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Abstract 

A variety of public campaigns, including the “Just Say No” campaign of the 1980s and 
1990s that encouraged teenagers to “Just Say No to Drugs”, are based on the premise that 
teenagers are very susceptible to peer influences.  Despite this, very little is known about 
the effect of school peers on the long-run outcomes of teenagers.  This is primarily due to 
two factors:  the absence of information on peers merged with long-run outcomes of 
individuals and, equally important, the difficulty of separately identifying the role of 
peers.  This paper uses data on the population of Norway and idiosyncratic variation in 
cohort composition within schools to examine the role of peer composition in 9th grade 
on longer-run outcomes such as IQ scores at age 18, teenage childbearing, post-
compulsory schooling educational track, adult labor market status, and earnings. We find 
that outcomes are influenced by the proportion of females in the grade, and these effects 
differ for men and women.  Other peer variables (average age, average mother’s 
education) have little impact on the outcomes of teenagers. 
 
 
* Devereux thanks the Irish Research Council for the Humanities and Social Sciences (IRCHSS) for 
financial support. Black and Devereux gratefully acknowledge financial support from the National Science 
Foundation.  Salvanes thanks the Research Council of Norway for financial support. We would like to 
thank Eve Caroli, Per-Anders Edin, Kanika Kapur, Eric Maurin, Steve Trejo, and seminar participants at 
Paris School of Economics, NYU, Carnegie Mellon/University of Pittsburgh, University of Oregon, 
University of Houston/Rice University, Texas A&M, the University of Texas, Austin, and UCLA Anderson 
School of Business for helpful comments, We are indebted to Stig Jakobsen who was instrumental in 
obtaining data access to the IQ data from the Norwegian Armed Forces.  This research was completed 
while Black was on leave at the Department of Economics at the University of Texas at Austin.    
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1. Introduction 
 

The “Just Say No” campaign of the 1980s and 1990s encouraged children to resist 

peer pressure and “say No” to drugs.  A key underlying assumption of the campaign, 

based on research by Dr. Richard Evans, is that teenagers are susceptible to the influences 

of their peers.  Despite this perceived wisdom, there is little large-scale empirical 

evidence on the long run effect of peers in middle school and high school.  This is 

primarily due to two factors:  the absence of information on peers merged with long-run 

outcomes of individuals and, equally important, the difficulty of separately identifying 

the role of peers.  Using data on the population of Norway and idiosyncratic variation in 

cohort composition within schools, this paper examines the role of peer composition in 

9th grade on longer-run outcomes such as IQ scores, teenage childbearing, educational 

choices, adult labor market status, and earnings. Taken together, the findings provide a 

broad understanding of the socio-economic effects of peer composition. 

 We extend the existing literature on peer effects along two dimensions.  First, we 

focus on the role of lower secondary school peers (when children are aged 14 to 16) 

instead of earlier schooling; teenagers are often perceived as being particularly 

susceptible to peer influence.  Second, we are able to look at long-run outcomes and are 

not limited to test scores while in school.  It is possible that short-term effects of peers on 

school grades wear off over time and hence are not so important in determining 

completed educational attainment and later earnings.1 

                                                
1 This type of effect has been observed with respect to the effects of school starting age. For example, Elder 
and Lubotsky (2009) find that it has large initial impacts on school grades but the effects get smaller with 
age. 
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 A key difficulty in the literature is the statistical identification of peer effects.2   In 

this paper, we use plausibly random peer group variation to identify the role of peers on 

long run outcomes.  Starting with Hoxby (2000), researchers have exploited across-grade 

variation in peers within schools that arises because of random demographic differences 

across cohorts. For example, by chance, 3rd grade may be 55% male in 2000 in a certain 

school, but only 45% male the following year.3  One concern with this strategy, however, 

is that parents may time the entry age of their child to avoid “bad” cohorts; we deal with 

this issue by instrumenting the actual peer characteristics of children with what the peer 

characteristics would have been if all children started school on time and progressed one 

grade each year. Because, in Norway, the compliance rate with school starting age 

regulations is high and grade retention is extremely rare, the first stage relationship is 

very strong. 

 We study how a child’s outcomes are influenced by the gender composition of 

classmates, their socio-economic characteristics (as proxied by their mother’s educational 

attainment), and the average age of classmates. The latter variable is influenced by much 

prior research suggesting that school starting age influences the long-run outcomes of 

children; in this paper, we continue this area of investigation by examining whether there 

are spillover effects on classmates.  For example, based on earlier work, there is good 

                                                
2 Manski (2000) notes that typically behaviors and outcomes are similar among members of the same peer 
group and categorizes the possible reasons into 3 groups: (1) Endogenous peer effects occur when 
individual outcomes directly influence outcomes of peers (2) Exogenous or contextual peer effects occur 
when predetermined characteristics of individuals affect outcomes of peers and (3) correlated effects refer 
to non-peer effects reasons for correlated outcomes within peer groups such as endogenous peer group 
selection and correlated unobservables of peers. For empirical researchers trying to find evidence of peer 
effects, the identification problem amounts to separating (3) out from (1) and (2).  See Manski (2000) and 
Moffitt (2001).  In this paper, we use the term “peer effects” to refer to the combination of endogenous and 
contextual peer effects. 
3 A disadvantage of this approach is that exogenous variation in peer groups is at the grade-level rather than 
at the classroom-level, as the across-classroom distribution of children within grades is likely to be non-
random. 
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reason to suspect that having older peers may make it more likely that a teenage girl 

engages early in sexual activity and hence is more likely to have a teen birth. 4   

Our main finding is that students are influenced by the proportion of females in 

the grade. Interestingly, there are opposite effects for men and women, in that women 

benefit from having a higher proportion of female peers while men are disadvantaged by 

female peers. There is very little evidence that the other peer variables we study (average 

age, average mother’s education) have any impact on the outcomes of teenagers. 

 The paper unfolds as follows. In section 2, we discuss the relevant literature.  The 

empirical methodology and institutional context are described in sections 3 and 4 

respectively.  Section 5 outlines the data we use.  The main results are in section 6.  

Section 7 concludes and summarizes the findings. 

 

2. Literature Review 

The publication of the Coleman report (1966) highlighted the importance of peers 

to the performance of students, arguing that peers are more important than schools as 

determinants of student outcomes.  Since that time, researchers have tried a variety of 

estimation strategies to isolate the causal effect of peers on student performance.5   

 Most recently, the research in the area has taken on three basic strategies.  The 

closest to ideal is the randomization of peer assignment, enabling the researcher to 

eliminate all concerns about selection.  As with other experimental work, however, this is 

often limited in its generalizability.  The best known experimental work on peers has 

focused on college roommate assignment (see work by Sacerdote (2001), Zimmerman 

                                                
4 See Black, Devereux, and Salvanes (2008). 
5 Sacerdote (2008) and Epple and Romano (forthcoming) provide comprehensive reviews of the literature.  
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(2003), Carrell, Fullerton, and West (2009)), or has focused on elementary schools in 

developing countries (Duflo, Dupas, and Kremer (2008)).6  None of this experimental 

work has looked at the role of early teenage peers in a developed nation context. 

The second identification strategy uses individual fixed effects; variation comes 

from changes in peer groups over time, primarily due to school-switchers and children 

who are held back.  These changes in peer groups are then related to changes in the 

outcomes of the student, most generally as reflected in test scores.7  Hanushek, Kain, 

Markman, and Rivkin (2003) use student and school-by-grade fixed effects to estimate 

the effect of elementary school peers on test score gains.  There are two sources for 

variation in peers: mobility into or out of the school and, less importantly, changes in 

student circumstances (income or achievement, for example).  They find a positive effect 

of peer achievement on test score gains that is relatively constant across quartiles of the 

school achievement distribution.  A key limitation of this strategy, however, is that it 

relies on movers for variation in peers, and the decision to move may be endogenous to 

school characteristics.8   

A third estimation strategy is to use idiosyncratic variation across school cohorts 

to isolate the role of peers. Most closely related to our work is that of Hoxby (2000), 
                                                
6 Duflo, Dupas and Kremer (2008) randomize peer groups in Kenya.  A key advantage of their paper is, 
because of the experimental design, they are able to compare the effects of peers in the presence of student 
tracking to the effect of peers without tracking and with only idiosyncratic differences in peers.  They find 
that students of all ability levels do better with tracking.  Interestingly, however, they find that students at 
the tracking cutoff (those just above are in high ability classes and those below are in low ability classes) do 
equally well, suggesting no peer effects conditional on tracking.  However, when they look at the effects of 
small differences in peers induced by the randomization of peers, they find positive effects of having high 
ability peers.  
7 Because of the inclusion of individual fixed effects, the strategy relies on relating changes in student 
performance to changes in peer group over time; this approach is obviously infeasible when looking at 
post-school outcomes. 
8 Similar in spirit, Kramarz, Machin, and Ouazad (2009) use British data to distinguish the components of 
test scores and test score growth that are related to pupils, schools, and peers.  They find that pupil 
heterogeneity is a more important determinant of achievement than school quality (although both are 
statistically significant).  Peer effects are small but significant. 
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Lavy and Schlosser (2007), Bifulco, Fletcher, and Ross (2010), and Gould, Lavy, and 

Paserman (2009).9  Gould et al. (2009) use idiosyncratic variation in the proportion of 

immigrants in elementary school grades in Israel and study the impact of immigrants on 

high school performance. Bifulco et al. (2010) use U.S. data from Add Health focusing 

on the effect of percent minorities and college educated mothers per cohort on the 

probability of dropping out of high school, attending college, and likelihood of smoking. 

In contrast to our study, they do not use school level administrative data and their 

principal focus is on the effect of minorities.  Lavy and Schlosser (2007) use Israeli data 

to examine how idiosyncratic changes in gender composition affect elementary, middle, 

and high school performance.  Once they establish that student outcomes are better in the 

presence of a higher fraction of girls, they then examine whether it is because of changes 

in the composition of the class (boys are worse behaved on average) or changes in the 

behavior of the individual students, using survey data of students and teachers.  While 

similar in spirit, our work looks at a variety of peer characteristics and at a country with a 

very different institutional framework. Also, unlike Lavy and Schlosser, our outcome 

variables are post-school outcomes rather than in-school test scores. 

 

3. Empirical Methodology 

A. Using Idiosyncratic Variation in Peer Characteristics 

Our general equation of interest is as follows: 

   (1) 

                                                
9 Work by Ammermueller and Pischke (2009) uses data from six European countries and within school, 
across classroom variation for identification.  The authors argue that classroom assignment in primary 
school is effectively random, and they find modestly large effects of peer effects on in-school exams. 
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where yics is the outcome measure for individual i in cohort c, in school s.  A cohort refers 

to all individuals who are in grade 9 in the same year whether or not they have the same 

year-of-birth. As is described in section 5 below, we have information on children from 

15 cohorts. Outcomes are a function of the individual’s own characteristics, xics, which 

include gender, family size and its square, mother’s education, an indicator for whether 

the child is firstborn, mother’s age at birth and its square, and immigrant status. Also 

included are the mean characteristics of their peers (peers are defined as everybody in 

their grade except themselves), , which are the average age, the fraction female, and 

the average socioeconomic status as measured by mother’s education. Our main 

coefficients of interest are those in . We also control for the number of students in the 

grade in the school (gsc) and a full set of cohort dummies where  is a dummy variable 

equal to 1 if the observation is from cohort c, and equal to zero otherwise.10  refers to 

school effects that may or may not differ across cohorts; a key issue is the appropriate 

parameterization of . 

 One possibility is to parameterize  by including the mean value of student 

characteristics measured at the school level.11  In this case, we study the impact of 

                                                
10 The cohort dummies are not school-specific. All individuals in Norway who started school in the same 
year will have the same values for the cohort dummies. 

11 We sometimes refer to this as pseudo fixed effects as it is similar in spirit to including school fixed 
effects.  Mundlak (1978) showed an equivalence between the fixed effects specification and a particular 
correlated random effects specification. This implies that estimating 

  (2) 

using school fixed effects produces the same estimate of  as estimating 

 (3) 
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variation in peer composition, conditional on the average peer composition over all 

cohorts in the school. By controlling for the average characteristics of children in the 

school across all cohorts, we are taking account of the fact that some schools may 

generally attract better students than others. The regression we estimate is then:  

 (4) 

We cluster the standard errors by school to allow for arbitrary within-school correlations 

in the errors. 

With this parameterization of , we are assuming that, conditional on cohort 

dummies and average student characteristics in the school, peer characteristics in a 

particular grade are as good as randomly assigned.  While we know there is sorting based 

on place of residence, this is not a problem so long as it does not change over time as it 

will then be picked up by the average school student characteristics. However, a key 

concern is the existence of trends over time in neighborhoods or schools that are 

correlated both with peer quality and student outcomes.12 For example, if a 

neighborhood/school is becoming “poorer” over time, the average peer quality and 

individual student performance will both be declining.  If one does not take into account 

these differential changes over time, one might observe a spurious relationship between 

                                                                                                                                            
without school fixed effects. In equation 3, the means of all variables from equation 2 are taken by school, 
and added as additional explanatory variables to the model.  So  is the within-school mean of the 

individual characteristics, and  is the within-school mean of the peer characteristic.  is then the 
proportion of individuals in a particular school that are in cohort c. Estimating (3) gives exactly the 
same  coefficients as estimating equation (2) using school fixed effects. Given that, in our context, 

 , equation (1) is very similar to equation (4) below and, in practice, the two strategies give very 
similar estimates. 
12 Note that national trends will be absorbed by the cohort dummies. 
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peer quality and student performance. We therefore also use parameterizations of  that 

allow for changes in school quality over time.  

School-Specific Trends 

It is common in the literature to allow for school-specific trends (for example, Hoxby 

2000) and this is the first approach we take. Given our estimation strategy, it is not 

feasible to directly add a linear trend for each school so we implement this in our set-up 

as follows: First we regress each individual characteristic, for example female, on school 

dummies and school dummies interacted with a linear cohort trend. We then calculate the 

fitted value of the characteristic for each school/cohort cell. This fitted value can be 

interpreted as the expected peer composition in the school for that cohort if composition 

changes follow a school-specific linear trend. We add these fitted values (one for each 

peer characteristic) to the specification in equation (4). In effect, this means we study the 

effects of variation in peer characteristics conditional both on the mean peer 

characteristics in the school, and conditional on the predicted peer characteristics for that 

cohort in the school, allowing for a school-specific linear trend. 

Moving Average Approach 

 The second approach we take to allow for changes in school quality over time 

takes a much less parametric perspective.  The intuition is as follows:  instead of 

comparing across long periods of time and imposing a particular functional form on the 

trend, we narrow the comparison.  For every year, we regress the performance of a 

student in that year on the characteristics of her peers, conditional on the average 

characteristics of other students in the school taken over that year and the two adjacent 

years (the one before and the one after). By construction, any deviation in peer 
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characteristics from this 3-year average cannot be due to a linear trend over this 3-year 

period and can therefore be treated as idiosyncratic variation.13 We add the 3-year 

moving average of student characteristics as extra control variables in equation (4). 

It is important to note, however, that this is an extremely restrictive comparison.  

To the extent that peers in neighboring years actually do have an effect on an individual’s 

performance, we will underestimate the role of peers on student outcomes.  As a result, 

we view this estimate as a lower bound on true peer effects.14 

 

B. Using Sibling Differences 

 There is always a concern that the peer variation used in the methods above is not 

purely idiosyncratic and there may still remain (conditional) correlations between a 

child’s family background and his peers. One way to rule out this possibility is by using 

sibling fixed effects. To do so, we restrict the sample to siblings who go to the same 

school. With sibling fixed effects, a potential source of bias is if, somehow, the “better” 

child in the family ends up in a cohort with a better peer group. The only plausible way in 

which this could happen is if parents manipulate school starting age so as to influence the 

peer group their children face. Our instrumental variables strategy (described below) 

deals with this possibility. Note that while the sibling fixed effects strategy has the 

advantage of ruling out any possibility that peer composition is correlated with family 

background characteristics, it has the disadvantage that one-child families are excluded 

from estimation (and when we split by sex we must omit families with fewer than two 

                                                
13 By necessity, we exclude cohorts 1 and 15 as they are not middle cohorts in any 3-cohort sequence.  
14 Our moving average strategy is somewhat similar to that used by Gould et al. (2009). They condition on 
the lag and the lead of the relevant peer variable, as well as the number of persons in the class. Their 
approach may have greater potential for bias; if the lead and lag are correlated with unobserved school 
characteristics, it is likely that the current value of the peer variable is as well. 
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children of that sex). Thus, the estimation sample is somewhat unrepresentative and 

estimates are less precise because of the smaller sample sizes. Also, there is some risk 

that if peer quality is higher for one child in a family, this may correlate with other time-

varying features of the school also being better. This is an issue because this strategy does 

not carefully control for school-level changes over time. 

 

Endogeneity of School Starting Age 

There is a potential endogeneity problem in equation (4) in that parents may 

strategically choose the starting age of their child in response to the peer composition of a 

particular cohort in a particular school. For example, a parent may hold back their child 

by a year if the child has friends that are not starting until a year later. Thus, while the 

peer composition in one’s year-of-birth may be random (conditional on the school), the 

peer composition in one’s grade may not be.15 To deal with this, we instrument the peer 

variables with what they would have been if everybody had started on time i.e. the peer 

characteristics of one’s birth cohort.16 For completeness, we instrument all other variables 

with what they would have been if everybody started on time. For example, we 

instrument the cohort dummies with birth-year dummies.17 Additionally, we instrument 

the actual school starting age of the child with what it would have been if the child started 

on time. 

 
                                                
15 If everybody followed the administrative rule, all students in a particular grade would have the same 
year-of-birth. 
16 This instrumental variables strategy is similar in spirit to that of Hoxby and Weingarth (2006) who use 
characteristics of peers who are assigned to a school as instruments for the actual peer characteristics in the 
school. 
17 Our instrumental variables strategy partially motivates the specification we use i.e. equation (4) rather 
than equation (2). It would be impossible to instrument 1000+ school-specific trends but it is easily feasible 
to instrument the controls for the fitted peer variables with what they would be if everyone started on time. 
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4. Norwegian School Structure 

In Norway, compulsory education is free; since 1997, schooling has been 

compulsory from age 6 to 16 (10th grade). However, the cohorts we consider faced a 

school starting age of 7 with 9 years of compulsory schooling. Schools are run by the 

local municipality and there is no tracking by ability during the years of compulsory 

schooling.18  School attendance is based on your place of residence, and the rules that 

pupils attend the school in their catchment area are strictly enforced.19  

 The focus of our study is on lower secondary school, which is comprised of 

grades 7-9.  The mandatory school system in Norway is split into primary schools (grades 

1-6) and lower secondary schools (grades 7-9). Most pupils attended separate primary 

and secondary schools, while about 20 percent went to combined primary and secondary 

schools (Hægeland, Raaum, and Salvanes, 2005). Most combined schools are in rural 

areas and have a small number of students. 

                                                
18 There are very few private schools in Norway and only about 2% of all pupils attend them. 
19 At the high school level there are differences across municipalities and across time regarding the degree 
of school choice but this does not occur until students have completed lower-secondary school. 
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 Unlike in the United States, students stay with the same group of students for all 

their classes in the day and throughout the year.  Different teachers are allocated to each 

class based on field. There is essentially no grade retention in Norway (Strøm, 2004), 

suggesting that all students that start the same year also graduate the same year.  

Furthermore, 95.3 percent of the students lived in the graduation municipality for all 

three years in the lower secondary school, suggesting very little mobility. 

 

5. Data 

Our primary data source is the Norwegian Registry Data, a linked administrative 

dataset that covers the population of Norwegians up to 2006 and is a collection of 

different administrative registers such as the education register, family register, and the 

tax and earnings register.  These data are maintained by Statistics Norway and provide 

information about educational attainment, labor market status, earnings, and a set of 

demographic variables (age, gender) as well as information on families.20 We focus on 

cohorts born between 1959 and 1973.21  

The school data come from the Norwegian education register.  Each school in 

Norway was legally required to report when a student graduated from primary and 

secondary school.  As a result, we know from which school each pupil graduated.     

 

Peer Characteristics  

 There are a number of ways peers in middle school could affect the outcomes of 

an individual.  Teachers may adapt the way they teach to be most appropriate to the 

                                                
20 See Møen, Salvanes and Sørensen [2004] for a description of these data. 
21 We exclude a small number of individuals who started school more than 1 year early or 1 year late.   
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group as a whole, peers may help the other students in the class by providing assistance 

or acting as role models, and the characteristics of peers may influence the self-esteem of 

students in the class.  Because there is so little understanding of the mechanisms for peer 

effects, it is very difficult to know the appropriate measures of peer 

quality/characteristics. 

In our model, we use three measures of peer characteristics.22   The first is the 

fraction of girls in the grade.  Evidence suggests that girls are better behaved and cause 

fewer disruptions in the classroom (Lavy and Schlosser, 2007).  Theoretical work by 

Lazear (2001) suggests that having less-disruptive students in the class has beneficial 

effects on all students in the class; in this case, a higher fraction of girls in the classroom 

would have a positive effect on outcomes of both boys and girls.  However, a higher 

fraction of girls in the class could also provide greater distraction for teenage boys.  This 

could cause differential effects by gender, with more girls having a negative impact on 

outcomes of boys, and, symmetrically, more boys having a negative impact on outcomes 

of girls. Ultimately, this is an empirical question. 

Our second measure is the average age in the classroom.  In earlier work, we 

documented an effect of school starting age on the outcomes of adults; one of the most 

notable findings was the effect on teenage childbearing.  (See Black, Devereux and 

Salvanes, 2008.)  Women who start school younger are more likely to have children as 

teenagers.  One possible explanation for this is the influence of peers; girls who start 

school younger have a relatively older peer group and may be influenced by their peers’ 

                                                
22 In the peers literature, researchers often focus on the effects of peer ability on outcomes (see Lavy et al. 
2009 for a recent example). We have no measure of ability and so focus on the effects of pre-determined 
peer characteristics. 



15 
 

behavior.23  This would imply that, conditional on own age, having older peers increases 

the likelihood of teen pregnancy. Peer age could also affect other outcomes by changing 

the average maturity in the classroom. In this case, we would expect that having older 

peers would lead to better academic outcomes. Because grade repetition is extremely rare 

in Norway, the average school starting age of peers determines the average age of peers 

in 9th grade and we use both terms interchangeably. 

Our final measure of peer characteristics is the average mother’s education of the 

students in the grade, which we use as a proxy for socioeconomic status.24  In general, we 

would expect peers with higher socio-economic status to have positive spillovers. Early 

work by Evans, Oates, and Schwab (1992) studies the relationship between the presence 

of disadvantaged peers and teenage pregnancy; they find a significant, although small, 

relationship between the two which disappears when they control for selection into 

schools using a simultaneous equations model and city-level characteristics as 

instruments.  

Peers are measured as the group of students in your grade and school in the 9th 

grade.  There may be substantial persistence in peers over time.  As a result, these peer 

measures represent not only the peers an individual faces in the 9th grade but, to the 

extent these are the same peers they have had throughout their educational experience 

                                                
23 Cascio and Schanzenbach (2007) use variation in peers induced by the randomization to classes in the 
Tennessee STAR experiment to examine the role of relative age on the performance of students in the 8th 
grade as well as whether or not the individual takes the SAT or ACT exam.   The authors find little effect of 
relative age once controlling for the age of the individual; however, when the data is decomposed by family 
background, there is some effect of relative age on the outcomes of more disadvantaged students. 
 
24 We have also tried creating a socio-economic index by regressing an individual’s educational attainment 
on dummies for family size, mother’s education, father’s education, whether the person is an immigrant, 
and family income in 1978, 1983, and 1988 and using the predicted value as a socioeconomic index. We 
found very similar results for this variable to those we report for mother’s education. 
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(and will continue to have into the future), the estimated effect represents the cumulative 

effect of peers throughout the educational experience.   

As described below, we create instruments for these peer variables using the 

individuals who were born in the same cohort and went to the same school (whether or 

not they finished in the same year).    

The variation we are using is that in peer characteristics, conditional on average 

student characteristics in the school and on cohort fixed effects.  To alleviate concerns 

about insufficient variation in our variables of interest, we have calculated the fraction of 

total variation in peer characteristics that is explained by these control variables using the 

R2 from regressions with the peer characteristics as dependent variables.  In the 

specification that allows for school-specific linear trends, the percentage explained ranges 

from 17% (percentage female) to 46% (average age) to about 91% (mother’s education).  

With the moving average controls, the percentages are higher at 35%, 51%, and 92% 

respectively. This suggests there is still substantial variation left in these variables even 

after including cohort fixed effects and detailed controls for school characteristics.25 

 

Outcome Variables 

IQ Scores 

The IQ score data is taken from the Norwegian military records from 1980 to 

2005. Before young men enter the service, their medical and psychological suitability is 

assessed; this occurs for the great majority between their eighteenth and twentieth 

                                                
25 The 10th percentile values of the peer variables are .41, 7.2, and 8.8 for the percentage female, the 
average age, and the average mother’s education, while the 90th percentile values are .56, 7.4, and 10.9 
respectively. 
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birthday.26  In Norway, military service is compulsory for every able young man; as a 

result, we have military data for men only.27 

The IQ measure is the mean score from three IQ tests -- arithmetic, word 

similarities, and figures (see Sundet et al. [2004, 2005] and Thrane [1977] for details). 

The arithmetic test is quite similar to the arithmetic test in the Wechsler Adult 

Intelligence Scale (WAIS) [Sundet et al. 2005; Cronbach 1964], the word test is similar 

to the vocabulary test in WAIS, and the figures test is similar to the Raven Progressive 

Matrix test [Cronbach 1964].  The IQ score is reported in stanine (Standard Nine) units, a 

method of standardizing raw scores into a nine point standard scale that has a discrete 

approximation to a normal distribution, a mean of 5, and a standard deviation of 2.28 We 

have IQ scores on about 84% of the relevant population of men in Norway. 

Teenage Childbearing 

We construct our teenage childbearing variable by restricting the sample to 

women aged at least 36 in 2006 and denoting a teen birth if they have a child that is aged 

at least 16 in 2006 who was born before the woman was aged 20.29 Approximately 9.7% 

of our sample of women had a child before age 20. 

Educational Track 

At the end of 9th grade (the end of compulsory education), an individual chooses 

(conditional on grades) whether to enter the academic track, the vocational track, or drop 

out of school.  The academic track (or general track, also called gymnasium) is a three 
                                                
26 We add a control for the year the test was taken in the IQ score specifications. 
27 Norway has mandatory military service of between 12 and 15 months (fifteen in the Navy and twelve in 
the Army and Air Force) for men between the ages of 18.5 (17 with parental consent) and 44 (55 in case of 
war). However, the actual draft time varies between six months and a year, with the rest being made up by 
short annual exercises.   
28 The correlation between this IQ measure and the WAIS IQ has been found to be .73 (Sundet et al., 2004). 
29 In order to know whether a woman had a teen birth we need to observe both the mother and child in the 
administrative panel. The result is that the cohorts we use are born between 1963 and 1970. 
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year high school education preparing for college.  Students who complete this track are 

then eligible for college enrolment.  In contrast, the vocational track consists of 

vocational training and, although it generally takes 3 years, can require as little as one 

year in school followed by an apprenticeship.  Upon completion, the individual receives a 

certificate of proficiency within their area of specialization. 30 Using OLS and controlling 

for family background factors, there is an earnings premium of almost 20% to taking the 

high school track rather than the vocational track  

Labor Market Variables 

Earnings are measured as total pension-qualifying earnings reported in the tax 

registry in 2005. These are not topcoded and include labor earnings, taxable sick benefits, 

unemployment benefits, parental leave payments, and pensions. We identify full time 

workers (defined as 30+ hours per week) using the fact that our dataset identifies 

individuals who are employed and working full time at one particular point in the year (in 

the 2nd quarter in the years 86-95, and in the 4th quarter thereafter).31 About 71% of our 

male sample are employed full time in 2005; the equivalent figure for women is 48%. 

Table 1 presents summary statistics for our sample. 

  

 
6.  Results 
 

A. Balancing Tests 

                                                
30 Overall, 74% of girls follow the academic track, 20% the vocational track, and the remaining 6% drop 
out after compulsory schooling. For men, the numbers are 45% academic, 48% vocational, and 7% drop 
out. 
31 An individual is labelled as employed if currently working with a firm, on temporary layoff, on up to two 
weeks of sickness absence, or on maternity leave. 
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 Before presenting our results, we first examine the validity of our identifying 

assumptions.  The basic notion is that, conditional on the controls, variation in peer 

characteristics should be “as if random” and, hence, should not be correlated with 

predetermined characteristics of children such as their family background variables. To 

examine this issue, we regress mother’s education and other predetermined variables on 

the peer characteristics using the specifications described earlier but excluding the 

predetermined variables (i.e. all the individual control variables) from these regressions. 

To the extent that the presence of these variables in the main specifications reduces bias, 

these balancing tests provide a worst-case assessment of the situation. The estimates 

reported are from IV models where the actual peer variables are instrumented by what 

they would be if everyone started school on time. The estimates are in Appendix Table 1. 

 The first panel of Appendix Table 1 is the quasi fixed effects specification that 

includes controls for the mean values of the peer variables for the school. The second 

panel adds controls for the school-specific trends by adding the predicted value of the 

peer variables given a linear school-specific trend. The third panel instead adds the 3-year 

moving average of the peer characteristics as controls.  

 Note that in all 3 panels but particularly in panels 2 and 3, there is a tendency for 

a strong negative coefficient on, say, average mother’s education of peers when the 

dependent variable is mother’s education. This results from small sample bias and is 

similar to the short panel bias that occurs in dynamic fixed effects models. To see why, 

consider the 3rd panel where we control for the 3-year moving average of mother’s 

education in the school. If conditional on this, your peer average maternal education is 

high, your own maternal education will tend to be low (as both your maternal education 
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and that of your peers go into forming the moving average). The 4th panel attempts to 

correct for this bias by forming the school means and the moving averages leaving out 

observation i. For the most part, the large negative relationships disappear in the 4th 

panel. 

 Unsurprisingly, the proportion of peers that are female is unrelated to any 

predetermined variable in any specification (except a negative relationship with sex as a 

result of small sample bias in the first 3 panels). For the other two peer variables, the 

results show a clear pattern of improvement from panel 1 to panel 4. The quasi fixed 

effects specification in panel 1 is clearly inadequate for studying average mother’s 

education of peers. However, any positive relationship between this and a child’s own 

characteristics disappear once moving averages are included as controls. Average age of 

peers is unrelated to all variables except first-born status in the trends and moving 

average specifications. We have no idea why. Overall, the conclusion is that all 

specifications are likely to be valid when studying the effect of proportion female. 

However, when studying the other two peer variables, we can have far more confidence 

in the specifications with trends and moving averages. 

 

B. Education Track 

 The first outcome we look at is the education track; Table 2 shows estimates 

where the dependent variable is whether the student follows an academic high school 

track after completing compulsory schooling, estimated by gender.  When we look at the 

coefficients for the individual level characteristics for both boys and girls, it is not 

surprising that first-borns and students with higher maternal education are more likely to 
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follow this track.32 The OLS impact of school starting age is negative but the IV 

estimates are positive and suggest that starting school a year later increases this 

probability by about 1% for boys and .7% for girls.33 

The only peer variable that appears to influence educational track choice is the 

fraction of the class that is female, and this is only true among boys – more girls make it 

less likely that any particular boy does the academic track. To get a sense of the 

magnitude of these effects, going from 40% girls to 60% girls reduces the probability by 

about .01 from a baseline of about .5. The other peer characteristics are all small and 

statistically insignificant with the exception that maternal education has a statistically 

significant positive effect in the quasi fixed effects specification. However, this result 

disappears once we allow for time-varying school quality using either the trends or the 

moving average.  None of the other peer characteristics appears important for either sex. 

Almost all estimates are insignificant and the peer effects are much smaller than the 

analogous direct effects, despite the fact that the standard deviations of the individual 

characteristics are much higher than those of the peer characteristics. 

 

C. Completed Years of Education 

 For the remaining outcome variables, we report only the IV estimates for the peer 

characteristics. Estimates for completed years of education are in Table 3.  These results 

reveal an interesting dichotomy. A higher proportion of girls has a negative effect on 

completed education of boys. However, if anything, more girls have a positive effect on 

                                                
32 See Black, Devereux, Salvanes (2005a, 2005b) for analysis of the effects of birth order and maternal 
education in Norway. 
33 The change in sign from OLS to IV results from the fact that, in the IV specification, we instrument child 
age with what it would have been if the child had started school at the age specified by the administrative 
rule. Late school starters appear to be negatively selected and this leads to large negative OLS age effects. 
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education of girls so it appears that each sex benefits from having more of their own 

gender. The size of the effect for boys is about -.2 which implies that going from 40% to 

60% girls would reduce average completed education of boys by about .04. The effects of 

peer maternal education seem equally small for boys and girls at about .03 – the 

coefficient is slightly larger and more significant for girls but the difference is quite 

small. 

 

D. Teenage Childbearing 

Motherhood at young ages has been associated with many long-term economic 

and health disadvantages such as lower education, less work experience and lower wages, 

welfare dependence, lower birth weights, higher rates of infant mortality, and higher rates 

of participation in crime (Ellwood, 1988; Jencks, 1989; Hoffman, and Furstenberg, 1993; 

Kiernan, 1997). There is an ongoing debate as to the extent that these adverse effects of 

teen childbearing are truly caused by having a teen birth rather than reflecting unobserved 

family background differences.  (See Hotz, McElroy, Sanders 2005 for an example). 

However, as a policy matter, efforts to reduce the rate of teen childbearing are often 

considered as a strategy to improve the life chances of young women. 

Table 3 presents the results of 2SLS linear probability models of teenage 

childbearing.  The fraction female is negative and statistically significant in both 

specifications. The effect size is about -.025 which implies that if a class went from 40% 

female to 60% female, the resultant probability of a woman giving birth as a teen falls by 

-.005. Given that the baseline probability is about .1, and this is a large change in class 

composition, this seems to be a relatively modest sized effect.  
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We hypothesized that higher peer age may lead to more teen pregnancies. 

However, we find very small and statistically insignificant coefficients in the two 

specifications, suggesting that the effect of starting school later on teen pregnancy comes 

primarily from absolute rather than relative age effects. There is also little evidence that 

peer maternal education matters for teen childbearing. 

 

E.  IQ Test Scores 

Table 3 has estimates where the dependent variable is IQ test scores for men at 

around age 18.  The dependent variable is measured in stanine units with a standard 

deviation being approximately 2 stanines. Here, we find some evidence that having 

classmates with higher maternal education has a positive effect. However, this effect is 

only statistically significant in the trends specification. The maternal education effect of 

about .03 suggests that even increasing average maternal education of peers by 1 year 

would only increase IQ scores of a student by about 1.5% of a standard deviation. This is 

surely a modest effect.  

 

F. Labor Market Outcomes in 2005 

 Table 3 also has estimates from a 2SLS linear probability model of whether or not 

the individual works full time in 2005 and 2SLS regression of their log earnings in 2005 

on our measures of peer characteristics. Because of the fundamentally different labor 

market experiences of men and women, we have omitted estimates that pool genders and 

simply report results separately by sex. The only peer variable that matters is fraction 

female. Once again we have the contrasting effects that more girls appear to increase full-
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time participation for women but reduce it for men (although the male estimates are not 

quite statistically significant). The finding is very similar for earnings with more girls 

being beneficial to women but having an adverse, although statistically insignificant, 

effect on men. 

 

Results using sibling fixed effects 

The sibling fixed effects estimates are presented in Table 4.  Because this method 

requires two children of the same sex per family, the sample sizes are much smaller than 

before and the standard errors are correspondingly higher. As a result, there are very few 

statistically significant peer effects. However, the same general pattern that was seen in 

Table 3 is present here – a higher fraction of female peers generally improves outcomes 

of girls and hurts outcomes of boys. 

 

Recent Cohorts 

 We also have information on children who start school between 1982 and 1996 

(Oslo from 1985) and who finish school lower secondary school between 1991 and 

2006.34 Because these are more recent cohorts, we do not have labor market information 

or even completed education for most of them, and so we report estimates for high school 

track.  

For more recent cohorts who started school between 1992 and 1996, we also have 

information on 10th grade math scores.  Data are collected by the Directorate for Primary 

and Secondary Education.  Scores are awarded on a scale from one to six, with higher 

                                                
34 There is no information on lower secondary school attended for any person who finished lower 
secondary school in 1990 so this cohort is excluded from all analysis in this paper. 
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scores indicating better performance. We focus on marks in math assessed throughout the 

year (Math Score1) as well as performance in the final written examination at the end of 

10th grade (Math Score2). The final exam mark is based on a five-hour test in math. All 

pupils in the country do the same (subject-specific) test, and pupils are randomly 

allocated to subjects such as math, English and Norwegian.35  While the grading for the 

final exam is anonymous and done by external examiners, the assessment throughout the 

year is done by teachers. We use these test scores to compare the results generated with 

our datasets (pooled and then by gender, for comparability) to those for in-school scores 

in the existing literature.36  

The main estimates are in Table 5. As in the earlier cohorts, we find that a higher 

fraction of women reduces the proportion who do the academic high school track and that 

this effect is only significant for boys. The magnitude is very similar in these cohorts to 

that for the earlier cohorts. The sibling fixed effects estimates in Table 7 also show the 

negative effect of more females on academic track.  Interestingly, our earlier findings 

about the impact of girls also hold for cohorts in which the educational attainment of girls 

had increased relative to that of boys. 

On the other hand, while the magnitude and statistical significance of the 

estimates varies by specification, both sets of estimates suggest that math scores are 

higher when there is a higher fraction of girls. We find this result both for in-class 

assessment (Score1) and for exam results (Score2). Given that the standard deviation of 

math test scores is 1.1 (see Appendix Table 2), the coefficient values of between .1 and 

.27 from the various specifications imply that a 10% increase in the proportion of girls 

                                                
35 Because of the fact that the test taken (English, Norwegian, or Math) is randomized so students only take 
one of these 3, we only have information on Math test scores for about one third of the sample. 
36 Appendix Table 2 contains descriptive statistics for the sample of recent cohorts. 
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would lead to between .9% and 2.5% of a standard deviation increase in math test scores. 

This result is both qualitatively and quantitatively consistent with the findings of Lavy 

and Schlosser (2007) for Israel, Kang (2007) for South Korea, and Hoxby (2000) for the 

United States. The findings for high school track and math test scores taken together 

suggest the possibility that while having more girls in a grade increases test scores, it may 

have other detrimental effects (particularly on boys). 

In terms of the other peer variables, there is some evidence that having older 

classmates reduced the probability that boys follow the high school track, but this is not 

consistent across specifications. Similarly, there is a little evidence that higher maternal 

education of peers leads to higher math test scores. 

Table 6 reports sibling fixed effects estimates for the recent cohorts. We do not 

split by gender because the standard errors become sufficiently high as to make the 

estimates quite uninformative. Also, we do not report estimates for Math Score2 as there 

are very few cases where we have scores for two people in the same family. The sibling 

fixed effects estimates are less precisely estimated but the coefficients on proportion 

female are quite similar to those in Table 5. 

 

Non-Linear Effects 

Our base specification allows for linear effects of the average characteristic over 

all peers, excluding the individual him/herself. It also allows for parameter heterogeneity 

by gender but not along other dimensions. However, in addition to the homogenous effect 

linear-in-means model, we have also estimated more flexible specifications that enable us 

to test for non-linear and heterogeneous effects.  
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 To test for non-linear effects, we created 3 categories for each peer variable. For 

proportion female, we categorized classes as being less than 40% female, between 40 and 

60% female, or being more than 60% female. We created similar splits for the other two 

peer variables.37 In all cases, there was no evidence of these types of non-linear effects.38 

 An alternative approach to non-linearities is to allow outcomes to depend on a 

measure of the variability of peer characteristics in addition to the mean level. We have 

implemented this by adding the standard deviation of mothers’ education in the grade and 

the standard deviation of age in the grade as additional peer variables. As before, we 

instrument these variables with what they would have been if everybody had started 

school on time. The estimates are reported in Table 7. We find no effect of the standard 

deviation of child age. However, while not all estimates are statistically significant, there 

is a clear suggestion that a lower standard deviation of mothers’ education produces 

better outcomes.39 The coefficient implies that a one standard deviation increase in the 

standard deviation of mothers’ education leads to a fall in completed education of about 

.02 of a year on average. This would seem to be a fairly small effect. Also, the 

coefficients on average maternal education of peers are generally higher in Table 7 than 

in Table 3 because the mean and standard deviation of maternal education are positively 

correlated. The increases in the coefficients are small and remain consistent with a very 

modest role of average peer socio-economic status. 

                                                
37 These non-linearities allow for evidence of threshold, or “epidemic” effects (Crane 1991). 
38 We note, however, that the standard errors become quite high in some of our sample splits so that 
differences in coefficients would have to be fairly large for us to reject the linear model. 
39 Note that we control for grade size and have also checked that the estimates are robust to adding 
additional controls for the square root and the square of the number of students in the grade in the school. 
Thus, our estimates are not contaminated by correlations between the standard deviation of maternal 
education and the size of the grade. 
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 To test for heterogeneity, we carried out separate regressions of the linear-in-

means peers model by different types of individuals. We found no evidence of 

heterogeneity when we split the sample by low, medium, or high mother’s education. 

Similarly splits by whether first born, whether started school late, whether had a birth 

month that predicted being relatively old for the class, or whether was in a large school or 

a small school all showed no evidence of heterogeneous effects. It is plausible that school 

peer effects might be larger for teenagers who are only children as peer influence does 

not compete with the influence of siblings. However, we also found no evidence for this 

type of heterogeneity. 

 We also estimated some specifications that allowed for both non-linearity and 

heterogeneous effects. For example, we allowed the effects of low, median, or high 

mothers education to vary by whether the peers were male or female. Once again, there 

was no evidence to reject the simple linear-in-means constant effects model. 

 

7. Conclusions 

Public policies are affected by, and often rely on, the fact that an individual’s 

peers influence his/her behavior.  Despite this, the evidence on the existence of peer 

effects has been inconclusive.  In this paper, we have investigated the importance of three 

peer characteristics in lower secondary school on subsequent outcomes of students. We 

have two main findings. The first is that average age of peers and their socio-economic 

status (as proxied by mother’s education) have very little effect on long run outcomes. 

The non-importance of average age of peers implies that relative age effects cannot 
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explain the finding of Black, Devereux, and Salvanes (2008) that girls who start school 

younger are more likely to have teen births. 

The second main finding is that the proportion of girls appears to matter and in a 

way that differs by gender – a higher proportion of girls is generally good for the longer 

run outcomes of girls but bad for boys. This is despite the existing evidence that suggests 

that a higher proportion of girls improves shorter run, in-school test scores for both boys 

and girls.  Importantly, because we are able to look at in-school test scores for a 

subsample of our data, we are able to demonstrate that these test score gains are true in 

our data as well; short term test score gains due to a higher fraction of girls are offset by 

the longer run negative effects of a higher fraction of girls on boys.  Our results suggest 

that a higher proportion of girls reduces the probability teenage boys continue onto an 

academic high school track and reduces completed years of schooling. It appears that, at 

least for teenagers, peer sex composition has complicated effects. 
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Table 1:  Summary Statistics 
Individual Characteristics Girls Boys 
Educational Attainment 12.58 

(2.59) 
12.35 
(2.49) 

Mother’s Education 9.81 
(2.46) 

9.84 
(2.48) 

Mother’s Age at Birth 26.98 
(5.91) 

26.97 
(5.90) 

Family Size 3.11 
(1.33) 

3.10 
(1.32) 

Fraction Firstborn .39 
(.49) 

.39 
(.49) 

Immigrant .02 
(.14) 

.02 
(.13) 

Fraction Students Starting On Time .947 
(.224) 

.936 
(.244) 

School Starting Age 7.26 
(.31) 

7.28 
(.32) 

Expected School Starting Age 7.25 
(.28) 

7.25 
(.28) 

Fraction doing Academic Track in High School  .74 
(.44) 

.45 
(.50) 

Fraction doing Vocational Track .20 
(.40) 

.47 
(.50) 

Fraction Having a Child as a Teenager  
 

.097 
(.30) 

 

IQ Test Score 
 

 5.2 
(1.8) 

School/Peer Characteristics   
# of Students in Grade 100 

(51) 
100 
(51) 

Average Age 7.3 
(.07) 

7.3 
(.07) 

Average Female .49 
(.07) 

.49 
(.07) 

Average Mother’s Education 9.82 
(.90) 

9.82 
(.90) 

N 
Number of Schools 

434,001 
1,235 

450,902 
1,235 

Standard deviations in parentheses.
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Table 2: Effect of Peers on Educational Track  

(Dummy=1 if Academic Track) 
 Men Women 
 School Means School Means 

and Trends 
School Means 

and  
Moving Average 

School Means School Means 
and Trends 

School Means 
and  

Moving Average 
 OLS IV OLS IV OLS IV OLS IV OLS IV OLS IV 
 
Peer Characteristics 

           

Fraction Female# 
 
 

-.051* 
(.012) 

-.062* 
(.014) 

-.054* 
(.012) 

-.068* 
(.014) 

-.053* 
(.014) 

-.072* 
(.018) 

.006 
(.012) 

.010 
(.014) 

-.001 
(.012) 

.003 
(.014) 

-.004 
(.014) 

-.010 
(.017) 

Average Age#  
 
 

-.006 
(.015) 

-.018 
(.025) 

-.005 
(.015) 

-.028 
(.025) 

-.021 
(.020) 

-.033 
(.029) 

.034* 
(.014) 

.008 
(.024) 

.028 
(.015) 

.007 
(.024) 

.047* 
(.019) 

.030 
(.028) 

Mother’s Education# .016* 
(.003) 

.019* 
(.003) 

.003 
(.003) 

.004 
(.003) 

.002 
(.003) 

.002 
(.004) 

.006* 
(.003) 

.006 
(.003) 

.003 
(.003) 

.002 
(.003) 

.003 
(.003) 

.0001 
(.004) 

 
Individual Characteristics 

          

Mother’s Education 
 
 

.051* 
(.0004) 

.051* 
(.0004) 

.050* 
(.0004) 

.051* 
(.0004) 

.050* 
(.0005) 

.051* 
(.0005) 

.031* 
(.0004) 

.031* 
(.0004) 

.031* 
(.0004) 

.031* 
(.0004) 

.031* 
(.0004) 

.031* 
(.0004) 

School Starting Age# 
 
 

-.058* 
(.002) 

.011* 
(.003) 

-.058* 
(.002) 

.011* 
(.003) 

-.059* 
(.002) 

.011* 
(.004) 

-.049* 
(.002) 

.007* 
(.003) 

-.049* 
(.002) 

.007* 
(.003) 

-.049* 
(.002) 

.009* 
(.003) 

Number of Schools 1232 1232 1232 1232 1231 1231 1230 1230 1230 1230 1228 1228 
N 450,897 450,897 450,897 450,897 393,362 393,362 433,997 433,997 433,997 433,997 379,096 379,096 

All specifications include additional controls for family size, family size squared, an indicator if first born, mother’s age at birth, mother’s age at 
birth squared, an indicator for immigrant status, school grade size, and indicators for cohort.  IV specifications instrument variables denoted with a 
# with what they would be if all students had started school in accordance with the school starting age laws in Norway at that time. Cohort 
dummies are instrumented with year of birth dummies.  
Standard errors are clustered at the school level. 
*: Statistically Significant at the 5% level. 
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Table 3: IV Effect of Peers on Various Outcomes 

 Men Women 
 Education IQ Scores FT Log 

(Earnings) 
Education Teen Birth FT Log 

(Earnings) 
Control for Trends         
Fraction Female 
 
 

-.203* 
(.064) 

-.068 
(.052) 

-.022 
(.013) 

-.028 
(.019) 

.143* 
(.073) 

-.023* 
(.011) 

.034* 
(.014) 

.077* 
(.021) 

Mean Age 
 
 

-.226* 
(.112) 

.006 
(.094) 

.018 
(.023) 

-.016 
(.035) 

-.038 
(.126) 

.020 
(.019) 

-.004 
(.025) 

.049 
(.038) 

Average Mother’s Education 
 
 

.030 
(.016) 

.031* 
(.012) 

-.002 
(.003) 

-.002 
(.005) 

.039* 
(.017) 

.001 
(.002) 

-.005 
(.003) 

-.003 
(.005) 

N 450,561 415,123 450,897 416,746 433,769 345,682 433,997 396,239 
Control for Moving Average        
Fraction Female 
 
 

-.182* 
(.084) 

-.056 
(.066) 

-.032 
(.017) 

-.034 
(.025) 

.029 
(.090) 

-.026* 
(.013) 

.043* 
(.018) 

.075* 
(.028) 

Mean Age 
 
 

-.142 
(.137) 

.015 
(.110) 

.02 
(.028) 

-.008 
(.042) 

.033 
(.147) 

.0006 
(.022) 

-.015 
(.029) 

.036 
(.045) 

Average Mother’s Education 
 
 

.032 
(.020) 

.027 
(.015) 

-.004 
(.004) 

-.008 
(.006) 

.028 
(.021) 

.003 
(.003) 

-.005 
(.004) 

.002 
(.007) 

N 393,079 365,545 393,362 363,618 378,906 319,162 379,096 346,191 
All specifications include additional controls for whether first-born, school starting age, mother’s education, family size, family size squared, 
mother’s age at birth, mother’s age at birth squared, an indicator for immigrant status, school grade size, and indicators for cohort.  IV 
specifications instrument all peer variables with what they would be if all students had started school in accordance with the school starting age 
laws in Norway at that time. Cohort dummies are instrumented with year of birth dummies. School starting age is instrumented with expected 
school starting age. Standard errors are clustered at the school level. 
*: Statistically Significant at the 5% level. 
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Table 4: IV Effect of Peers on Various Outcomes  
Sibling Fixed Effects 

 Men Women 
 HS 

Track 
Education IQ 

Scores 
FT Log 

(Earnings) 
HS 

Track 
Education Teen 

Birth 
FT Log 

(Earnings) 
           
Fraction Female 
 
 

-.070* 
(.021) 

-.142 
(.100) 

-.130 
(.075) 

-.008 
(.022) 

-.019 
(.033) 

-.037 
(.021) 

.150 
(.104) 

-.029 
(.018) 

.030 
(.025) 

.048 
(.039) 

Mean Age 
 
 

-.054 
(.038) 

-.248 
(.184) 

.165 
(.139) 

.014 
(.041) 

-.013 
(.060) 

-.053 
(.039) 

-.040 
(.191) 

-.029 
(.033) 

-.008 
(.047) 

.031 
(.071) 

Average Mother’s 
Education 
 

-.004 
(.005) 

.005 
(.023) 

-.030 
(.017) 

.007 
(.005) 

.002 
(.008) 

-.002 
(.005) 

.024 
(.024) 

-.009 
(.004) 

-.009 
(.006) 

.007 
(.009) 

Families 82,133 82,129 81,050 82,133 81,499 76,718 76,718 73,984 76,718 75,959 
N 180,964 180,828 166,907 180,964 168,639 168,940 168,868 141,686 168,940 155,523 
All specifications include additional controls for gender, whether first-born, school starting age, mother’s education, mother’s age at birth, 
mother’s age at birth squared, an indicator for immigrant status, school grade size, and indicators for cohort. IV specifications instrument all peer 
variables with what they would be if all students had started school in accordance with the school starting age laws in Norway at that time. Cohort 
dummies are instrumented with year of birth dummies. School starting age is instrumented with expected school starting age. Standard errors are 
clustered at the school level. 
*: Statistically Significant at the 5% level. 
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Table 5: IV Effect of Peers on Various Outcomes  
Recent Cohorts 

  All   Men   Women  
 HS Track Math 

Score1 
Math 

Score2 
HS Track Math 

Score 1 
Math 

Score 2 
HS 

Track 
Math 

Score1 
Math 

Score2 
Control for Trends          
Fraction Female 
 

-.033* 
(.008) 

 

.019 
(.042) 

.136 
(.081) 

-.045* 
(.012) 

.007 
(.055) 

.098 
(.101) 

-.014 
(.012) 

.035 
(.056) 

.182 
(.099) 

Average Age 
 

-.008 
(.015) 

 

-.099 
(.079) 

.111 
(.132) 

-.026 
(.022) 

-.144 
(.101) 

.017 
(.174) 

.011 
(.021) 

-.047 
(.103) 

.216 
(.158) 

Average Mother’s 
Education 
 

.003 
(.002) 

 

.015 
(.009) 

.037* 
(.015) 

.001 
(.003) 

.006 
(.012) 

.042* 
(.019) 

.005 
(.002) 

.024 
(.012) 

.034 
(.020) 

Number of Schools 1262 1112 1062 1261 1102 1042 1259 1105 1048 
N 788340 251786 96261 403595 128632 49374 384745 123154 46887 
Control for Moving Average          
Fraction Female 
 

-.044* 
(.010) 

 

.121* 
(.055) 

.210* 
(.108) 

-.040* 
(.015) 

.153* 
(.072) 

.159 
(.134) 

-.026 
(.015) 

.098 
(.071) 

.270* 
(.132) 

Average Age 
 

-.017 
(.018) 

 

-.028 
(.097) 

.147 
(.175) 

-.062* 
(.026) 

.001 
(.126) 

.162 
(.224) 

.031 
(.026) 

-.042 
(.125) 

.151 
(.208) 

Average Mother’s 
Education 
 

.001 
(.002) 

 

.015 
(.011) 

.017 
(.020) 

-.001 
(.003) 

-.006 
(.014) 

-.001 
(.024) 

.003 
(.003) 

.037* 
(.015) 

.032 
(.026) 

Number of Schools 1262 1109 1028 1261 1099 1004 1257 1101 1010 
N 685132 199278 76892 350783 101773 39444 334349 97505 37448 
All specifications include additional controls for whether first-born, school starting age, mother’s education, family size, family size squared, 
mother’s age at birth, mother’s age at birth squared, an indicator for immigrant status, school grade size, and indicators for cohort.  IV 
specifications instrument all peer variables with what they would be if all students had started school in accordance with the school starting age 
laws in Norway at that time. Cohort dummies are instrumented with year of birth dummies. School starting age is instrumented with expected 
school starting age. Standard errors are clustered at the school level. 
*: Statistically Significant at the 5% level. 
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Table 6: IV Estimates of Effect of Peer Characteristics  

on Educational Track and Test Scores  
Sibling Fixed Effects/Recent Cohorts 

 High School Track Math Score 1 
   
  
Fraction Female 
 
 

-.031* 
(.011) 

.098 
(.056) 

Average Age 
 
 

.010 
(.019) 

-.287* 
(.100) 

Mother’s Education 
 
 

-.002 
(.002) 

-.019 
(.012) 

Number of Families 204,632 100,620 
N 464,083 137,567 
 
All specifications include additional controls for gender, school starting age, mother’s education, mother’s age at 
birth, mother’s age at birth squared, an indicator for immigrant status, school grade size, and indicators for 
cohort. IV specifications instrument all variables with what they would be if all students had started school in 
accordance with the school starting age laws in Norway at that time. Cohort dummies are instrumented with year 
of birth dummies. 
Standard errors are clustered at the school level. 
*: Statistically Significant at the 5% level. 
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Table 7:  IV Effect of Peers on Various Outcomes--Non-Linear Effects 
 Men  Women 
 HS Track Education IQ Scores FT Log 

(Earnings) 
HS Track Education Teen 

Birth 
FT Log 

(Earnings) 
Control for Trends          
Fraction Female 
 
 

-.068* 
(.014) 

-.200* 
(.064) 

-.073 
(.053) 

-.022 
(.013) 

-.029 
(.019) 

.004 
(.014) 

.146* 
(.073) 

-.023* 
(.011) 

.033* 
(.014) 

.077* 
(.021) 

Mean Age 
 
 

-.031 
(.025) 

-.233* 
(.115) 

.043 
(.095) 

.023 
(.024) 

-.019 
(.036) 

.007 
(.025) 

-.049 
(.130) 

.019 
(.020) 

.0005 
(.026) 

.049 
(.039) 

Average Mother’s 
Education 
 

.008* 
(.004) 

.050* 
(.018) 

.051* 
(.014) 

.002 
(.004) 

.005 
(.006) 

.008* 
(.004) 

.059* 
(.020) 

-.002 
(.003) 

-.004 
(.004) 

.001 
(.006) 

Standard Deviation of 
Mother’s Education 
 

-.010* 
(.005) 

-.046* 
(.022) 

-.042* 
(.018) 

-.008 
(.004) 

-.017* 
(.006) 

-.014* 
(.005) 

-.046* 
(.024) 

.006 
(.003) 

-.001 
(.005) 

-.009 
(.007) 

Standard Deviation of 
Age 
 

-.009 
(.062) 

-.073 
(.292) 

.366 
(.241) 

.042 
(.060) 

-.013 
(.091) 

.005 
(.062) 

-.109 
(.319) 

.004 
(.047) 

.042 
(.062) 

-.001 
(.095) 

N 450,897 450,561 415,123 450,897 416,746 433,997 433,769 345,682 433,997 396,239 
Control for Moving Average         
Fraction Female 
 
 

-.072* 
(.018) 

-.182* 
(.084) 

-.063 
(.067) 

-.033* 
(.017) 

-.036 
(.025) 

-.010 
(.017) 

.021 
(.093) 

-.025 
(.013) 

.038* 
(.018) 

.075* 
(.029) 

Mean Age 
 
 

-.030 
(.030) 

-.146 
(.141) 

.051 
(.113) 

.036 
(.028) 

-.003 
(.043) 

.030 
(.029) 

.061 
(.155) 

-.005 
(.024) 

-.002 
(.031) 

.037 
(.047) 

Average Mother’s 
Education 
 

.005 
(.005) 

.053* 
(.023) 

.045* 
(.018) 

-.001 
(.005) 

-.004 
(.007) 

.008 
(.005) 

.057* 
(.025) 

.001 
(.003) 

-.003 
(.005) 

.011 
(.007) 

Standard Deviation of 
Mother’s Education 
 

-.006 
(.006) 

-.048* 
(.028) 

-.036 
(.022) 

-.008 
(.006) 

-.009 
(.008) 

-.018* 
(.006) 

-.064* 
(.030) 

.003 
(.004) 

-.004 
(.006) 

-.021* 
(.009) 

Standard Deviation of 
Age 
 

.040 
(.080) 

-.012 
(.382) 

.370 
(.304) 

.078 
(.075) 

.036 
(.025) 

.018 
(.079) 

.227 
(.433) 

-.052 
(.059) 

.113 
(.082) 

.022 
(.125) 
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N 393,362 393,079 365,545 393,362 363,618 379,096 378,906 319,162 379,096 346,191 
All specifications include additional controls for whether first-born, school starting age, mother’s education, family size, family size squared, 
mother’s age at birth, mother’s age at birth squared, an indicator for immigrant status, school grade size, and indicators for cohort.  IV 
specifications instrument all peer variables with what they would be if all students had started school in accordance with the school starting age 
laws in Norway at that time. Cohort dummies are instrumented with year of birth dummies. School starting age is instrumented with expected 
school starting age. Standard errors are clustered at the school level. 
*: Statistically Significant at the 5% level. 
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Appendix Table 1: Effect of Peers on Predetermined Characteristics (IV Estimates) 
  

Controls for School Means 
 Mother’s 

Education 
Father’s 

Education 
Family 

Size 
Whether 

First-born 
Expected 
School 

Starting 
Age 

Mother’s 
Age at 
Birth 

Whether 
Immigrant 

Whether 
Female 

Fraction 
Female 
 

.031 
(.037) 

 

.069 
(.050) 

-.003 
(.027) 

.001 
(.009) 

-.001 
(.006) 

.099 
(.127) 

-.003 
(.002) 

-.072* 
(.014) 

Average Age 
 

.185* 
(.070) 

 

.272* 
(.093) 

-.096* 
(.049) 

.011 
(.018) 

-.078* 
(.014) 

-.067 
(.233) 

.007 
(.004) 

-.004 
(.018) 

Mother’s 
Education 

.189* 
(.017) 

.363* 
(.024) 

-.120* 
(.018) 

.005 
(.003) 

.001 
(.001) 

.217* 
(.045) 

.001 
(.001) 

.001 
(.002) 

 
Controls for School Means and Trends 

 Mother’s 
Education 

Father’s 
Education 

Family 
Size 

Whether 
First-born 

Expected 
School 

Starting 
Age 

Mother’s 
Age at 
Birth 

Whether 
Immigrant 

Whether 
Female 

Fraction 
Female 
 

-.017 
(.051) 

 

.022 
(.053) 

-.003 
(.025) 

-.002 
(.009) 

-.002 
(.006) 

.118 
(.120) 

-.003 
(.002) 

-.179* 
(.016) 

Average Age 
 

.051 
(.097) 

 

.149 
(.101) 

-.054 
(.045) 

.035* 
(.018) 

-.190 
(.016) 

-.725 
(.219) 

.005 
(.004) 

.013 
(.021) 

Mother’s 
Education 

-.289* 
(.020) 

-.120* 
(.016) 

.015* 
(.006) 

-.004 
(.002) 

.002 
(.002) 

.092 
(.029) 

-.0015* 
(.0006) 

-.001 
(.003) 
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Controls for School Means and Moving Average 
 Mother’s 

Education 
Father’s 

Education 
Family 

Size 
Whether 

First-born 
Expected 
School 

Starting 
Age 

Mother’s 
Age at 
Birth 

Whether 
Immigrant 

Whether 
Female 

Fraction 
Female 
 

-.012 
(.093) 

 

.039 
(.077) 

-.019 
(.036) 

.003 
(.012) 

.001 
(.012) 

.150 
(.157) 

-.002 
(.003) 

-.601* 
(.028) 

Average Age 
 

-.074 
(.153) 

 

.090 
(.132) 

-.013 
(.060) 

.070* 
(.021) 

-.547* 
(.028) 

-1.153* 
(.272) 

.009 
(.005) 

-.038 
(.034) 

Mother’s 
Education 

-.702* 
(.032) 

-.323* 
(.024) 

.042* 
(.009) 

-.020* 
(.003) 

.001 
(.003) 

.266* 
(.038) 

-.003* 
(.001) 

-.001 
(.005) 

 
Controls for School Means and Adjusted Moving Average 

 Mother’s 
Education 

Father’s 
Education 

Family 
Size 

Whether 
First-born 

Expected 
School 

Starting 
Age 

Mother’s 
Age at 
Birth 

Whether 
Immigrant 

Whether 
Female 

Fraction 
Female 
 

.006 
(.061) 

 

.037 
(.070) 

-.011 
(.036) 

.002 
(.012) 

-.003 
(.007) 

.129 
(.155) 

-.002 
(.003) 

.007 
(.018) 

Average Age 
 

.071 
(.102) 

 

.131 
(.119) 

-.014 
(.060) 

.069* 
(.021) 

-.003 
(.017) 

-.516 
(.269) 

.010 
(.005) 

-.018 
(.021) 

Mother’s 
Education 

-.077* 
(.021) 

-.019 
(.020) 

-.006 
(.009) 

-.0002 
(.003) 

.001 
(.002) 

.065 
(.037) 

-.0003 
(.001) 

-.001 
(.003) 

 
 
Each column reports the estimates from a separate regression. All specifications include additional controls for indicators for cohort. IV 
specifications instrument all peer variables with what they would be if all students had started school in accordance with the school starting age 
laws in Norway at that time. Cohort dummies are instrumented with year of birth dummies. Standard errors are clustered at the school level. 
*: Statistically Significant at the 5% level. 
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Appendix Table 2:  Summary Statistics 
Recent Cohorts 

Individual Characteristics Girls Boys 
Mother’s Education 11.58 

(2.63) 
11.61 
(2.63) 

Mother's Age at Birth 27.00 
(5.04) 

27.00 
(5.04) 

Family Size 2.72 
(1.08) 

2.73 
(1.08) 

Fraction Firstborn .44 
(.50) 

.44 
(.50) 

Immigrant .04 
(.19) 

.03 
(.18) 

Fraction Students Starting On Time .975 
(.156) 

.975 
(.155) 

School Starting Age 7.25 
(.28) 

7.26 
(.30) 

Expected School Starting Age 7.25 
(.28) 

7.25 
(.28) 

Fraction doing Academic Track in High School  .70 
(.45) 

.46 
(.50) 

Fraction doing Vocational Track .29 
(.45) 

.52 
(.50) 

Math Score 1  
 

3.53 
(1.12) 

3.40 
(1.15) 

Math Score 2 
 

3.24 
(1.10) 

3.19 
(1.13) 

 
School/Peer Characteristics 

  

# of Students in Grade 80 
(40) 

79 
(40) 

Average Age 7.3 
(.07) 

7.3 
(.07) 

Average Female .49 
(.08) 

.49 
(.08) 

Average Mother's Education 11.60 
(.82) 

11.60 
(.82) 

N* 
Number of Schools 

384,745 
1,259 

403,599 
1,261 

* For girls, there are 123,154 observations on Math Score 1 and  46,887 observations on Math Score 2. For boys, 
there are 128,632 observations on Math Score 1 and  49,374 observations on Math Score. Standard deviations in 
parentheses.  


