement the following procedures.
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Figure 3: Estimates of o parameters versus p values for power-law hypotheses
for terrorist organizations.

1. Randomly split the sample into two parts and use one third of the
conflicts to generate out-of-sample predictions for the remaining two
thirds of the conflicts.

2. Fit power laws to the third that were selected.

3. Order the a estimates from the selected third from smallest to largest
and calculate the range of a’s running from percentile 2.5 to percentile

97.5.

4. Use the lower and upper bounds of this range to predict the upper and
lower bounds, respectively, of the ratios of event-size counts for various
ratios of event size ranges. For example, if the lower bound for « is 2.0
then the upper bound for the ratio of the number of events of size S or
greater to the number of events of size 25 or greater is 2 while if the
upper bound for « is 3.5 then the lower bound for the same ratio of
event-size ranges is about 5.75. The corresponding figures for S and
1.5S are 1.55 and 2.8 respectively.

5. Check these predictions against the data for the two thirds of conflicts
that were not randomly selected. Although we could check a near-
endless list of predictions we confine ourselves to just checking the ratios
for which we multiply the event size by either 1.5 or 2.0.

6. Start over, taking a new draw of 1/3 of the conflicts and again testing
the out-of-sample predictions on the remaining 2/3 of conflicts.



We repeat this procedure 1,000 times. Figure 4 displays the results for
this simulation exercise. For most event-size ratios the success rates exceed
60% for at least 75% of the draws of 1,000. The best prediction performance
is for the event-size ratios of 10/20 and 20/40 for which the median success
rates are in the 80’s and even the worst runs tend to score well above 60%.
The worst prediction performances are when the events are either very small
or very large. The relatively low success rates for small events make sense
since the estimated power laws are not even meant to apply below some cut-off
level s,,in. Thus, if anything, the success rates for the low-end predictions
are a bit of a bonus. Relatively weak performance at the high end also makes
sense since the data on big events are sparse, providing only a thin empirical
basis for prediction. Note, further, that these good prediction scores are
not generally due to vacuously wide prediction intervals as the typical the
intervals are around 1.2 to 3.5 and 1.4 to 8.6 for size ranges of the form S to
1.55 and S to 25 respectively (with the upper limit of 8.6, admittedly, rather
high).
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Figure 4: Boxplots for the distributions of the percentage of successful
out-of-sample predictions for a variety of ratios of event-size ranges.

Figure 5 shows that out-of-sample prediction works almost as well as
in-sample prediction for our power-law based scheme. The solid curves give
the success rates when we use all data to generate the a range and then test
the predictions (self-referentially) on the whole dataset. The grey-shaded
area indicates the middle 50% of the success rates for the 1,000 out-of-sample
runs.

Next we compare the performance of our power-law-based predictions
with a similar scheme that uses the lognormal distribution instead. Each
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Figure 5: The success rates for in-sample predictions compared to the
success rates for out-of-sample predictions. The shaded area indicates the
50% interval for the out-of-sample results.

point in figure 6 gives two statistics describing the outcome of out-of-sample
predictions for a particular randomly split sample. The x-axes give the
percentages of within-boundary predictions for the 10/15 ratio, ranging over
all the out-of-sample conflicts. The y-axes provide a measure that combine
considerations of how accurate and how unhedged, i.e., how narrow, each
prediction interval is. Specifically, we define the AH score for a prediction
interval as the inverse of the root mean squared distance from its boundary
predictions (percentiles 2.5 and 97.5) to the actual 10/15 fatalities ratio.
Thus, the AH score most strongly rewards prediction intervals that are both
accurate, i.e., centered around the true value, and minimally hedged, i.e.,
narrow. Figure 5 shows the power law system beating the lognormal system:
the power-law based prediction intervals have systematically higher AH scores
than the lognormal-based intervals do with little or no cost to the percentage of
correctly predicted ratios. The small bunch of points in the power law picture
with AH scores near 0.25 are produced on simulation runs that repeatedly
pick the (outlier) conflicts with very high a’s.

Conclusion

We have investigated the size distribution of violent events in modern conflicts
and terrorist campaigns, finding that these are generally well approximated by
power laws with « coefficients clustered near 2.5, although there are exceptions.
We exploit these empirical regularities in the conflict data, without ignoring
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Figure 6: Prediction intervals for the power-law-based prediction system
tend to be narrower than the prediction intervals based on the lognormal
model at little or no cost to prediction accuracy.

the anomalies, and are able to make good predictions about the relative
frequencies of violent events falling within various size classes. Our success at
out-of-sample predictions indicates that our approach should work well for
predicting the mixtures of event sizes in future armed conflicts. Specifically,
our sample of 202 conflicts suggests a useful rule of thumb whereby the a’s
for future conflicts are predicted to be 2.5 with a prediction interval of 1.5
(percentile 2.5) to 4.1 (percentile 97.5). Using this insight, we can predict that
for any s the ratio of the number of events of size s or more to the number of
events of size 1.5s or more will be approximately 1.8 with a prediction interval
of 1.2 to 3.5. For events of sizes s and 2s the analogous numbers are 2.8, 1.4
and 8.6. This level of predictability should be useful for purposes such as
the planning of emergency medical care in conflict zones. More importantly,
these results deepen our understanding of the fundamentals of terrorism and
modern warfare and underline the potential for the coalescence-fragmentation
model (Bohorquez et al., 2009; Johnson et al., 2013) to further illuminate
these fundamentals. The strong parallels we find between insurgent and
terrorist organizations also extend our understanding of the nature of violent
conflict. These apparently different phenomena display deep common patterns
that transcend their surface-level differences. Analysts of modern war and
terrorism (Hammes, 2006; Robb, 2007; Moghadam et al., 2014) have been
correct to broadly view these contentious situations as archetypal David
versus Goliath confrontations.
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