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ABSTRACT 

This paper presents a workflow including a novel algorithm for 
road detection from dense LiDAR fused with high-resolution aerial 
imagery data. Using a supervised machine learning approach point 
clouds are firstly classified into one of three groups:  building, 
ground, or unassigned. Ground points are further processed by a 
novel algorithm to extract a road network. The algorithm exploits 
the high variance of slope and height of the point data in the direc-
tion orthogonal to the road boundaries. Applying the proposed ap-
proach on a 40 million point dataset successfully extracted a com-
plex road network with an F-measure of 76.9%. 

Index Terms: aerial laser scanning, aerial imagery, data fusion, 
road detection, machine learning, hybrid indexing 

1. INTRODUCTION 

Automatic road detection from remote sensing data is useful for 
many real world problems such as autonomous navigation. Tradi-
tionally road detection has relied heavily on satellite or aerial im-
age interpretation. More recently aerial laser scanning (ALS) has 
emerged as an alternative to the more mature photogrammetry 
technology. Laser scanning, also known as Light Detection And 
Ranging (LiDAR), is capable of accurately documenting real world 
geometries in three dimensions, whereas the input for photogram-
metry is two-dimensional data. Imagery data can be fused with Li-
DAR point clouds to generate integrated datasets (e.g. [1]). In this 
paper, road detection from ALS point clouds fused with orthopho-
tos is addressed with a novel approach that involves an innovative 
data management strategy essential to the workflow for high-
resolution data. 

2. RELATED WORKS 

Various methods have been used for road extraction from laser 
scanning data. They can be categorized as either (1) filtering, (2) 
clustering/segmentation, or (3) machine learning. Most methods 
exploit laser reflectance, height, and its derivatives (e.g. height var-
iance) as the most important means for distinguishing road versus 
other data. Furthermore, while not always used, the added benefit 
of combining LiDAR with aerial photogrammetry data has long 
been recognized (e.g. [2]).  

Prominent amongst the filter-based techniques for road 
extraction are those by Alharthy & Bethel [3], Clode et al. [4], and 
Clode et al. [5]. Alharthy & Bethel [3] filtered point data sequen-
tially use a point’s distance to a Digital Terrain Model (DTM) and 
laser reflectance strength before a connected component labelling 
is performed to group adjacent, filtered points. Similarly, Clode et 
al. [4] utilized a hierarchical rule-based classification. In addition 
to the two features used in [3], a minimum limit of point density 
and morphological filtering were employed. That research was lat-

er extended by Clode et al. [5] with a vectorization process per-
formed on the extracted road points.  

As part of the segmenting/clustering category, Choi et al. [6] 
grouped adjacent points incrementally based on the difference in 
the height and laser reflectance between the points and their neigh-
bours. Additionally road slope was considered for detecting erro-
neous clusters. Another application of segmentation for road detec-
tion was presented by Hu and Tao [2] where the ALS and aerial 
imagery data were segmented separately. Optical imagery was 
more successful distinguishing roads from trees and grasslands, 
while low vegetated areas were distinguishable by their high laser 
reflectance. Buildings were recognized by their relative height. 
Post-segmentation, parking lots remained attached to road areas 
and required a Hough transformation to detect the straight road 
strips. Notably, this approach is applicable only for grid-shaped 
road networks. 

Samadzadegan et al. [7] published one of the few examples of 
a machine learning based road detection approach resulting in a 
correctness of 87.37% by fusing multiple classifiers. From height 
and intensity information acquired by laser scanning, the authors 
generated several combinations of classifiers. The best performing 
combination was selected via a genetic algorithm.   

In comparison to other fields such as building detection and 
tree species classification from laser scanning data, automatic road 
extraction is a less active research topic. The problem is still far 
from completely solved. This paper contributes to the field by in-
troducing a point cloud processing workflow and a new algorithm 
for extracting points on road boundaries from ALS fused with aeri-
al imagery data. 

3. PROCESSING WORKFLOW 

3.1. Data processing workflow 
The proposed road extraction workflow is depicted in Fig. 1. ALS 
point clouds and orthophotos are fused together to form coloured 
point clouds, which are then loaded into an Oracle database and in-
dexed by a hybrid quadtree-kdtree indexing. Next, additional fea-
tures such as normal vector, local surface roughness, and HSL 
(Hue – Saturation – Lightness) colour are computed. A supervised 
classification continues the workflow. The process classifies points 
as (1) ground, (2) building, or (3) unassigned. Road curbs and other 
obstacles bounding road regions are detected before a quadtree 
based region growing algorithm is applied, which connects an ini-
tial seed point to other ground points, if an obstacle-free path exists 
that connects the seed to the new points. 

3.2. Data and data management 
For the purpose of this paper, 0.5 km2 in the port of Zeebrugge, 

Belgium was selected as represented by ALS data with a nominal 
density of 65 points/m2 (Fig. 1a&c) and associated colour ortho-
photos with a 5 cm resolution [originally presented in 3 bands red-
green-blue (RGB)] (Fig. 2b). The imagery and ALS data were ac-
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