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A Profile of Obesity in Ireland, 2002-2007 

 

Introduction 

 

This paper provides a profile of the change in obesity in Ireland between 2002 and 

2007, using the Slan surveys for those years.  There are two dimensions to the profile 

provided.  First of all we analyse the total distribution of body mass index (BMI) for 

both years and use stochastic dominance techniques to examine changes across the 

complete distribution of BMI.  Secondly we employ a series of decompositions to 

obesity and the change in obesity over time.  Obesity typically does not fall randomly 

across the population.  It may differ by age, gender and education.  We carry out 

decompositions of obesity measures along these three dimensions.  We also employ 

decomposition techniques to examine the change over time.  The Shapley 

decomposition breaks down the change in obesity into that part accounted for by a 

change in the average level of BMI and that part accounted for by a change in the 

distribution of BMI.  Finally, we estimate a reduced form model of BMI and apply 

the semi-parametric decomposition approach of Dinardo, Fortin and Lemieux, 

(henceforth DFL, 1996) to examine the role of various factors in the change in obesity 

observed over the 2002-2007 period.  This approach enables us to construct 

counterfactuals of the total distribution of BMI under different scenarios. 

 

The remainder of the paper proceeds as follows.  In the next section we make some 

general observations concerning the measurement of obesity and we motivate the 

stochastic dominance approach for examining the change in obesity between 2002 

and 2003.  We then discuss our data and present the stochastic dominance results.  

The next section carries out decompositions by age, gender and education while we 
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then explain and present results for the Shapley decomposition.  We then present 

results for the DFL decomposition while the final section presents concluding 

comments. 

 

Measuring Obesity 

 

Obesity is clearly one of the most pressing health issues in the developed (and 

increasingly in the developing) world.  For example, a recent edition of the New 

England Journal of Medicine is devoted to the topic with one article suggesting that:  

 

“Unless effective population-level interventions to reduce obesity are 

developed, the steady rise in life expectancy observed in the modern era 

may soon come to an end and the youth of today may, on average, live 

less healthy and possibly even shorter lives than their parents” (Olshansky 

et al., NEJM, 2005). 

 

Meanwhile an editorial in The Lancet stated: 

 

“Excess bodyweight is one of the most blatantly visible, yet most 

neglected, risk factors contributing to the overall burden of disease 

worldwide.  At least 1.1 billion adults and 10% of children are now 

overweight or obese, leading to decreased life expectancy due to 

cardiovascular disease, type 2 diabetes and some types of cancer” (The 

Lancet, 2006). 
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Given this extent of concern regarding obesity, it is important that we measure it 

accurately.  The most common measure of obesity used is derived from body mass 

index (BMI). BMI is obtained by dividing weight (in kilos) by height (in metres) 

squared.  The World Health Organisation defines overweight and obesity with respect 

to BMI as follows: 

 

Range of BMI Weight Definition 

<20 Underweight 

20-24.9 Normal Weight 

25-29.9 Overweight 

30-39.9 Obese 

≥40 Severely Obese 

 

Thus obesity is defined as a value of BMI greater than or equal to 30.  

 

Note that there is criticism of BMI as a measure of obesity with some authors 

suggesting that other measures such as total body fat, percent body fat and waist 

circumference are superior measures of fatness (see Cawley and Burkhauser, 2006).  

Since much of the contribution of this paper is primarily methodological, while 

acknowledging the importance of this issue, we still feel it is useful to apply our 

approach to BMI as the likelihood is that it will remain the most commonly used 

indicator of obesity for the foreseeable future.  Also, the approaches to analyzing 

obesity which we suggest here could in principle be applied to measures such as total 

body fat etc. 

 

Most analysis of obesity usually proceeds by calculating the fraction of the population 

with BMI above the obesity threshold and proceeding from there.  There are a number 
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of problems with this approach, however.  First of all, using the simple fraction of the 

population with BMI above a particular threshold ignores much of the available 

information.  It is a crude aggregate measure which is insensitive to how far above the 

threshold obese people are and is also insensitive to the distribution of BMI above the 

obesity threshold.  These issues, and suggestions to overcome them, have been 

discussed in Jolliffe (2004) and Madden (2006) and are briefly reviewed again in 

section 4 below. 

 

A second problem with the WHO approach to measuring obesity is the potential 

sensitivity of the measure to the choice of 30 as the obesity threshold.   An individual 

with a BMI of 29.9 may be observationally indistinguishable from one with a BMI of 

30.  Yet one will count as obese and the other will not.  Thus a comparison of obesity 

between two populations may be sensitive to the (arbitrary) choice of BMI threshold.  

Ideally, we would like to be able to compare obesity between two populations in a 

manner which is not sensitive to choice of BMI threshold.  This is where stochastic 

dominance can help. 

 

Probably the main application of stochastic dominance in economics is in relation to 

assets with monetary payoffs where it is used to rank the payoff distributions of assets 

in terms of their level of return and the dispersion of the return i.e. the level of risk 

attached to the asset.  It can also been used in poverty and income distribution 

analysis and it is extremely useful when making non-parametric comparisons between 

distributions of continuous variables such as BMI. 
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Suppose we have two distributions of BMI with cumulative density functions (CDF) 

)(BMIF  and )(BMIG  respectively.  Then CDF )(BMIF  first-order stochastically 

dominates )(BMIG  if and only if, for all monotone non-increasing functions 

)(BMIα :  

∫ ∫≤ )()()()( BMIdGBMIBMIdFBMI αα  

where the integral is taken over the whole range of BMI.  Thus the average value of 

α  is no greater in distribution F than in distribution G, as long as the valuation 

function is such that lower is better i.e. it is monotone non-increasing.
1
  In this sense 

distribution F stochastically dominates distribution G.  An equivalent way of 

expressing this is to say that for all BMI, 

)()( BMIFBMIG ≤  

so that the CDF of distribution G is no greater than that of distribution F i.e. 

distribution F always has more mass in the lower part of the distribution. 

 

In figure 1 we show two cumulative distributions of BMI, F(BMI) and G(BMI).  Here 

F stochastically dominates G in the sense referred to above.  The relevance of this in 

the context of obesity can be shown as follows: suppose we decide there is a critical 

level of BMI, BMI*, which is the level denoting obesity.  In figure 1, the value of the 

CDF at BMI* for distribution F is higher than that for distribution G.  Thus the 

fraction of the population in distribution F with BMI less than the critical threshold is 

lower than that in distribution G.  In other words the fraction with BMI in excess of 

BMI*, i.e. the fraction which is obese, is higher in distribution G than in distribution 

F.  And because we have stochastic dominance in the sense that )()( BMIFBMIG ≤  

                                                 
1
 In the case of BMI we can regard the α function as being similar to a health utility function which is 

non-increasing in BMI. 
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this will be true no matter what critical value of BMI is chosen to indicate obesity.  

Obesity is higher in G regardless of the chosen threshold. 

 

Figure 2 shows an instance where stochastic dominance is not observed.  At BMI* we 

have F(BMI*)>G(BMI*), but at BMI** we have F(BMI**)<G(BMI**).  Thus the 

ranking of the distributions in terms of obesity is sensitive to the choice of threshold.  

In this instance there are two choices open to the analyst.  One is to put a restriction 

on the range of BMI over which we look for stochastic dominance.  Thus suppose we 

decide that a value of BMIL is a reasonable lower bound for the obesity threshold 

(obviously there is no upper bound).  Then we can search whether stochastic 

dominance is observed for values of BMI in excess of BMIL. 

 

An alternative is to place restrictions on the function α(BMI).  This leads us on to the 

second type of stochastic dominance known as second-order stochastic dominance. 

We say that distribution )(BMIF second-order stochastically dominates distribution 

)(BMIG  if and only if, for all monotone non-increasing and convex functions 

)(BMIα  the previous inequality holds i.e.  

∫ ∫≤ )()()()( BMIdGBMIBMIdFBMI αα  

 

Once again second-order stochastic dominance can be expressed equivalently as 

)()()()( BMIDdttFdttGBMID F

U
BMI

LBMI

U
BMI

LBMI
G =∫≤∫=  

so that second-order stochastic dominance is checked, not by comparing the CDFs 

themselves, but by comparing the integrals below them.
2
 When )(BMIα  is convex,  

                                                 
2
 Note that first order dominance necessarily implies second order dominance. 
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this implies that second-order dominance holds for obesity measures which are 

sensitive to the depth of obesity. We can then employ the Second-Order Dominance 

Condition above.  Note the limits of the integrals.  Because we are not worried about 

BMI levels below the lower bound, BMIL, we only calculate the integrals for those 

whose BMI exceeds this lower bound up to the highest observed value of BMI, BMI
U
. 

 

Since first-order stochastic dominance implies second-order stochastic dominance, 

this check should only apply when first order dominance is not observed.  It is 

possible to justify an obesity measure which is sensitive to the depth of obesity by 

noting that for many of the conditions listed above for which obesity is a contributory 

factor, the risk ratio is increasing with BMI. 

 

We now discuss our data and present stochastic dominance results for 2002 and 2007. 

 

Data and Stochastic Dominance Results 

 

Our data comes from the Survey of Lifestyle, Attitudes and Nutrition in Ireland, 

usually known as the Slán (the Irish word for “safe”) survey.  The Slan surveys were 

carried out in 1998, 2002 and 2007.  For our purposes in this paper, the 

correspondence between the questions asked in 2002 and 2007 is closest and so it is 

these two years which form the basis of our study.  The Slan surveys are 

comprehensive, nationally representative surveys with sample sizes in 2002 and 2007 

of 5992 and 10364 respectively.  It is worth pointing out that Slan 2007 was a face-to-

face interview in the respondent’s house, while Slan 2002 was a self-completed postal 

survey.  Both approaches have their advantages and disadvantages: while interviewers 
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can prompt and provide help to respondents in a face-to-face situation, the presence of 

the interviewer may affect the response to some questions.  In the case of the self-

reported survey there is always the danger than some respondents may not fully 

understand the question.  Morgan et al (2008) provide greater detail. 

 

Before examining the data for stochastic dominance, we first present summary 

statistics for BMI for the two years in question.  Note we trim the data of the top and 

bottom 0.5% by BMI for fear of very large and very small values reflecting 

measurement error.  Table 1 provides some information on BMI for 2002 and 2007.  

We can see that mean and median BMI have both increased slightly (by less than one 

per cent).  The overweight rate (percentage of the sample with BMI over 25) has 

increased by about two per cent while the obesity rate (percentage of the sample with 

BMI over 30) has increased by less than one per cent. 

 

Figure 2 presents kernel densities for BMI in 2002 and 2007, while figure 3 shows the 

difference in the densities.  The distributions are quite close.  2002 shows somewhat 

more mass around the median value of about 25, while 2007 shows more mass in the 

26-27 and 34-35 region. 

 

In terms of eye-balling the CDFs there is one slight transformation which we have to 

carry out.  Because our concern is with the proportion of the population in excess of a 

BMI threshold (rather than the proportion below an income threshold as would be the 

case in a poverty study) we need to examine the complementary cumulative 

distribution function (which we can then transform into an equivalent cumulative 

distribution function). 
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Thus for any threshold value of BMI, say BMI*, the cumulative distribution of body 

mass index gives the probability that the random variable (in this case BMI) takes on 

a value less than or equal to BMI* i.e. F(BMI*)=P(BMI≤BMI*).   In examining 

obesity we are concerned with the complementary CDF i.e. 

*)(*)( BMIBMIPBMIFC ≥= .  However since it must be the case that 

*)(*)( BMIkBMIkPBMIBMIP −≤−=≥ , for any constant, k, then analysing the 

complementary CDF for BMI is equivalent to analysing the CDF for k-BMI, where it 

is convenient to set maxBMIk = , the maximum value of BMI observed in either 2002 

or 2007.
3
 

 

As eye-balling the transformed CDFs can be quite difficult, instead we show the 

difference between them for a range of k-BMI from 0 to 25.  This corresponds to a 

range of actual BMI from the maximum value observed, just less than 45, to 20, and it 

seems reasonable to suggest that any threshold of BMI for overweight or obesity is 

certain to lie within this interval.  Figure 4 shows this difference, along with the 95% 

confidence interval.  There is a clear crossing (at a value corresponding to BMI of 

about 37) and so first order dominance does not hold.
4
   Obesity (and overweight) 

rates were generally lower in 2002 for mild and intermediate degrees of overweight 

and obesity, but they were higher for more severe degrees of obesity (i.e. BMI in 

excess of about 37). 

 

                                                 
3
 This transformation is necessary as we are drawing these curves using the DASP package of Arrar 

and Duclos which does not construct curves for complementary CDFs. I am very grateful for their 

permission to use the package. 
4
 Figure 4 shows the crossing at a value of “transformed” BMI of about 7.  Since k is set at a value just 

above 44, this implies that since k-BMI=7, then BMI must be about 37. 
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What about second-order stochastic dominance?   Figure 5 shows the area under the 

CDF for k-BMI and once again we do not observe dominance with a crossing at a 

level of BMI corresponding to about 35. 

 

Since we do not observe either first or second order dominance between 2002 and 

2007 it is not possible to make unambiguous comments regarding the change in 

obesity in Ireland over this period.  Any comparison of the two years must necessarily 

involve the use of a particular obesity index and a particular BMI threshold.  However 

the use of specific indices does permit the decomposition of such indices in useful 

ways, and this is the subject matter of the next section. 

 

Decomposition of Obesity 

 

Obesity typically does not fall randomly across the population.  Rates of obesity can 

differ according to a number of factors.  The three factors which we examine here are 

age, gender and education.  We apply decompositions for two different measures of 

obesity.  The first we label BMI0 and it is the standard measure which simply gives 

the proportion of the population with BMI below a certain critical level (in this case 

we give results for two critical levels, 25 and 30).  BMI1 is a measure which takes 

account of the depth of obesity.  Suppose the critical threshold level of BMI above 

which people are obese is given by 
*

BMI , then the BMI gap for individual i will be 

given by 
*

BMIBMI
i
−  (note the gap is only measured for people who are above the 

threshold).  The obesity gap measure, which we label BMI1, is then given by the sum 

of these gaps expressed as a percentage of total BMI in the community.  Thus  
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BMI

BMIBMI

i

n

BMIBMI

BMI i

µ.

)(

1
*

*∑
>

−

=  

 where 
BMI

µ  is average BMI for the community (see Jolliffe, 2004 and Madden, 

2006). 

 

First of all we note that taking the population as a whole, tables 1 and 2 show slight 

increases in both BMI0 and BMI1 between 2002 and 2007 for both the obesity and 

overweight thresholds.  However, the results broken down by age and gender are 

perhaps of more interest. 

 

In terms of the breakdown by age and gender we partition the population into four 

groups, taking 45 as the threshold age between young and old.  In terms of education 

we also use four groups: those with primary school education or less (left school at 

around age 12), those with intermediate second level schooling (left school around 

15-16), those with complete secondary school education (left school at 17-18) and 

those with third level education.  

 

Table 2 gives the breakdown of obesity and overweight by age and gender.  There is a 

fairly clear age and gender dimension to both.  Males have a higher rate of obesity 

and overweight than females, and so too do older people relative to younger.  Hence 

the obesity rate for older males is more than 30% higher than for the population as a 

whole.  Compared to younger females, older males have almost twice the rate of 

obesity.  Interestingly, the age gradient becomes less severe for males in 2007, 

compared to 2002, yet it becomes more pronounced for females. 
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What about measures that take account of the depth of obesity?  For males, the age 

gradient here is much less severe in the case of BMI in excess of 30.  There is also no 

clear gender gradient to be observed either for this measure in the case where the BMI 

threshold is 30, though such a gradient is observed for the threshold of 25.  

 

We now turn to the gradient by education.  Here we see that when using a threshold of 

30 there is a clear gradient in BMI0 for 2002, but this gradient is much less sharp in 

2007.  This reduction in the gradient between 2002 and 2007 can also be observed 

when using a threshold of 25.  For the most part the reduction in the gradient is caused 

by an increase in BMI amongst those with 3
rd

 level education. 

 

When using measures which take account of the depth of obesity there is no real 

reduction in the gradient for the threshold of 30, though there is some reduction for 

the lower threshold of 25.  Once again, these changes mostly arise from an increase in 

BMI amongst those with 3
rd

 level education. 

 

The above decompositions are useful in that they show how obesity can differ 

according to factors such as age, gender and education.  However, these factors in 

themselves can be highly correlated and such correlations should be taken into 

account.  This is carried out via regression analysis in section 6.  Before that however 

in section 5 we break down the change in obesity between 2002 and 2007 into that 

part accounted for by changes in average BMI and that part accounted for by changes 

in the shape of the distribution of BMI. 

 

The Shapley Decomposition Over Time 



 14 

 

Changes in obesity over time can arise for one of either two reasons.  Either the 

average level of BMI in the population rises or else, while average BMI remains 

unaffected, the distribution of BMI changes, with greater numbers of people above the 

critical threshold.  Figure 6 illustrates both these cases.  In the left hand diagram the 

probability density function for BMI shifts to the right, increasing the mean and 

consequently increasing the mass of the distribution to the right of the critical obesity 

threshold.  In the right hand diagram, the mean remains the same.  However, there is a 

mean-preserving spread in the distribution and so once again the mass of the 

distribution to the right of the critical obesity threshold increases.  In most cases, there 

will be changes in both the mean and the distribution of BMI and it can be useful to 

decompose the total change in BMI into changes arising from the mean and changes 

arising from the distribution. 

 

As we have observed already, the measurement of obesity has much in common with 

the measurement of poverty, in that both issues are concerned with critical thresholds.  

Given this similarity it is hardly surprising that the decomposition issue has been 

addressed in the poverty literature.  Suppose we characterise our measure of obesity 

as *),,( BMILOO µ=  where µ is the average level of BMI, L is the Lorenz curve for 

the distribution of BMI and BMI* is the critical obesity threshold (note that the 

cumulative distribution function for BMI will be completely characterised by its mean 

and Lorenz curve). 

 

If subscripts “0” and “1” refer to the two time periods in question, then the change in 

obesity over time 01 OO −  can be written as  
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*),,(*),,(*)(*)( 0001110101 BMILOBMILOBMIFBMIFOO µµ −=−=−  

where iF  is the cumulative distribution function for period “i”.  This can then be 

decomposed into growth and redistribution effects denoted by  

*),,(*),,( 0001 BMILOBMILO µµ −  and *),,(*),,( 0111 BMILOBMILO µµ −  

respectively. 

 

However, as is the case with any path dependence type problem, the choice of which 

configuration to use as the base period is arbitrary.  Here in the growth part we 

calculate the marginal effect of the change in mean BMI with the distribution held 

constant at the initial configuration.  However, we calculate the marginal impact of 

redistribution holding mean BMI constant at the final configuration.  We could just 

vas easily have carried out a decomposition with the base periods changed and there is 

no logical reason for preferring one configuration over another.  Following the 

approach outlined in Shorrocks and Kolenikov and Shorrocks we take the average of 

the two effects respectively thus giving a growth effect of  

 

*)],,(*),,([
2

1
*)],,(*),,([

2

1
10110001 BMILOBMILOBMILOBMILO µµµµ −+−  

 

and a redistribution effect of  

 

*)],,(*),,([
2

1
*)],,(*),,([

2

1
01110010 BMILOBMILOBMILOBMILO µµµµ −+− . 

 

As explained in Shorrocks (1999) these two expressions are the growth and 

distribution components for a two-way Shapley decomposition of the change in 
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obesity.  The Shapley decomposition arises from the classic co-operative game theory 

problem of dividing a pie fairly.  The solution is that each player is assigned his 

marginal contribution averaged over all possible coalitions of agents.  Shorrocks’ 

interpretation was to consider the various n factors which contribute together to 

determine the value of an indicator such as obesity or poverty and then assign to each 

factor the average marginal contributions taken over the n! possible ways in which the 

factors may be removed in sequence.  The decomposition is always exact as the 

factors are treated symmetrically. 

 

Figure 7 shows a two-way Shapley decomposition for the change in obesity into a 

growth and distribution component.  Since we have two factors (n=2, growth and 

distribution) we have 2!=2 possible routes.  If we also allowed the obesity threshold to 

change then we would have n=3 and 3!=6 possible routes. 

 

Table 5 presents results for the Shapley decomposition of obesity for the two 

measures of obesity, BMI0 and BMI1.   

 

Dealing first of all with the case of obesity (BMI>30), the actual change in BMI0 over 

the period in question was small, an increase of less than one per cent.  This change 

was down solely to a change in the average level of BMI.  In fact, had average BMI 

remained constant then changes in the distribution of BMI would in fact have led to a 

fall in obesity.  Similarly BMI1, which takes account of the depth of obesity, also 

showed a very small increase and once again all of this was accounted for by changes 

in the average level of BMI. 
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For the case of overweight (BMI>25) the change between 2002 and 2007 was greater 

in magnitude than for obesity.  Once again, the bulk of the change was accounted for 

by a change in the average level of BMI.  Three quarters of the change in BMI0 was 

accounted for by the average level of BMI, while in the case of BMI1 the increase in 

the average level accounted for 98 per cent of the change. 

 

Are there any policy implications to be drawn from these decompositions?  Most of 

the change in obesity is accounted for by a change in the average level of BMI, as 

opposed to a change in BMI amongst the overweight/obese.  This suggests that 

policies to combat obesity should perhaps be targeted at a general audience, rather 

than at the more specific group towards the right hand tail of the distribution.  But it is 

also worth remembering that the overall change in obesity rates is quite modest.  

 

The Dinardo-Fortin-Lemieux Decomposition 

 

The decompositions in sections 4 and 5 looked at the change in obesity according to 

the dimensions of age, gender and education and also in terms of a shift in the average 

level of BMI versus a change in the shape of the distribution.  Section 6 looks at the 

decomposition of the change in the distribution of BMI due to certain sets of factors.  

Following the seminal paper by DFL we employ a sequential counterfactual approach 

to analysing the effect of each set of factors.  This involves a re-weighting of the 

sampling weights for each individual (for gender, socio-economic characteristics and 

self-assessed health) and a rescaling of BMI (reflecting changes in the “returns” to 

BMI accounted for by various factors). 
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This approach is similar in many ways to the classic Blinder-Oaxaca (BO) 

decomposition (Blinder, 1973 and Oaxaca, 1973), except that while the BO 

decomposition provides a decomposition evaluated at the mean (which is arguably of 

relatively little interest in an obesity study), the DFL procedure provides the 

decomposition across the whole of the distribution.  In our application we are looking 

at the decomposition of the change in the distribution of BMI over time (as opposed 

to decomposition by, say, gender).  The approach involves the sequential construction 

of counterfactual distributions for changes in various sets of factors.  The set of 

factors we choose to focus on are the socio-demographic attributes of individuals, 

their self-assessed health and the “returns”, in terms of obesity, to these factors. 

 

Suppose that we are decomposing the change in BMI between two time periods (2002 

and 2007 which we label period “0” and “1” respectively).  We estimate the 

probability density of BMI in period t, ft(y), using kernel density methods.  Thus if 

(yt1, …, ytN) is a random sample of N observations with sampling weights (θt1,…, θtN) 

and ∑θti=1, the kernel density estimate of ft(y) is 

 

∑
=








 −
=

N

i

titi
t

b

yy
K

b
yf

1

.)(ˆ θ
 

 

where K is the kernel function and b is the bandwidth.  We use the kernel density 

facility in STATA with the Epanechnikov kernel and the bandwidth optimally chosen.  

We have already seen the kernel density of BMI in 2002 and 2007 in figure 2 while 

figure 3 shows the difference between the kernel densities (the density for BMI in 
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2002 minus the density for BMI in 2007).  We now explain how we go about 

constructing the sequence of counterfactuals. 

 

The sequence of counterfactuals involves either a re-weighting of sample weights for 

each individual (reflecting changes in socio-demographic attributes and health 

outcomes) or a re-scaling of BMI (reflecting different “returns” to BMI).  The first 

counterfactual we examine is that of socio-demographic attributes.  If we believe that 

BMI is correlated with certain socio-demographic attributes, then it seems reasonable 

that changes in such socio-economic attributes could lead to changes in observed 

BMI, without any change in underlying “behaviour”.  Thus we estimate how certain 

socio-demographic attributes vary between 2002 and 2007.  The attributes chosen are 

age, gender, education, marital status, principal economic status, and smoking status.  

The estimated relationship is then used to adjust the 2002 sampling weights to reflect 

the change in attributes between 2002 and 2007.  This will give greater weight to 

those with attributes more similar to 2007 attributes and less weight to those 

household with attributes which are less similar. 

 

Thus the density of BMI in period t is expressed as the integral of the density of BMI 

conditional on household demographic attributes, x, and self-assessed health 

outcomes, h: 

 

∫
Ω∈

=

),(),(

),(),;()(

xexh

ttt xhdFhxyfyf  

where ),( xhΩ  is the domain of individual health outcomes and socio-demographic 

attributes and ),( xhFt is the joint distribution of (h, x) for an individual in period t.  
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the sequence we are following first analyses the effects of changes in socio-

demographic attributes and then changes in health, conditional on socio-demographic 

attributes.  Thus we re-write the above expression as 

 

∫∫
Ω∈Ω∈

=

xhh

ttt

xx

t xdFxhdFhxyfyf )()().,;()( . 

Thus we construct a counterfactual density allowing the distribution of socio-

demographic attributes to be as observed in 2007 but holding the conditional 

distribution of health outcomes and density of BMI to be as in 2002. 

 

∫∫
Ω∈Ω∈

=

xhhxx

X
xdFxhdFhxyfyf )()().,;()( 1000  

∫∫
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=
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x
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xdFxxhdFhxyf )()()().,;( 000 ψ  

where we have replaced )(1 xdF  with )()( 0 xdFxxψ  and 
)(

)(
)(

0

1

xdF

xdF
xx =ψ  is a re-

weighting function which rescales the period 0 density of attributes to obtain the 

period 1 density.  Using Bayes’ rule, this function can be expressed as 
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),1(
)(

=

=

=

=
=

=

=
=
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tP

xtP
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xtP

xtP
xxψ  

and )1( xtP =  is the conditional probability that a household with attributes x is 

observed in period 1, while P(t=1) is the unconditional probability that the household 

is observed in period 1. 
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Thus in order to obtain estimates for the re-weighting function, we first pool 

observations for period 0 and period 1 and then estimate the probability that 

individual i is observed in period 1, given attributes x using a logit model for the 

binary dependent variable.
5
  Estimates from this model can then be used to predict, for 

each individual observed in period 0, the relative probability that it would be observed 

in period 1 versus period 0 i.e. 
)0(

)1(

xtP

xtP

=

=
 .  We can then adjust this by the ratio of the 

unconditional probabilities, 
)1(

)0(

=

=

tP

tP
 , to obtain the estimated re-weight for this 

individual, )(ˆ
0xxψ .  The counterfactual density for BMI which takes account of the 

changes in attributes is then given by 

∑
=








 −
=

N

i

iixX

b

yy
K

b

x
yf

1

000
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)(ˆ
)(ˆ θψ

 

and the estimated marginal effect of the change in the distribution which is explained 

by socio-demographic attributes is  

).()(ˆ)(ˆ
00 yfyfyf

XX −=∆  

 

Figures 8a and 8b provide the counterfactual distribution and the change in 

distribution for socio-demographic attributes.  From figure 8a it is clear that the two 

densities are very close together.  However an examination of figure 8b shows that if 

the only factor that had changed between 2002 and 2007 was the change in socio-

demographic attributes then the density in the low 20s would have increased, while 

that in the low to mid 30s would have decreased.  Figure 3 however shows that in 

                                                 
5
 Results of this estimation and others used in the calculation of these counterfactuals are available 

from the author on request. 
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actual fact, the outcome was close to, though not exactly, the mirror image, with 

decreases in the low 20s, and increases in the late 20s and mid to late 30s. 

 

This is confirmed by the results in table 7, where the measures of obesity and 

overweight for 2002(1) i.e. the first counterfactual, all show small decreases, 

compared to the actual measures in 2002 e.g. if the only factor that had changed 

between 2002 and 2007 was the change in socio-demographic attributes, then the rate 

of obesity would have fallen from 0.133 to 0.127. 

  

We next construct a counterfactual density which permits the distribution of self-

assessed health outcomes to be as in 2007 but the distribution of BMI conditional 

upon health to be as in 2002.  Thus we would have  

 

∫∫
Ω∈Ω∈

=

xhhxx

HX
xdFxhdFhxyfyf )()().,;()( 1100  

 

)()().(),().,;( 000 xdFxxhdFxhhxyf xxh

xhhxx

ψψ∫∫
Ω∈Ω∈

=  

 

where we have replaced )(1 xhdF  with )(),( 0 xhdFxh
xh

ψ  and 
)(

)(
),(

0

1

xhdF

xhdF
xh

xh
=ψ  

is a re-weighting function which rescales the period 0 density of health outcomes 

conditional on socio-demographic attributes to obtain the  period 1 density.  Given 

that health is self-assessed on a five-point scale there are five potential outcomes and 

we define 1=mh if the individual chooses health state m and 0=mh  otherwise.  Thus 

the re-weighting function is  
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hxhψ  

 

where )1( xhP mi =  is the probability of health state m in period i, given attributes x. 

Thus to estimate the re-weighting function we estimate for 2002 and 2007 ordered 

logit models for health states conditional on attributes and obtain predicted 

probabilities for each outcome, )1(ˆ
,itmt xhP = .  For each household observed in 2002 

we can use the predicted value from this model to predict the relative probability of 

health outcome mh  in 2007 compared to 2002 and calculate 
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Given this value for the estimated re-weight, the counterfactual for individual i which 

takes account of changes in health states is estimated by 
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The marginal effect of changes in health states is then given by: 
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yfyfyf
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The results of this counterfactual can be seen by examining figures 9a and 9b and 

looking at the results for 2002(2) in table 7.  These show a further slight fall in all 

obesity measures, except for BMI1 when the threshold is 30, where there is a slight 

increase.  However note that even though BMI1 increases compared to 2002 (1), it is 

still lower than for the original 2002 distribution. 

 

The final factor which we wish to take account of is the change in the BMI “return” to 

attributes and health states.  We construct a counterfactual density allowing the BMI 

returns to attributes to be as in 2007, by adjusting each individual’s 2002 BMI by the 

predicted change, given their attributes. 

 

Thus we regress BMI on a vector of attributes for 2002 and 2007, tittiti Xy εβ +′=ˆ .  

We then compute the predicted change in returns )ˆˆ(ˆ 010 ββ −′=∆ ii Xy  and 

ii
R
i yyy ˆˆˆ 00 ∆+=  and obtain the counterfactual density which takes account of these 

changes 
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and the marginal effect is given by 

 

).(ˆ)(ˆ)(ˆ ,
0

,,
0

,,
yfyfyf

XHXHRXHR −=∆  

 

Then the total change in BMI between 2002 and 2007 can be decomposed into 

explained and unexplained components: 
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))(ˆ)(ˆ())(ˆ)(ˆ()(ˆ)(ˆ ,,
010

,,
001 yfyfyfyfyfyf

XHRXHR −+−=−  

 

where  )(ˆ)(ˆ
0

,,
0 yfyf

XHR −  represents the total change in the distribution explained by 

the sets of factors we have examined here and )(ˆ)(ˆ ,,
01 yfyf

XHR−  represents the 

change in the distribution which is unexplained. 

 

The result of this counterfactual is more dramatic than the preceding ones.  All 

measures of obesity and overweight show quite a large increase compared to the 

previous counterfactual, 2002 (2), and in most cases they are above the measures for 

2002 and 2007, the exception being BMI1 with a threshold of 30.  This is reflected in 

figures 10a and 10b, where distribution for 2002 lies below that of 2002 (3) for most 

values of BMI, except those in excess of about 33.  Similarly, figures 11a and 11b 

show the comparison between 2002 (3) and 2007, and for the most part the 

distribution for 2002 (3) lies above that of 2007, once again the exception being 

values of BMI between about 33 and 37. 

 

Conclusions 

 

This paper has provided an overview of the change in obesity (as measured by BMI) 

in Ireland from 2002 to 2007.  We found that neither first nor second order stochastic 

dominance held, thus it is not possible to make unambiguous statements regarding the 

change in obesity i.e. statements which are independent of the chosen BMI threshold 

for obesity.  When the conventional thresholds of 30 and 25 are adopted then there is 

a small increase in both obesity and overweight between 2002 and 2007. 
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Analysis of obesity by age, gender and education level reveals quite appreciable 

differences across these categories.  Being male, being older and having lower 

education achievement are all associated with higher rates of obesity and overweight.  

There is some evidence that the age gradient for males falls somewhat over the period 

under review, while that age gradient for females increase.  The education gradient 

appears to diminish between 2002 and 2007 and this is mainly arises from an increase 

in obesity amongst those with third level education. 

 

A Shapley decomposition of the change in obesity over time also reveals that all of 

the increase is accounted for by an increase in the average level of BMI, as opposed to 

a change in the distribution of BMI towards the right-hand tail.  When looking at 

overweight, the change in the distribution makes some contribution, but the bulk of 

the change once again arises from an increase in average BMI. 

 

Finally, the DFL decomposition across the whole of the distribution suggests that 

none of the (admittedly quite small) change in obesity is accounted for by changes in 

the characteristics of the population.  Rather it is changes in the effect of these 

characteristics on BMI (the “returns” to the characteristics) which is the main driving 

force. 
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Table 1: BMI Summary Statistics, 2002 and 2007 

 

Year Mean Median % above 25 % above 30 

2002 

(N=5481) 

25.39 24.82 47.84 13.32 

2007 

(N=9646) 

25.56 25.04 50.05 14.08 

 

 

 

Table 2: Relative Obesity (BMI>30) by Age and Gender 

 

 2002 2007 

 BMI0 BMI1 BMI0 BMI1 

Group Rate Relative 

Share 

Rate Relative 

Share 

Rate Relative 

Share 

Rate Relative 

Share 

Young 

M 

0.128 0.962 0.012 0.882 0.128 0.910 0.013 0.090 

Old M 

 

0.181 1.356 0.015 1.088 0.184 1.309 0.016 1.094 

Young 

F 

0.107 0.802 0.013 0.919 0.105 0.744 0.012 0.079 

Old F 

 

0.133 1.001 0.015 1.103 0.154 1.093 0.018 1.223 

Pop 0.133 1.000 0.014 1.000 0.141 1.000 0.015 1.000 

 

 

Table 3: Relative Overweight (BMI>25) by Age and Gender 

 

 2002 2007 

 BMI0 BMI1 BMI0 BMI1 

Group Rate Relative 

Share 

Rate Relative 

Share 

Rate Relative 

Share 

Rate Relative 

Share 

Young 

M 

0.546 1.141 0.767 1.053 0.532 1.063 0.076 0.992 

Old M 

 

0.648 1.356 0.096 1.321 0.665 1.328 0.099 1.290 

Young 

F 

0.343 0.716 0.056 0.767 0.354 0.707 0.055 0.723 

Old F 

 

0.464 0.971 0.073 1.000 0.500 0.999 0.082 1.066 

Pop 0.478 1.000 0.073 1.000 0.501 1.000 0.077 1.000 
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Table 4: Relative Obesity (BMI>30) by Education 

 

 2002 2007 

 BMI0 BMI1 BMI0 BMI1 

Group Rate Relative 

Share 

Rate Relative 

Share 

Rate Relative 

Share 

Rate Relative 

Share 

Primary 

 

0.191 1.429 0.018 1.303 0.172 1.220 0.020 1.351 

Inter 

 

0.175 1.310 0.018 1.343 0.176 1.254 0.019 1.289 

Leaving 

 

0.131 0.982 0.015 1.106 0.133 0.944 0.013 0.881 

3
rd

 

Level 

0.082 0.613 0.008 0.597 0.112 0.800 0.011 0.761 

Pop 0.133 1.000 0.014 1.000 0.141 1.000 0.015 1.000 

 

Table 5: Relative Overweight (BMI>25) by Education 

 

 2002 2007 

 BMI0 BMI1 BMI0 BMI1 

Group Rate Relative 

Share 

Rate Relative 

Share 

Rate Relative 

Share 

Rate Relative 

Share 

Primary 

 

0.570 1.193 0.095 1.305 0.578 1.154 0.094 1.226 

Inter 

 

0.561 1.175 0.090 1.240 0.556 1.110 0.090 1.176 

Leaving 

 

0.465 0.974 0.074 1.012 0.472 0.942 0.071 0.930 

3
rd

 

Level 

0.390 0.816 0.052 0.713 

 

0.454 0.907 0.065 0.847 

Pop 0.478 1.000 0.073 1.000 0.501 1.000 0.077 1.000 

 

 

Table 6: Shapley Decomposition for Change in Obesity 2002-2007 

 

 

Overweight, BMI>25 

Measure 2002 2007 Growth (%) Distribution(%) 

BMI0 0.478 0.500 76.4 23.6 

BMI1 0.073 0.077 98.2 1.8 

Obese, BMI>30 

Measure 2002 2007 Growth (%) Distribution(%) 

BMI0 0.133 0.141 135.5 -35.5 

BMI1 0.014 0.015 100.3 -0.3 
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Table 7: Sequential Obesity and Overweight 

 

Overweight, BMI>25 

Measure 2002 2002 (1) 2002 (2) 2002 (3) 2007 

BMI0 0.478 0.473 0.472 0.517 0.500 

BMI1 0.073 0.071 0.0705 0.078 0.077 

Obese, BMI>30 

Measure 2002 2002 (1) 2002 (2) 2002 (3) 2007 

BMI0 0.133 0.127 0.126 0.141 0.141 

BMI1 0.014 0.012 0.013 0.014 0.015 
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Figure 1: Stochastic Dominance Observed 
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Figure 2: Stochastic Dominance Not Observed 
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Figure 2: Kernel Densities, BMI, 2002 and 

2007
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Figure 3: Change in Kernel Distribution between 2002 and 2007 
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Figure 4: Difference in Cumulative Distribution Functions for BMI, 2002 and 

2007 
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Figure 5: Difference in Area under Cumulative Distribution Functions for BMI, 

2002 and 2007 
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Figure 6: Changes in Mean and Distribution of BMI 
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Figure 8a: Counter Factual Distribution – Socio-demographic Attributes  
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Figure 8b: Counter Factual Distribution Changes – Socio-demographic 

Attributes 
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Figure 9a: Counter Factual Distribution – Socio Demographics and Health 

States 
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Figure 9b: Counter Factual Distribution Changes – Socio Demographics and 

Health States 
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Figure 10a: Counter Factual Distribution – Socio Demographics, Health States 

and BMI returns 
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Figure 10b: Counter Factual Distribution Changes – Socio Demographics, 

Health States and BMI returns 
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