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ABSTRACT

This paper presents a workflow including a novel algorithm for
road detection from dense LiDAR fused with high-resolution aerial
imagery data. Using a supervised machine learning approach point
clouds are firstly classified into one of three groups: building,
ground, or unassigned. Ground points are further processed by a
novel algorithm to extract a road network. The algorithm exploits
the high variance of slope and height of the point data in the direc-
tion orthogonal to the road boundaries. Applying the proposed ap-
proach on a 40 million point dataset successfully extracted a com-
plex road network with an F-measure of 76.9%.

Index Terms: aerial laser scanning, aerial imagery, data fusion,
road detection, machine learning, hybrid indexing

1. INTRODUCTION

Automatic road detection from remote sensing data is useful for
many real world problems such as autonomous navigation. Tradi-
tionally road detection has relied heavily on satellite or aerial im-
age interpretation. More recently aerial laser scanning (ALS) has
emerged as an alternative to the more mature photogrammetry
technology. Laser scanning, also known as Light Detection And
Ranging (LiDAR), is capable of accurately documenting real world
geometries in three dimensions, whereas the input for photogram-
metry is two-dimensional data. Imagery data can be fused with Li-
DAR point clouds to generate integrated datasets (e.g. [1]). In this
paper, road detection from ALS point clouds fused with orthopho-
tos is addressed with a novel approach that involves an innovative
data management strategy essential to the workflow for high-
resolution data.

2. RELATED WORKS

Various methods have been used for road extraction from laser
scanning data. They can be categorized as either (1) filtering, (2)
clustering/segmentation, or (3) machine learning. Most methods
exploit laser reflectance, height, and its derivatives (e.g. height var-
iance) as the most important means for distinguishing road versus
other data. Furthermore, while not always used, the added benefit
of combining LiDAR with aerial photogrammetry data has long
been recognized (e.g. [2]).

Prominent amongst the filter-based techniques for road
extraction are those by Alharthy & Bethel [3], Clode et al. [4], and
Clode et al. [5]. Alharthy & Bethel [3] filtered point data sequen-
tially use a point’s distance to a Digital Terrain Model (DTM) and
laser reflectance strength before a connected component labelling
is performed to group adjacent, filtered points. Similarly, Clode et
al. [4] utilized a hierarchical rule-based classification. In addition
to the two features used in [3], a minimum limit of point density
and morphological filtering were employed. That research was lat-

978-1-4799-7929-5/15/$31.00 ©2015 IEEE

4177

er extended by Clode et al. [S] with a vectorization process per-
formed on the extracted road points.

As part of the segmenting/clustering category, Choi et al. [6]
grouped adjacent points incrementally based on the difference in
the height and laser reflectance between the points and their neigh-
bours. Additionally road slope was considered for detecting erro-
neous clusters. Another application of segmentation for road detec-
tion was presented by Hu and Tao [2] where the ALS and aerial
imagery data were segmented separately. Optical imagery was
more successful distinguishing roads from trees and grasslands,
while low vegetated areas were distinguishable by their high laser
reflectance. Buildings were recognized by their relative height.
Post-segmentation, parking lots remained attached to road areas
and required a Hough transformation to detect the straight road
strips. Notably, this approach is applicable only for grid-shaped
road networks.

Samadzadegan et al. [7] published one of the few examples of
a machine learning based road detection approach resulting in a
correctness of 87.37% by fusing multiple classifiers. From height
and intensity information acquired by laser scanning, the authors
generated several combinations of classifiers. The best performing
combination was selected via a genetic algorithm.

In comparison to other fields such as building detection and
tree species classification from laser scanning data, automatic road
extraction is a less active research topic. The problem is still far
from completely solved. This paper contributes to the field by in-
troducing a point cloud processing workflow and a new algorithm
for extracting points on road boundaries from ALS fused with aeri-
al imagery data.

3. PROCESSING WORKFLOW

3.1. Data processing workflow
The proposed road extraction workflow is depicted in Fig. 1. ALS
point clouds and orthophotos are fused together to form coloured
point clouds, which are then loaded into an Oracle database and in-
dexed by a hybrid quadtree-kdtree indexing. Next, additional fea-
tures such as normal vector, local surface roughness, and HSL
(Hue — Saturation — Lightness) colour are computed. A supervised
classification continues the workflow. The process classifies points
as (1) ground, (2) building, or (3) unassigned. Road curbs and other
obstacles bounding road regions are detected before a quadtree
based region growing algorithm is applied, which connects an ini-
tial seed point to other ground points, if an obstacle-free path exists
that connects the seed to the new points.

3.2. Data and data management

For the purpose of this paper, 0.5 km® in the port of Zeebrugge,
Belgium was selected as represented by ALS data with a nominal
density of 65 points/m? (Fig. 1a&c) and associated colour ortho-
photos with a 5 cm resolution [originally presented in 3 bands red-
green-blue (RGB)] (Fig. 2b). The imagery and ALS data were ac-
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quired simultaneously so that they match when fused together (Fig.
2d), except for some fast moving objects such as cars on highways.
As per the normal practice, the ALS and orthophotos were provid-
ed as separate tiles, (each 500 mx500 m). The ALS data were in an
ASCII format containing only laser intensity and point coordinates.
Other point attributes such as the time stamp and return number
(usually associated with ALS data) were not available. The ortho-
photos were given in geo-referenced tiff format.

Orthophotos LEGIEND
File
[ Oracle table

* Data fusion * 0 Metadata
1 Program
= =V

13.6]

Point clouds

Y.
Colored
point clouds

Indexing table
(tiles & kdtrees)

| Spatial indexing / Point table L 4 Feature computation
‘ [24.3] | [46.0], ‘ 1115.6]
[282.8]
| Quadtree creation /Ground Points Roa:jdetl;c;gir;iary
[65.6] 5653

{ Grid )I Region growing

[2.5]

Road points

Fig. 1. General workflow
T

* Bracketed number indicates
processing time in minutes

* The experiment was run on an
Intel Xeon CPU E5-2665 0
@ 2.40 GHz with 32 GB RAM

3 g 8 s o % . v 3
(c) ALS data coloured by (d) 3D point cloud with colours
intensity derived from orthophotos

Fig. 2. ALS, aerial imagery data and the fusion result

The large nature of the data precludes storing the entire point
cloud within the main memory for most conventional computers.
So an out-of-core data management solution coordinating data in-
put and output between main memory and disk is required. Han-
dling spatial objects is necessary since data retrieval based on spa-
tial conditions (e.g. range search and neighbour search) is typical,
frequent, and computationally demanding. In this study, all steps
(except the file-based data fusion) were conducted within a data-
base environment. A hybrid quadtree—kdtree indexing (Fig. 3) was
implemented atop a flat table storing LiDAR points to enable fast
all-nearest-neighbour (ANN) computation on the points. At the top
level, point data were partitioned into multiple 125mx125m tiles
using a Hilbert code implementation. Tile size was selected based
on the amount of memory dedicated for the index (e.g. approxi-
mately 120 megabytes/tile). Under each tile, a 3D kd-tree was
built. The kd-tree includes points in a buffer around the tile, plus
the points within this tile itself to avoid discontinuity around the
tile boundaries. The kd-trees were made reusable by being serial-
ized and stored as binary large objects in an indexing table. Each
was retrieved and de-serialized back to the main memory, once a

search within its extent was invoked. This hybrid indexing well
adapts to the spatial distribution of ALS data [i.e. dominantly hori-
zontal (2D) at the global level and fully 3D at the local level].
Within a tile, ANN queries are fast because its associated 3D index
resides in the main memory. This implementation is not yet gener-
ic, nor optimal, but did sufficiently support all spatial queries per-
formed in this study.
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Fig. 3. Hybrid 2D quadtree-3D kd-tree indexing
4. POINT CLOUD CLASSIFICATION

To reduce computational efforts, a less expensive point classifica-
tion is performed on the entire cloud before a more demanding
road extraction process is applied only to the ground points. A su-
pervised approach is employed to classify the point cloud into one
of three groups: building, ground or unassigned. The classification
process involves three main steps: (1) compute point features, (2)
select optimal feature vector, and (3) classify the entire data with
the best performing classifier. The Weka toolkit was utilized to
create classification models in this study [11].

After being fused with orthophotos, the point cloud possesses
two raw (i.e. from sensor) attributes: intensity and RGB colour
values. Additionally, there are several secondary features possibly
derived from the point coordinates and the two initial attributes that
can be beneficial for point classification. In this study, the follow-
ing features were investigated: (1) height: z value of the point, (2)
imagery intensity described in two colour spaces, (3) laser intensi-
ty, (4) height variation — maximum variation of z values within a
spherical neighbourhood N of the given point (5) surface roughness
— indirectly represented by the quadratic mean of orthogonal dis-
tances of all points in N to a plane P fitting to all points in N, and
(6) normal vector of P, represented as (ny, ny, n,) in a Cartesian co-
ordinate system or (0,¢) in a radial coordinate system. An iterative
Principle Component Analysis [12] was implemented with a
weighting factor inversely proportional to the point-to-plane dis-
tance to improve plane fitting.

To analyse the influence of the above features, several combi-
nations (termed feature vectors) were investigated (FVO to FV5 on
Table 1). FV6 and FV7 compared the differences caused by the
various ways of representing normal vectors and colours. Perfor-
mance of each feature vector was evaluated by a training-and-
evaluating process. Sixteen different regions selected from the
original data covering approximately 16% of the study area, were
manually labelled. Two-thirds of the labelled data were used to
build a J48 decision tree classifier with a Weka machine learning
toolkit [11]. Classifier accuracy was estimated against the remain-
ing labelled data. The classification performance of each feature
vector is plotted on Fig. 4 with 4 measures: F1 score for ground
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(blue), building (red), and unassigned points (green) and the num-
ber of correctly classified instances (CCI) including all three clas-
ses (purple). The F1 scores computed for each class are the har-
monic means of precision and recall while evaluated against the
testing sets, F'1 =2 (precision % recall) / (precision + recall).
Table 1 — Combinations of point features for classification
H [NV SR | II |LI |HV Comments
FVO0 o | o | o Most important features

FV1 e | o | o | Exclude core features
FV2 e | | o [ o | o | o | Bestcombination
FV3 o [o | o e | o | Influence of II

Fv4 o (o |0 | o e | Influence of LI

FV5 o | o |0 o | o Influence of HV

FVé6 e [0 |e |o | |eo | (n,nyn,)vs. (0,0) NV

FV7 o |e | o | O | o | o | RGBvs. HSL colour

feature included for classification

¢ switch normal vector from spherical to Descartes coordinate system

o switch colour from HSL to RGB space

height (H), normal vector (NV), surface roughness (SR), image intensi-
ty (I1), laser intensity (LI), height variation (HV), point density (PD)
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Fig. 4. Performance of the feature vectors in Table 1
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Fig. 5. Classification result

Based on Fig. 4, the most important features for point classifi-
cation were height, normal vector, and local surface roughness.
The CCI was 80.1% when the three core features were used (FVO0)
but dropped to 72.3% when excluded (FV1). The absence of image
intensity, laser intensity and height variation reduced the CCI by
2.3%, 0.8% and 0.9%, respectively (FV3, 4 & 5). Representing
normal vectors in a radial form (0, ¢) was better for classification
than Cartesian coordinates (ny, ny, n,) (FV2 vs. FV6) due to the
trivial lengths of normal vectors, which can be discarded when the
vectors are represented in a spherical system. In Cartesian coordi-
nates, the lengths are blended into all three variables (n,, ny, n,),
which complicates the problem without improving classification
levels. The more robust HSL colour was better than RGB (81.7%

in FV7 vs. 79.7% in FV2) as previously noted by Sithole [10].
Ground point classification rates were significantly higher than the
other two classes (blue vs. red and green columns in Fig. 4), be-
cause of feature consistency. The best performing feature vector
was identified as height, normal vector (¢, 0), roughness, HSL col-
our, intensity and height variation. To exploit all manually labelled
data, all are used to build a new classifier. The final classifier clas-
sified the entire dataset (Fig. 5). Points classified as ground were
further processed for road extraction.

5. ROAD EXTRACTION

Laser intensity has been used successfully for distinguishing road
surfaces from other materials (e.g. [2]-[4]). Asphalt, appears within
a very distinctive range in the laser intensity spectrum. However, in
this study the roads were made from various materials without suf-
ficiently distinguishable intensities (Fig. 2¢). Thus, a new method
was needed. The proposed method has two main steps: (1) identify-
ing road curbs and obstacles bounding road regions based on spa-
tial distribution of point data, and (2) extracting road points using a
quadtree-based region growing algorithm considering intensity and
colour conditions.

5.1. Detection of road curbs and obstacles

Road curbs and obstacles were defined as objects preventing
vehicle progression due to height or slope variation within a finite
spatial extent (e.g. a 1 m radius circle). Fig. 6a shows an example
along a road cross-section at position A within Fig. 5. Small fea-
tures (e.g. curbs) are visible due to the high data density. The
method computes two features:  directional slope variation,
Vpgslope(p;), and directional height variation, Vgheight(p;). Each are
computed for every single point p; within the ground points.

Non-traffic Traffic zone Non-traffic

- - - -

(a) Real road cross section from LiDAR point cloud
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(c) Directional slope and height variation

Fig. 6. Directional slope and height variation computation

Firstly neighbouring points N within a spherical neighbour-
hood of p; are partitioned into two point groups N, and Ny by a
vertical plane P containing p; and making an angle of  with the X
axis (Fig. 6). P, and Py are defined as the best fit planes to the
points in N, and Np. With a given value of B, Vpslope(p;) is de-
fined as the angle between P, and Pg, whereas Vgheight(p;) is the
height difference between the vertical projections of p; on P, and
Pg. Finally, the maximum directional slope and height variations
over B, Vg maslope(pi) and Vg n.cheight(p;) are determined.

Figure 7 presents the results of Vg maslope and Vg cheight for
a segment of ground points. Road boundaries are clearly distin-
guishable and better than using the residual value (see 3.1) (Fig.
7c) or the non-directional height variation approaches (Fig. 7d).
Points having Vg maslope > 8° and Vj yacheight > 5 cm were con-

ne, Va,maxslope

N
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sidered as obstacles and were used as input to a region growing
road extraction as presented in the next section. Thresholds were

selected empirically.
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Fig. 7. Directional slope and height variation versus conven-
tional height variation and residual

5.2. Quadtree-based region growing

A region growing algorithm was combined with a rasterization for
performance enhancement as seen in [11] to extract road points
(Fig. 8). An initial seed, namely any pixel (i.e. quadtree node) lo-
cated inside the road network, is manually specified (e.g. the plus
mark in Fig 8b). Around the seed, a buffer approximating a re-
quired clearance for one vehicle is constructed (e.g. 0.75 m radius
circle). Every pixel within the buffer, as well as all points enclosed
in the pixel, is labelled as road, if the buffer is obstacle free. The
newly detected road pixels are set as new seeds for the next itera-
tions, if they satisfy additional intensity and colour conditions (i.e.
intensity < 550 and hue € (0.18, 0.3)). Intensity and colour of a
pixel are set as the maximum intensity and the average HSL of all
points contained in the pixel. These criteria assist in distinguishing
road from grass, even though they are insufficient by themselves
for direct road extraction.

6. DISCUSSIONS AND CONCLUDING REMARKS

Most of major road segments were identified, except those blocked
by speed bumps or other obstacles (e.g. location C&D in Fig. 8).
Even though relaxing the slope and height variation thresholds
would extend the region growing beyond these obstructions, the
potential for false detection might increase. Most misclassification
was attributable to large parking lots (e.g. location A in Fig. 8).
Evaluation against a manual result showed a precision of 66.1%,
recall of 91.9% and an F1 score of 76.9%.While the LiDAR point
cloud provided the highly accurate dense 3D data, enabling detec-
tion of fine features such as road curbs or barriers, colour from the
orthophotos increased the point cloud classification accuracy by
2.3%, equivalent to adding approximately 920,000 points. Ortho-
photo based colour and laser intensity also helped exclude grassy
areas (e.g. B1 and B2 in Fig. 8a).

While minimizing computational cost is not the aim of this
study, the processing time for each single module in the chain is
presented in Fig. 1 (with the total of 18.5 hours). Notably, the clas-
sification step improves performance but is not compulsory, and
further optimization alleviating the costs is possible. The proposed
approach is more widely applicable than many other studies in this
field, as it does not require a digital elevation model or a two-
dimensional road map as input. The initial seeding point could be
automated, as well as thresholds for directional slope and height

b ) /4
120cm  (b) Reference road map (Google Maps) (d

variation. The results showed all locations accessible from the ini-
tial seed point. Such map would be more useful for autonomous
navigation than traditional maps.

e
) Barriers at location D

-+
Fig. 8. Road extraction result
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